波混沌腔体中电磁效应物理量的统计特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在高功率微波(HPM)效应和电磁兼容(EMC)研究中,研究人员对窄脉冲耦合进入复杂封装体的问题非常感兴趣。本论文主要以随机矩阵理论、统计电磁学、随机平面波假说、量子力学和电动力学为理论基础,采用随机耦合模型(RCM)对波混沌腔体进行了系统分析。从理论和实验两方面对随机耦合模型开展了研究。
     然而作为一个新兴的研究领域,随机耦合模型在HPM效应、EMC、抗辐射加固等研究中的应用可以说刚刚起步,还有许多急待解决的问题。本文在对波混沌腔体进行系统分析的基础上,探讨了RCM在各种条件下的实用性。
     随机耦合模型是一个结合随机平面波假说和随机矩阵理论(Random Matrix Theory,RMT),用公式表示具有时间反演不变性系统(Time Reversal Symmetry, TRS)和不具有时间反演不变性系统(Broken Time Reversal Symmetry, BTRS)的阻抗、导纳和散射的统计模型。采用随机矩阵描述的波混沌腔体中的“归一化阻抗”、“归一化导纳”和“归一化散射”具有通用统计特性,且只与腔体的损耗有关系。
     RCM模型主要引入具有非统计特性的“辐射阻抗”来描绘耦合孔周围的详细信息,采用随机矩阵理论提供具有统计通用性的物理量来描述波混沌腔体,然后将两者结合起来复原整个波耦合进腔体的状态。
     本论文首先简要回顾了国内外HPM效应研究现状,并分析、对比了现有HPM效应研究方法的特点、使用范围和局限性,着重从效应目标的不确定性和效应过程的随机性出发,引入了随机耦合模型。接着对随机耦合模型的理论基础——随机矩阵理论、随机平面波假说、波混沌等进行了描述和分析。为了证明RCM的可靠性和实用性,特将计算机机箱作为微波混沌腔体进行了模拟仿真和实验研究。重点讨论了在计算机机箱内部不同状态下RCM的应用,获得如下主要结论:
     1.通过模拟仿真、实验研究和RCM计算研究发现:如果针对一系列相似对象(例如计算机机箱)的效应结果进行统计分析时,系统的效应评估主要建立在大量实验数据基础上的,采用传统的数值模拟和实验研究方法,传统的实验研究方法将需要大量的实验样本,而对各种相似效应目标进行数值仿真则比较耗时。如果采用RCM对系统进行分析,只需知道系统少量系统参量,就可以方便的给出感应电压(电流)的统计结果。
     2.对波混沌腔体进行数值仿真和实验研究发现:计算机机箱中的散射行为是波混沌散射,RMT计算的归一化阻抗与模拟(或实验)得到的归一化阻抗的统计特性一致;归一化阻抗和归一化导纳本征值实部、虚部的统计特性非常一致,且与系统的耦合无关,不会随着参考面的移动而改变;随着腔体损耗的增加,插入相移分布逐渐趋于均一分布;辐射阻抗结合随机矩阵理论可以快速还原已知系统的腔体散射矩阵。
     3.搭建了实验平台,通过实验测量系统关键部位感生电压(电流)的大小以验证RCM的实用性。结果表明:两者的统计结果趋势基本一致,且实验测量范围与RCM计算的频数出现最多的范围基本一致。在实验过程中注意到辐射散射过程的测量直接影响到最终的统计结果。
     RCM在统计电磁学、电磁兼容、抗辐射加固和HPM效应研究领域有重要的实用价值。然而RCM研究现阶段仍然处于初期研究阶段,为了让其早日成为一个通用研究工具,需要进行更深入的理论和实验研究。在以后HPM效应机理研究中,可以结合量子力学、统计电磁学等学科,以拓宽研究思路和方法。
In the field of high-power microwave (HPM) effects and electromagnetic compatibility (EMC) study, researchers are much interested in the item of short-pulse coupling into the large complicated enclosures. In this dissertation, the random coupling model (RCM) was analyzed based on random matrix, statistical electromagnetism, plane-wave hypothesis, quantum mechanics and electrodynamics theory. The RCM was summarized by combination of the theory and the experiment research.
     However, as an emerging research area, the applications of RCM in HPM effect and the EMC research have just started. There remain many pressing problems to be solved. Based on systematic analysis in the wave chaotic cavity, applicability of RCM was discussed in practical conditions.
     The RCM is a stochastic model which makes use of the random plane wave hypothesis and random matrix theory to formulate a statistical model for the impedance, admittance and scattering properties of time reversal symmetry (TRS) and broken time reversal symmetry (BTRS) wave-chaotic systems. Moreover, these fluctuations are expected to be universal in their statistical description, which depends only upon the value of a single dimensionless cavity loss-parameter. The port-coupling characteristics were accurately quantified by the "radiation impedance". The cavity scattering is recovered by combination of cavity loss and "radiation scattering".
     Firstly, a brief review of the status of HPM effect research was presented in this dissertation. Then the characteristics, the scope of usage and limitations of the existing method of HPM effects were analyzed and compared. Focusing on the influence of the uncertainty of the target and the random process, the RCM was introduced. Secondly, theoretical basis of RCM were described and analyzed. In order to prove the reliability and practicality of RCM, simulation and experimental investigation using the computer box cavity as a microwave chaotic cavity were carried out. The applications of RCM in the computer box with different states were discussed. The main obtained conclusions are as follows:
     Some results were found through simulation, experimental research and RCM calculation. While statistical analysis with effect results from a series of similar object is carried out, experimental study on traditional methods will require a large number of experimental samples, and numerical simulations of similar targets are more time-consuming. However analysing the system with RCM can give a convenient statistical result of induced voltages simply with a small number of system parameters.
     The numerical simulation and experimental study on the wave chaotic cavity reveals that the scattering behavior within computer box is the chaotic scattering and agrees well between the simulations and experimental results for the normalized impedance and the RMT predictions. The statistical properties of normalized impedance and admittance eigenvalue real part and imaginary part agree each other well, and don't change with the reference surface movement and depend only upon the cavity losses. With the increase of cavity loss, insertion phase shift distribution is becoming more and more homogeneous. The radiation impedance of the coupling port combined with the numerically generated normalized impedance z from random matrix theory can obtain an estimate of the non-universal system-specific scattering coefficient.
     Practicability of RCM has validated by measuring the magnitudes of induced voltages at key points within computer box. It shows that the two results are basically the same trend. The experimental scattering radiation measurement process directly affects the final results.
     In statistical electromagnetism, electromagnetic compatibility and HPM effects research field, the RCM has important practical value. However, study on RCM at this stage is still at a preliminary stage. In order to make it a general purpose research tool as soon as possible, it calls for more in-depth theoretical and experimental research. New methods and ideals should be exploited by combining the quantum mechanics with statistical electromagnetism in the field of HPM effects.
引文
1 周传明,刘国治,刘永真,等.高功率微波源[M].北京:原子能出版社,2007:2.
    2 杨德秀译.高功率微波系统与效应[M].中国工程物理研究院科技信息中心,1995:92~110.
    3 P. Kirawanich, D. Gleason, N. E. Islam. An electromagnetic topology and transmission line matrix hybrid technique for modeling high power electromagnetic interactions[J]. IEEE,2005; 1441~1444.
    4 Phumin Kirawanich, David Gleason, Anthony Cornell, et al. Analysis of Field through Apertures by applying Transmission Line Matrix method to Electromagnetic Topology Simulations [J]. IEEE,2005; 883~887.
    5 Phumin Kirawanich, Wahul Cunda, Nakka Kranthi, et al. Electromacsatic Topology Analysis:small apertures and lightning interactions [J]. IEEE,2004; 3857~3862.
    6 Phumin Kirawanich. Electromagnetic Wave Penetrating Through Apertures:Comparison of Electromagnetic Topology Technique With FDTD Method[J]. IEEE,2005; 151~154.
    7 C. Alonso Monje, Spain, S. Helmers. Evaluation of shielding effectiveness on system level by electromagnetic topology based modeling[J]. IEEE,2005; 61~64.
    8 Phurnin Kirawanich, Nakka S. Kranthi, N. E. Islam. Modeling external interference on systems using electromagnetic topology technique[J]. IEEE,2004; 804~808.
    9 George Tzeremes, Phurnin Kirawanich, Christos Christodoulou, et al. Transmission Lines as Radiating Antenna in Sources Aperture Interactions in Electromagnetic Topology Simulations [J]. IEEE, Antennas And Wireless Propagation Letters,2004; 3:283~286.
    10 F.M. Tesche, C. M. Butler. On the Addition of EM Field Propagation and Coupling Effects in the BLT Equation. Interaction Notes (Note 588) December 13,2003, Revised June 8,2004.
    11 F.M. Tesche, J. Keen C. M. Butler. Example of the Use of the BLT Equation for EM Field Propagation and Coupling Calculations. Interaction Notes (Note 591) June 8,2004.
    12 戴丽,谢政,罗建书,等.多层电磁屏蔽的电磁拓扑图分析方法[J].强激光与粒子束,2006;18(9):1524~1526.
    13 翁凌雯,牛忠霞,林竞羽,等.运用BLT方程研究高功率微波的电磁干扰[J].强激光与粒子束,2005;17(8):1272~1276.
    14 林竞羽,周东方,毛天鹏,等.电磁拓扑分析中的BLT方程及其应用[J].信息工程大学学报,2004;5(2):118~121.
    15 Zhou Dong-fang. The Application of Electromagnetic Topology in the Analysis of HPM Effects On System[J]. IEEE,2003:630~633.
    16 Phumin Kirawanich, S. Joe Yakura, Christos Christodoulou, et al. An Electromagnetic Topology Method for Cable Interactions Using a Radiating Dipole at Apertures [J]. IEEE, Antennas And Wireless Propagation Letters,2006; 5:220~223.
    17 F. M. Tesche. Electromagnetic topology:analysis of RF effects on electrical systems[R]. Clemson University,2001,6.
    18 P. So, S. M. Anlage, E. Ott, and R. N. Oerter. Wave Chaos Experiments with and without Time Reversal Symmetry:GUE and GOE Statistics [J]. Phys. Rev. Lett.,1995; 74,2662.
    19 Xing Zheng, Thomas M. Antonsen, Edward Ott. Statistics of Impedance and Scattering Matrices in Chaotic Microwave Cavities:Single Channel Case[J]. Electromagnetics,2006; 26:3-35.
    20 Sameer Hemmady, Xing Zheng, Edward Ott, et al. Universal Impedance Fluctuations in Wave Chaotic Systems[J]. Phys. Rev. Lett.,2005; 94,014102.
    21 Sameer Hemmady, Xing Zheng, Thomas M. Antonsen, et al. Universal statistics of the scattering coefficient of chaotic microwave cavities[J]. Phys. Rev. E,2005; 71,056215.
    22 X. Zheng, T. M. Antonsen and E. Ott. Statistics of Impedance and Scattering Matrices in Chaotic Microwave Cavities with multiple ports[J]. Electromagnetics,2006; 26:37-55.
    23 Y. V. Fyodorov, D. V. Savin. Statistics of Impedance, Local Density of States and Reflection in Quantum Chaotic Systems with Absorption[J]. JETP Lett.,2004; 80,725.
    24 D.V. Savin, H.-J. Sommers. Statistics of Impedance, Local Density of States, and Reflection in Quantum Chaotic Systems with Absorption[J]. Phys. Rev. E.,69,035201 (2004).
    25 Sameer Hemmady. A wave-chaotic approach to predicting and measuring electromagnetic quantities in complicated enclosures[D]. Ph.D Dissertation. USA:University of Maryland,2006.
    26 Dong Ho Wu, Jesse S. A. Bridgewater, Ali Gokirmak, et al. Probability Amplitude Fluctuations in Experimental Wave Chaotic Eigenmodes with and Without Time-Reversal Symmetry[J]V. Phys. Rev. Lett.,1998; 81(14):2890-2893.
    27 S. Hemmady, X. Zheng, T.M. Antonsen Jr., et al. Aspects of the Scattering and Impedance Properties of Chaotic Microwave Cavities [J]. Acta Physica Polonica A,2006; 109.
    28 Xing Zheng, Sameer Hemmady, Thomas M. Antonsen, Jr., et al. Characterization of fluctuations of impedance and scattering matrices in wave chaotic scattering[J]. Phys. Rev. E.,2006; 73,046208.
    29 Sameer Hemmady, Xing Zheng, James Hart, et al. Universal properties of two-port scattering, impedance, and admittance matrices of wave-chaotic systems[J]. Phys. Rev. E.,74,2006; 036213.
    30 Xing Zheng, T.M. Antonsen Jr. and Edward Ott. http://www.ireap.umd.edu/MURI-2001/Review_14Nov03/Review_14Nov03/Z_and_S_1.pdf.
    31 Taflove A, Umashankar K, Beker B, et al. Detailed FD-TD analysis of electromagnetic fields penetrating narrow slots and lapped joints in thick conducting screens[J]. IEEE Trans on Antennas Propagation,1998; 36(2):247~257.
    32 Kanalan K Y, Harrington R F, Auda H A, et al. characteristic modes for slots in a conducting plane: TE case[J]. IEEE Trans on Antennas Propagation,1987; 35(2):162~168.
    33 Park T J, Kang S H, Eom H J. TE scattering from a slit in a thick conducting screen:revisited[J]. IEEE Trans on Antennas Propagation,1994; 42(1):112~114.
    34 Jin J M, Volak J L. Electromagnetic scattering by and transmition through a three-dimensional slot in a thick conducting plane[J]. IEEE Trans on Antennas Propagation,1991; 39(4):543~550.
    35 Jean F K. Wave penetration through slits on stacked thick plates [J]. IEEE Trans on MTT,1998; 46(7): 889~893.
    36 杨丹.高功率微波脉冲的耦合与传播研究[D].博士学位论文.成都:西南交通大学(博士论文),2002.
    37 陈莉,赵永久.电磁脉冲对带孔缝腔体的耦合特性[J].火控雷达技术,2005;34(6).
    38 俞汉清,王建国,陈雨生,等.微波脉冲窄缝耦合的数值模拟方法[J].电子学报,1996;24(3)120~123.
    39 周金山,刘国治,王建国.矩形孔缝耦合特性实验研究[J].强激光与粒子束,2003;15(12):1228~1099.
    40 王建国,刘国治,周金山.微波孔缝线性耦合函数研究[J].强激光与粒子束,2003;15(11):1093~1099.
    41 Wang J G, Yu H Q, Liu G Z, etal. Numerical studies on resonant and enhancement effectsfor coupling of microwave pulses into narrow slot[J]. Journal of Electronics,1998; 15(2):174~181.
    42 王建国,刘国治,周金山,等.微波脉冲孔缝线性耦合的数值与实验研究[J].微波学报,1995;11(4):244~251.
    43 郝新红,白钰鹏,何娟.高功率微波孔缝耦合特性的数值模拟及防护加固技术[J].探测与控制学报,2006;28(4):34~38.
    44 M. Camp, H. Garbe. Susceptibility of personal computer systems to fast trasient electromagnetic pulses[J]. IEEE Trans. Electromagnetic Compatibility.2006; 48(4):829-833.
    45 刘长军,黄卡玛,闫丽萍,等.电磁辐射作用于计算机主板的模拟及效应评估[J].强激光与粒子束,2006;18(5):847~852.
    46 陈修桥,胡以华,张建华,等.计算机机箱的电磁脉冲耦合模拟仿真[J].系统仿真学报,2004;2786~2788.
    47 R. P. Jedlicka, S. P. Castillo, L. K. Warne. Coupling through tortuous path narrow slot apertures into complex cavities[J]. IEEE Trans. Antennas and Propogation.2000; 48(3):456~466.
    48 周金山,刘国治,彭鹏,等.不同形状孔缝微波耦合的实验研究[J].强激光与粒子束,2004;16(1):88~90.
    49 陈修桥,张建华,周彬.窄缝耦合共振特性分析[J].微波学报,2003;19(1):47~51.
    50 王建国,屈华民,范如玉,等.孔洞厚度对高功率微波脉冲耦合的影响[J].强激光与粒子束,1994;6(2):282~286.
    51 夏昌明,路宏敏,周力.金属腔体孔阵电磁耦合的数值分析[J].电子质量,2003;(8):25~27.
    52 Holland R, John R S. Statistical electromagnetics[R]. AFRL-DE-PS-TR-1998-1025, Air force research laboratory, Kirtland air force base, NM 87117~5776.
    53 方进勇,王建国,乔登江.模糊神经网络系统在微波效应数据处理中的应用[J].强激光与粒子束,2002;14(2):291~294.
    54 徐勇,丁武,杜祥琬.电子系统HPM效应敏感度评估新方法[J].强激光与粒子束,2002;9(4):568~572.
    55 韩峰,王建国,焦李成.模糊神经网络在电子器件微波易损性评估中的应用[J].强激光与粒子束,2004;16(7):909~914.
    56 李科,周海京,姜兴,等.自适应神经模糊推理网络在微波效应预测中的应用[J].桂林电子科技大学学报,2008;28(1):5~8.
    57 王韶光,魏光辉,代平.超宽带电磁脉冲及其对电子装备的影响研究综述[J].军械工程学院学报,2006;18(4):16~20.
    58 王建国.电子系统高功率微波效应的研究方法.高功率微波技术[J],1994;(1):1~13.
    59 罗根新,孟粉霞,童长江,等.超宽带电磁脉冲与地雷耦合的数值模拟[J].强激光与离子束,2003;15(8):805~808.
    60 罗根新,方向,高振儒,等.地雷电引火头的高功率微波效应研究[J].解放军理工大学学报(自然科学版),2003;4(1):52~54.
    61 高振儒,方向,罗根新,等.高功率微波对地雷电子引信的辐照效应研究[J].探测与控制学报,2003;25(4):17~34.
    62 王韶光,魏光辉,陈亚洲,等.超宽谱对无线电引信的作用效应实验研究[J].高电压技术,2006;32(11):78~80.
    63 方进勇,中菊爱,杨志强,等.集成电路器件微波损伤效应实验研究[J].强激光与粒子束,2003;15(6):591~594.
    64 刘勇波,樊祥,韩涛.高功率微波作用机理及影响条件分析[J].电子对抗技术,2003,18(4):41~45.
    65 翁凌雯,周旺,牛忠霞,等.系统级HPM效应的方法研究和计算评估[J].信息工程大学学报,2005;6(2):39~41.
    66 祝敏,刘顺坤,周辉,等.电磁脉冲对电缆的耦合效应实验研究[J].强激光与粒子束,2001;13(6):761~765.
    67 李平,刘国治,黄文华,等.半导体器件HPM损伤脉宽效应机理分析[J].强激光与粒子束,2001; 13(3):353~356.
    68 方进勇,刘国治,李平,等.高功率微波脉冲宽度效应实验研究[J].强激光与粒子束,1999;11(5):639~642.
    69 高成,周璧华,石立华,等.微型计算机在脉冲磁场作用下的效应试验[J].强激光与粒子束,2004;16(2):205~208.
    70 侯青,秋实,方进勇,等.用于外场效应实验的HPM辐射系统[J].试验与研究,2005;28(3):29~34.
    71 M. L. Mehta. Random Matrices[M], San Diego:Academic Press,1991.
    72 顾雁.量子混沌[M],上海科技教育出版社,1996.
    73 徐躬耦.量子混沌运动[M],上海科学技术出版社,1995;130~145.
    74 H-J Stockmann. Quantum Chaos[M], England:Press of the University of Cambridge,1999.
    75 Muttalib K A, Ismail M E H. Impact of localization on Dyson's circular ensemble[J/OL]. http://arxiv.org/abs/cond-mat/951005v1.
    76 Gokirmak A, Wu D Ho, Bridgewater J S A, et al. Scanned perturbation technique for imaging electromagnetic standing wave patterns of microwave cavities[J]. Review of Scientific Instruments, 1998; 69(9):3410~3417.
    77 Brouwer P W. Wave function statistics in open chaotic billiards[J]. Phys. Rev. E.,2003; 68:046205.
    78 Schafer R, Gorin T, Seligman T H, et al. Correlation functions of scattering matrix elements in microwave cavities with strong absorption[J/OL]. http://arxiv.org/abs/nlin.cd/0212021vl.
    79 Barth M, Stockmann H J. Current and vortex statistics in microwave billiards[J].Phys. Rev. E.,65, 2002;066208.
    80 张林昌.混响室及其进展[J].电子质量.2003;(1):39~42.
    81 张林昌.混响室及其进展[J].安全与电磁兼容.2001;(4):1~8.
    82 沈远茂.电磁兼容测试中的源搅拌混响室和电磁干扰接收机的相关研究[D].博士学位论文,北京:北京邮电大学,2006.
    83 Ott E. Chaos in Dynamical Systems[M]. Cambridge University Press,1993.
    84程圣华,胡国光,娄明连BaMnZnCo-W型铁氧体的微波吸收特性[J].磁性材料与器件,2002;33(4):11~13.
    85 U. Kuhl, M. Martinez-Mares, R. A. Mendez-Sanchez. Distributions of S-matrix in chaotic micromave cavities with direct processes and absorption[J/OL]. http://arxiv.org/abs/cond-mat/0407197v1.
    86 S. A. van Langen, P. W. Brouwer, C. W. J. Beenakker. Fluctuating phase rigidity for quantum chaotic system with partially broken time-reversal symmetry[J]. Phys. Rev. E.,1997; 55(1):R1-R4.
    87 Y.-H. Kim, U. Kuhl, H.-J. Stockmann, et al. Measurement of Long-Range Wavefunction Correlations in an Open Microwave Billiard[J/OL]. http://arxiv.org/abs/cond-mat/0407669v1.
    88 Sameer Hemmady, James Hart, Xing Zheng, et al. Experimental test of universal conductance fluctuations by means of wave-chaotic microwave cavities[J]. Phys. Rev. B.,2006; 74,195326.
    89 P. W. Brouwer, C. W. J. Beenakker. Voltage-probe and imaginary models for dephaseing in a chaotic quantum dot[J]. Phys. Rev. B.,1997; 55(7):4695~4702.
    90 A. Tschersich, K. B. Efetov. Statistics of wave functions on coupled chaotic systrms[J/OL]. http://arxiv.org/abs/cond-mat/9911284v2.
    91 Bambi Hu, Baowen Li, Wenge Wang. Universal statistics of wave functions in chaotic and disordered systems[J/OL]. http://arxiv.org/abs/cond-mat/9807006v3.
    92 Hiromu Ishio, Alexander I. Saichev, Almas F. Sadreev,et al. wave functions statistics for ballistic quantum teansport through chaotic open billiards:Statistical crossover and coexistence of regular and chaotic waves[J]. Phys. Rev. E.,2001; 64:056208.
    93 P. Seba, F. Haake, M. Kus,et al. distribution of the wavefunction inside chaotic partially open systems[J/OL]. http://arxiv.org/abs/cond-mat/9705009v1.
    94 Seok-Hwan Chung, Ali Gokormak, Dong-Ho Wu, et al. measurement of wave chaotic eigenfunctions in the time-reversal symmetry-breaking crossover regime[J]. Phys. Rev. Lett.,2000; 85(12): 2482~2485.
    95 D. V. Savin, Y. V. Fyodorov, H.-J. Sommers. correlation functious of impedance and scattering matrix elements in chaotic absorbing cavities[J/OL]. http://arxiv.org/abs/cond-mat/0506040v2.
    96 W.Cassing, M.Stingl, A. Weiguny. Scattering with absorptive interaction[J]. Phy. Rev. C.,1982; 26(1): 22~33.
    97 Paul J. Petersan, Steven M. Anlage. Measurement of resonant frequency and quality factor of microwave resonators:comparison of methods[J]. Journal of Applied Physics,1998; 84(6): 3392~3402.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700