无线通信系统协作中继技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
协作中继是一种协作多天线技术,基于该技术可以提高无线链路的传输速率及传输可靠性,并且可以增加系统的覆盖范围和系统的鲁棒性。协作中继技术充分利用无线媒质的广播特性,在不增加系统复杂度的情况下不仅降低了终端的功耗、带宽、还可以明显提高系统的频谱效率、吞吐率、以及容量。协作通信技术在无线传感器网络(WSN)、无线Ad Hoc网、无线Mesh网、以及蜂窝网等系统中有着广泛的应用前景,并将成为下一代无线通信系统融合多种异构网络的关键技术。为此,论文开展了对协作中继通信关键技术的研究。
     中断率和误符号率(SER)是无线通信系统最为常用的两种性能度量。对于放大转发(AF)和解码转发(DF)的中断率和SER分析,传统方法只是基于高信噪比(SNR)下的近似估计,而不能给出任意SNR下的准确表达式。因此,第二章研究了DF分集协议在Rayleigh衰弱信道条件下的中断率和SER性能。文中首先通过研究两个独立指数分布随机变量的线性函数的分布得到了DF分集协议的中断率闭式解,接着利用矩母函数方法给出了MPSK调制下的系统SER的闭式解。仿真结果显示,在任意信噪比下所给出的中断率闭式解与仿真结果完全吻合。所给出的中断率和SER的闭式解对于进一步研究DF分集协议相关的关键技术有着非常重要的理论价值。
     利用所有信道的反馈信息,在解码转发(DF)和直接发射(DT)中选择可达数据率较大者作为当前发射模式可以实现系统中断率最小。为了减少系统的反馈开销和计算复杂度,第三章研究了在信道增益平面内最佳发射模式区域划分,目的节点只需查看当前信道状态所属区域即可知当前最佳发射模式。接着,通过反馈功率分配参数,可进一步降低系统中断率。基于以上结论,目的节点只需反馈一个发射参数到源节点和中继节点即可实现最小中断率协作策略。
     Hunter等首先将信道编码引入到协作通信中,并提出了基于码率兼容删除卷积码(RCPC)的用户编码协作(CC)策略。基于编码协作,用户码字的不同部分经历不同用户信道到达基站。该模型认为经过不同信道的成对错误概率(PEP)仅与对应信道传输的符号长度成比例,然而该假设在很多应用场景下是不合理的。当基站能正确解码直接发射帧时,协作帧内为该用户转发数据将是多余的。因此,第四章对编码协作策略进行深入研究,提出了一种基于有限反馈的编码协作策略。基站对直接发射帧解码并反馈解码结果到用户,用户则根据反馈信息调整协作帧内数据的发射。相比于CC策略,在多种不同场景下的仿真结果显示所提出的协作策略不仅提高了用户的性能而且节省了大量的功率和带宽,并提高了用户的吞吐率和频谱效率。
     在无线协作系统中,协作节点需要根据协作策略灵活调整数据包的发射与接收,这对协作节点实现算法的扩展性和兼容性提出了更高的要求。基于模块化设计思想,第六章首先设计出一种按比特映射方式调整协作节点发送数据包的透明发送机制,接着利用各通道轮询方法设计出一种接收多个协作节点数据包的多通道联合自适应数据接收机制。基于提出的数据收发机制,修改几个变量可实现协作节点对任何收发协议的支持。本章所提出的数据收发机制不仅适用于无线协作通信系统,而且还适于任何有类似需求的系统。基于高速串行收发器技术,该算法已应用于B3G TDD系统。
     通过全文的研究,我们发现,在无线协作通信系统中,针对特定的传输策略下选取合适的协作策略以及数据处理算法,就能够有效利用不同用户节点的天线以获取协作分集,从而显著改善系统性能或降低系统代价。
Cooperative relay is a cooperative multiple antenna technique, which can significantly increase data rate and reliability of wireless link, and can enlarge the coverage and improve the robustness of the systems.
     Cooperative relay is mainly based on the nature of broadcast, which can reduce the consumption of energy, bandwidth of the terminal, and can also significantly improve the spectral efficiency, throughput, and the capacity of the system. To date, cooperative diversity has been widely used in wireless sensor networks, wireless Ad hoc networks, wireless Mesh networks, and wireless cellular networks. Obviously, cooperative communication will be the key technology for convergence of various heterogeneous networks, so, in this dissertation we will consider the special issues of cooperative relay communication.
     Outage probability and error symbol rate (SER) are two mostly used performance metrics for wireless communication sytstems. For outage probability and SER performance analysis of amplify-and-forward (AF) and decode-and-forward (DF), the traditional methods are based on approximation at high signal-to-noise ratio (SNR) for the exact expressions are still unknown at arbitrary SNR regime. Accordingly, we investigate the performance of outage probability and SER for DF diverstiy protocol of Rayleigh fading channel. We first derive the closed-form expression for outage probability of DF through analysis of the distribution of the linear function of two independent exponential random variables. We further use movement generation function (MGF) method to obtain the closed-form expression of symbol error rate for system based on MPSK modulation. The simulations reveal that the analytic results are exact the same with the numeric result at arbitrary SNR regime. The proposed expressions of outage probability and SER are of great value for investigating special issues associated with DF diversity protocol.
     Based on the feedback of all channels, choosing the higher achievable rate transmission mode between decode-and-forward (DF) and direct transmission (DT) can derive an outage minimization system. In order to reduce feedback overhead and computation complexity, on the channel gain coordinates plane, we first investigate the division of optimal transmission mode region. Accordingly, the destination can easily derive the transmission mode by checking the optimal transmission mode region of the channel state information. Then, we can further reduce the outage of the system through feedback the parameter of power allocation. Based on the proposed algorithm, the destination only needs to feedback a transmission parameter to the source and the relay, which can derive an outage minimization strategy.
     Hunter et al. first combined cooperative communication with existing channel coding methods, and proposed coded cooperation (CC) strategy based on rate-compatible punctured convolution (RCPC) code. Based on CC scheme, the codeword is divided into different parts, which arrive at the base station through different fading channels. In their system model, they consider that the pairwise error probability (PEP) is only proportional to the length of the corresponding symbol part while neglecting the influence of different channel quality, which is unreasonable in many practical scenarios. There is no need to transmit data for a user in the cooperative frame when the based station can recover the user's data only based on the direction transmission. Thus, through the investigation of codded cooperation, we propose a new codded cooperation strategy, which is based on limited feedback from the base station. The base station feedback the decode result of the direct transmission to the users, and then the users adaptively change the data transmission in the cooperative frame. The simulation results reveal that our proposed scheme achieves impressive gains in contrast with the existing cooperative schemes, while not only saving considerable power and bandwidth but also improving the throughput and spectral efficiency.
     In wireless cooperative systems, the cooperative node should adjust data packet transmission and data packet reception with high flexibility, then, we need a scalable and compatible algorithm for the implementation of the cooperative node. Thus, based on the module design scheme, we first propose a transparent sending mechanism, which could adjust the sending data packets format by means of bitmap. Next, we propose an optimal adaptive data receive mechanism for multiple channels in a round robin fashion from multiple cooperative nodes. Based on the proposed mechanisms, only modifying several variables can support any data transmission and data reception protocols of cooperative node. The proposed mechanisms not only fit for wireless communication system but also for any systems with similar requirements. Based on the high speed serial transceiver technique, the algorithms have been applied in B3G TDD system.
     From the dissertation we can find that, in cooperative communication system, selecting suitable cooperative schemes and data processing algorithms for specific transmission strategies can make full use of antennas of different user terminals, and thus achieve cooperative diversity, which can significantly improve the performance and reduce the cost of the systems.
引文
[1] 陈明,尤肖虎.B3G移动通信系统的研究框架.中兴通讯技术.2006,12(2):27-31
    [2] 张汉毅,粟欣.B3G的关键技术及其发展趋势.移动通信.2008,32(16):26-31
    [3] Foschini G. Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas. Bell Labs Tech, 1996: 41-59
    [4] Foschini G., Gans M. On Limits of Wireless Communications in a Fading Environment when Using Multiple Antennas Wireless Personal Communications. 1998, 6: 311-335
    [5] Telatar. Capacity of Multi_antenna Gaussian Channels. European Transactions on Telecommunications, 1999, 10(6): 585-595
    [6] Fujiwara A., Takeda S., Yoshino H., et al. Area coverage and capacity enhancement by multihop connection of CDMA cellular network, in: Vehicular Technology Conference, 2002. Proceedings. VTC 2002-Fall. 2371-2374
    [7] WWRF/WG4 Relaying Subgroup White Paper. Relay-based Deployment Concepts for Wireless and Mobile Broadband Cellular Radio, Version 0.1. in: Proceedings of the 9th WWRF Meeting. June 2003.
    [8] 闻立群,胡海波,庾志成.聚集B3G/4G--4G技术发展特征及趋势分析.通信世界.2008(2):I0003-I0004
    [9] Frodigh M., Parkvall S., Roobol C. Future Generation Wireless Networks. IEEE personal Communications, October 2001, 8(5): 10-17
    [10] Yanikomeroglu H. Fixed and mobile relaying technologies for cellular networks. Second Workshop on Applications and Services in Wireless Networks (ASWN'02), July 2002, 3(6): 75-81
    [11] Yanikomeroglu H. Cellular Multihop Communications: Infrastructure-Based Relay Network Architecture for 4G Wireless Systems. in: Ottawa ComSoc Wireless Seminar Series. 2003.
    [12] Ying-Dar L., Yu-Ching H. Multihop cellular: a new architecture for wireless communications, in: 1NFOCOM 2000. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE. 2000. 1273-1282
    [13] Liu Y., Hoshyar R., Yang X., et al. Integrated Radio Resource Allocation for Multihop Cellular Networks With Fixed Relay Stations. IEEE Journal on Selected Areas in Communications, 2006, 24(11): 2137-2146
    [14] Gerla M., Bagrodia R., Lixia Z., et al. TCP over wireless multi-hop protocols: simulation and experiments. 1999 IEEE International Conference on Communications. 1999. 1089-1094
    [15] Zadeh A. N., Jabbari B. On the capacity modeling of multi-hop cellular packet CDMA networks, in: Military Communications Conference, MILCOM 2001. Communications for Network-Centric Operations: Creating the Information Force. IEEE. 2001. 600-604
    [16] Sendonaris A., Erkip E., Aazhang B. Increasing uplink capacity via user cooperation diversity, in. 1998. 156
    [17] Laneman J. N., Wornell G. W. Energy-efficient antenna sharing and relaying for wireless networks, in 2000. 7-12
    [18] Laneman J. N., Wornell G W., Tse D. N. C. An efficient protocol for realizing cooperative diversity in wireless networks, in 2001. 294
    [19] Hunter T. E., Nosratinia A. Cooperation diversity through coding. Proceedings. 2002 IEEE International Symposium on Information Theory. 2002. 220
    [20] Stefanov A., Erkip E. Cooperative coding for wireless networks. 4th International Workshop on Mobile and Wireless Communications Network. 2002. 273-277
    [21] Laneman J. N., Wornell G. W. Distributed space-time-coded protocols for exploiting cooperative diversity in wireless networks. IEEE Transactions on Information Theory, 2003, 49(10): 2415-2425
    [22] Sendonaris A., Erkip E., Aazhang B. User cooperation diversity. Part Ⅰ. System description. IEEE Transactions on Communications, 2003, 51(11): 1927-1938
    [23] Sendonaris A., Erkip E., Aazhang B. User cooperation diversity. Part Ⅱ. Implementation aspects and performance analysis. IEEE Transactions on Communications, 2003, 51(11): 1939-1948
    [24] Janani M., Hedayat A., Hunter T. E., et al. Coded cooperation in wireless communications: space-time transmission and iterative decoding. IEEE Transactions on Signal Processing, 2004, 52(2): 362-371
    [25] Laneman J. N., Tse D. N. C., Womell G. W. Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 2004, 50(12): 3062-3080
    [26] Dohler M., Gkelias A., Aghvami H. A resource allocation strategy for distributed MIMO multi-hop communication systems. Communications Letters, IEEE, 2004, 8(2): 99-101
    [27] 赵绍刚,李岳梦.移动通信网络中的协作通信.电信快报.2005(5):11-13
    [28] Dohler M., Aghvami H. Distributed PHY-layer mesh networks. PIMRC 2003. 14th IEEE Proceedings on Personal, Indoor and Mobile Radio Communications. 2003. 2543-2547
    [29] Thompson L. E. A Microwave Relay System. in: Proceedings of the IRE. 1946. 936-942
    [30] Jubin J., Tornow J. D. The DARPA packet radio network protocols. Proceedings of the IEEE, 1987, 75(1): 21-32
    [31] 李屹,纪红,马书惠.无线Ad hoc网络中协作重传机制的改进.北京邮电大学学报.2007,30(4):23-27
    [32] 袁渊,郑宝玉,颜振亚.一种Ad hoc网络中的协作路由方案及性能分析.电子与信息学报.2008,30(9):2238-2241
    [33] Akyildiz I. F., Su W., Sankarasubramaniam Y., et al. Wireless Sensor Networks: A Survey. Computer Networks, 2002, 38(4): 393-422
    [34] 郭金淮,于宏毅.一种用于无线传感器网的协作接收方案.电路与系统学报.2007,12(2):43-46
    [35] 杨白薇,于宏毅,郭金淮,et al.能量有效的无线传感器网络协作路由策略研究.信息工程大学学报.2007,8(4):446-450
    [36] Goldsmith A. J., Wicker S. B. Design challenges for energy-constrained ad hoc wireless networks. Wireless Communications, IEEE, 2002, 9(4): 8-27
    [37] Whitehead P. Mesh networks: a new architecture for broadhand wireless access systems, in: IEEE RAWCON 2000. 2000. 43-46
    [38] 朱翠涛,杨宗凯,程文青,et al.无线mesh网络中基于效用最优的覆盖多播策略.通信学报.2008,29(6):106-112
    [39] 宋文,方旭明.基于动态规划法的无线Mesh网络QoS路由算法和性能评价.电子与信息学报.2007,29(12):3001-3005
    [40] Akyildiz I. F., Wang X. A survey on wireless mesh networks. Communications Magazine, IEEE, 2005, 43(9): S23-S30
    [41] Gastpar M., Kramer G., Gupta P. The multiple-relay channel: coding and antenna-clustering capacity. Proceedings. 2002 IEEE International Symposium on Information Theory. 2002. 136
    [42] El Gamal A., Zahedi S. Minimum energy communication over a relay channel. Proceedings. IEEE International Symposium on Information Theory. 2003. 344-344
    [43] Hasna M. O., Alouini M. S. End-to-end performance of transmission systems with relays over Rayleigh-fading channels. IEEE Transactions on Wireless Communications, 2003, 2(6): 1126-1131
    [44] Khojastepour M. A., Sabharwal A., Aazhang B. On the Capacity of 'Cheap' Realy Networks. in: Proc 37th Annu. Conf. Information Sciences and Systems. 2003.
    [45] Anghel P. A., Kaveh M. Exact symbol error probability of a Cooperative network in a Rayleigh-fading environment. IEEE Transactions on Wireless Communications, 2004, 3(5): 1416-1421
    [46] Hasna M. O., Alouini M. S. Harmonic mean and end-to-end performance of transmission systems with relays. IEEE Transactions on Communications, 2004, 52(1): 130-135
    [47] Host-Madsen A., Junshan Z. Ergodic capacity and power allocation in wireless relay channels in: Global Telecommunications Conference. GLOBECOM '04. IEEE. 2004. 26-30 Vol. 21
    [48] Bolcskei H., Nabar R. U., Oyman O., et al. Capacity scaling laws in MIMO relay networks. IEEE Transactions on Wireless Communications, 2006, 5(6): 1433-1444
    [49] Fan Y., Thompson J. MIMO Configurations for Relay Channels: Theory and Practice. IEEE Transactions on Wireless Communications, 2007, 6(5): 1774-1786
    [50] Kang T, Rodoplu V. Algorithms for the MIMO Single Relay Channel. IEEE Transactions on Wireless Communications, 2007, 6(5): 1596-1600
    [51] Tang X., Hua Y. Optimal Design of Non-Regenerative MIMO Wireless Relays. IEEE Transactions on Wireless Communications, 2007, 6(4): 1398-1407
    [52] Lin J. C. H., Stefanov A. Coded cooperation for OFDM systems. International Conference on Wireless Networks, Communications and Mobile Computing,2005. vol.11:7-10
    [53] Liwen Y, Stefanov A. Cooperative space-time coding for MIMO OFDM systems. in: Military Communications Conference, 2005. MILCOM 2005. 990-995
    [54] Hammerstrom I., Wittneben A. On the Optimal Power Allocation for Nonregenerative OFDM Relay Links. ICC '06. IEEE International Conference on Communications.2006. 4463-4468
    [55] Herdin M. A Chunk Based OFDM Amplify-and-Forward Relaying Scheme for 4G Mobile Radio Systems. ICC '06. IEEE International Conference on Communications.2006. 4507-4512
    [56] Mheidat H., Uysal M., Al-Dhahir N. Distributed Space-Time Block Coded OFDM for Relay-Assisted Transmission. ICC '06. IEEE International Conference on Communications.2006. 4513-4519
    [57] Jamshidi A., Nasiri-Kenari M., Zeinalpour Z., et al. Space frequency coded cooperation in OFDM multiple-access wireless networks. Communications, IET, 2007,1(6): 1152-1160
    [58] Oh-Soon S., Chan A. M., Kung H. T, et al. Design of an OFDM Cooperative Space-Time Diversity System. IEEE Transactions on Vehicular Technology, 2007, 56(4): 2203-2215
    [59] Athaudage C. R. N., Saito M., Evans J. Performance Analysis of Dual-Hop OFDM Relay Systems with Subcarrier Mapping. ICC '08. IEEE International Conference on Communications.2008. 4419-4423
    [60] Bo G, Lin D., Cimini L. J. Selective Relaying in Cooperative OFDM Systems: Two-Hop Random Network. in: Wireless Communications and Networking Conference, WCNC 2008. 996-1001
    [61] Li G, Liu H. Resource Allocation for OFDMA Relay Networks With Fairness Constraints. IEEE Journal on Selected Areas in Communications, 2006, 24(11): 2061-2069
    [62] Jun N., Lu I. T. Coded Cooperation on Block-Fading Channel in OFDMA Systems. in: Wireless Communications and Networking Conference.WCNC 2007. 3466-3471
    [63] Tarasak P., Yong Hoon L. Joint Cooperative Diversity and Scheduling in OFDMA Relay Systems, in: Wireless Communications and Networking Conference, WCNC 2007. 980-984
    [64] Pischella M., Belfiore J. C. Power control in distributed cooperative OFDMA cellular networks. IEEE Transactions on Wireless Communications, 2008, 7(5): 1900-1906
    [65] Seung-Jun K., Xiaodong W., Madihian M. Optimal resource allocation in multi-hop OFDMA wireless networks with cooperative relay. IEEE Transactions on Wireless Communications, 2008, 7(5): 1833-1838
    [66] Zhang S., Lau V. K. N. Resource Allocation for OFDMA System with Orthogonal Relay using Rateless Code. IEEE Transactions on Wireless Communications, 2008, 7(11): 4534-4540
    [67] Ananthapadmanabha R., Manoj B. S., Murthy C. S. R. Multi-hop cellular networks: the architecture and routing protocols. 12th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications.2001. G78-G82
    [68] Hongyi W., Chunming Q., De S., et al. Integrated cellular and ad hoc relaying systems: iCAR. IEEE Journal on Selected Areas in Communications, 2001, 19(10): 2105-2115
    [69] Neonakis Aggelou G, Tafazolli R. On the relaying capability of next-generation GSM cellular networks. Personal Communications, IEEE, 2001, 8(1): 40-47
    [70] Kumar K. J., Manoj B. S., Murthy C. S. R. On the use of multiple hops in next generation cellular architectures. ICON 2002. 10th IEEE International Conference on Networks.2002. 283-288
    [71] Li H., Lott M., Weckerle M., et al. Multihop communications in future mobile radio networks. The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications. 2002. 54-58
    [72] Simeone O., Somekh O., Bar-Ness Y., et al. Throughput of Low-Power Cellular Systems With Collaborative Base Stations and Relaying. IEEE Transactions on Information Theory, 2008, 54(1): 459-467
    [73] Zhou J., Yang Y. R. PARCelS: Pervasive Ad-hoc Relaying for Cellular Systems. in: Proceedings of Med-Hoc-Net. Sardegna, Italy. 2002.
    [74] 王大健.基于中继技术的802.16j标准展望.中兴通讯技术.2007,13(6):39-41
    [75] Meulen E. C. v. d. Three-terminal communication channels. Adv. Appl. Prob., I971, vol. 3: 120-154
    [76] Cover T., Gamal A. E. Capacity theorems for the relay channel. IEEE Transactions on Information Theory, 1979, 25(5): 572-584
    [77] Gamal A. E. On Information Flow in Relay Network. IEEE National Telecommunications Conference, 1981, Vol. 2: D411-D414
    [78] Gamal A. E., Rref M. The capacity of the semideterministic relay channel. IEEE Transactions on Information Theory, 1982, 28(3): 536-536
    [79] Zhang Z. Partial Converse for a Relay Channel. IEEE Transactions on Information Theory, 1988, 34(5): 1106-1110
    [80] Gupta P., Kumar P. R. Towards an information theory of large networks: an achievable rate region. IEEE Transactions on Information Theory, 2003, 49(8): 1877-1894
    [81] Liang-Liang X., Kumar P. R. A network information theory for wireless communication: scaling laws and optimal operation. IEEE Transactions on Information Theory, 2004, 50(5): 748-767
    [82] Reznik A., Kulkarni S. R., Verdu S. Degraded Gaussian multirelay channel: capacity and optimal power allocation. IEEE Transactions on Information Theory, 2004, 50(12): 3037-3046
    [83] El Gamal A., Zahedi S. Capacity of a class of relay channels with orthogonal components. IEEE Transactions on Information Theory, 2005, 51(5): 1815-1817
    [84] Gastpar M., Vetterli M. On the capacity of large Gaussian relay networks. IEEE Transactions on Information Theory, 2005, 51 (3): 765-779
    [85] Host-Madsen A., Zhang J. Capacity bounds and power allocation for wireless relay channels. IEEE Transactions on Information Theory, 2005, 51(6): 2020-2040
    [86] Kramer G., Gastpar M., Gupta P. Cooperative Strategies and Capacity Theorems for Relay Networks. IEEE Transactions on Information Theory, 2005, 51 (9): 3037-3063
    [87] Liang Y., Veeravalli V. V. Gaussian Orthogonal Relay Channels: Optimal Resource Allocation and Capacity. IEEE Transactions on Information Theory, 2005, 51(9): 3284-3289
    [88] Zheng Z., Duman T. M. Capacity-approaching turbo coding and iterative decoding for relay channels. IEEE Transactions on Communications, 2005, 53(11): 1895-1905
    [89] Avestimehr A. S., Tse D. N. C. Outage Capacity of the Fading Relay Channel in the Low-SNR Regime. IEEE Transactions on Information Theory, 2007, 53(4): 1401-1415
    [90] Zheng Z., Duman T. M. Capacity-Approaching Turbo Coding For Half-Duplex Relaying. IEEE Transactions on Communications, 2007, 55(10): 1895-1906
    [91] Shrestha S., KyungHi C. Analysis of outage capacity performance for cooperative DF and AF relaying in dissimilar Rayleigh fading channels. ISIT 2008. IEEE International Symposium on Information Theory. 2008. 494-498
    [92] Royer E. M., Chai-Keong T. A review of current routing protocols for ad hoc mobile wireless networks. Personal Communications, IEEE, 1999, 6(2): 46-55
    [93] Ephremides A. Energy concerns in wireless networks. Wireless Communications, IEEE, 2002, 9(4): 48-59
    [94] Hunter T. E., Nosratinia A. Coded cooperation under slow fading, fast fading, and power control, in. 2002. 118-122
    [95] Hagenauer J. Rate-compatible punctured convolutional codes (RCPC codes) and their applications. IEEE Transactions on Communications, 1988, 36(4): 389-400
    [96] Hunter T. E., Nosratinia A. Performance analysis of coded cooperation diversity. in. 2003. 2688-2692
    [97] Hunter T. E., Nosratinia A. Distributed protocols for user cooperation in multi-user wireless networks, in. 2004. 3788-3792
    [98] Hunter T. E., Sanayei S., Nosratinia A. The outage behavior of coded cooperation. in. 2004. 270
    [99] Nosratinia A., Hunter T. E., Hedayat A. Cooperative communication in wireless networks. Communications Magazine, IEEE, 2004, 42(10): 74-80
    [100] Hunter T. E., Nosratinia A. Diversity through coded cooperation. IEEE Transactions on Wireless Communications, 2006, 5(2): 283-289
    [101] Hunter T. E., Sanayei S., Nosratinia A. Outage analysis of coded cooperation. IEEE Transactions on Information Theory, 2006, 52(2): 375-391
    [102] 雷维嘉,谢显中,李广军.一种基于LDPC编码的协作通信方式.电子学报.2007,35(4):712-715,
    [103] Stefanov A., Erkip E. Cooperative coding for wireless networks. IEEE Transactions on Communications, 2004, 52(9): 1470-1476
    [104] Stefanov A., Erkip E. Cooperative space-time coding for wireless networks. IEEE Transactions on Communications, 2005, 53(11): 1804-1809
    [105] Zinan L., Erkip E., Stefanov A. Cooperative regions for coded cooperative systems in: Global Telecommunications Conference, 2004. GLOBECOM '04. 21-25
    [106] Zinan L., Erkip E., Stefanov A. An asymptotic analysis on the performance of coded cooperation systems, in: Vehicular Technology Conference, 2004. VTC2004-Fall. 1333-1337
    [107] Lin Z., Erkip E., Stefanov A. Cooperative regions and partner choice in coded Cooperative systems. IEEE Transactions on Communications, 2006, 54(7): 1323-1334
    [108] Chuxiang L., Guosen Y., Khojastepour M. A., et al. LDPC-coded cooperative relay systems: performance analysis and code design. IEEE Transactions on Communications, 2008, 56(3): 485-496
    [109] Rossi P. S., Petropulu A. R, Palmieri F., et al. Distributed Linear Block Coding for Cooperative Wireless Communications. Signal Processing Letters, IEEE, 2007, 14(10): 673-676
    [110] Ruiyuan H., Jing T. Practical Compress-Forward in User Cooperation: Wyner-Ziv Cooperation. IEEE International Symposium on Information Theory.2006. 489-493
    [111] Simoens S., Munoz O., Vidal J. Achievable Rates of Compress-and-Forward Cooperative Relaying on Gaussian Vector Channels. ICC '07. IEEE International Conference on Communications.2007.4225-4231
    [112] Zhixin L., Uppal M., Stankovic V., et al. Compress-forward coding with BPSK modulation for the half-duplex Gaussian relay channel. IEEE International Symposium on Information Theory.2008. 2395-2399
    [113] Xingkai B., Jing L. Efficient Message Relaying for Wireless User Cooperation: Decode-Amplify-Forward (DAF) and Hybrid DAF and Coded-Cooperation. IEEE Transactions on Wireless Communications, 2007,6(11): 3975-3984
    [114] Hasna M. O., Alouini M. S. Application of the harmonic mean statistics to the end-to-end performance of transmission systems with relays. in: Global Telecommunications Conference, GLOBECOM '02. IEEE.2002.1310-1314
    [115] Anghel P. A., Kaveh M. On the performance of distributed space-time coding systems with one and two non-regenerative relays. IEEE Transactions on Wireless Communications, 2006,5(3): 682-692
    [116] Yi Z., Adve R., Teng Joon L. Symbol error rate of selection amplify-and-forward relay systems. Communications Letters, IEEE, 2006,10(11): 757-759
    [117] Chau Y. A., Huang K. Y. Channel statistics and performance of cooperative selection diversity with dual-hop amplify-and-forward relay over Rayleigh fading channels. IEEE Transactions on Wireless Communications, 2008, 7(5): 1779-1785
    [118] Yi Z., Adve R., Teng Joon L. Outage probability at arbitrary SNR with cooperative diversity. Communications Letters, IEEE, 2005, 9(8): 700-702
    [119] Himal A. S., Peter J. S., Jean A. Outage probability of cooperative relay networks in Nakagami-m fading channels. Communications Letters, IEEE, 2006, 10(12): 834-836
    [120] Norman C. B., Jeremiah H. A closed-form expression for the outage probability of decode-and-forward relaying in dissimilar Rayleigh fading channels. Communications Letters, IEEE, 2006, 10(12): 813-815
    [121] Beres E., Adve R. Outage Probability of Selection Cooperation in the Low to Medium SNR Regime. Communications Letters, IEEE, 2007, 11(7): 589-597
    [122] Hwang K. S., Ko Y. C., Alouini M. S. Outage probability of cooperative diversity systems with opportunistic relaying based on decode-and-forward. IEEE Transactions on Wireless Communications, 2008, 7(12): 5100-5107
    [123] Bletsas A., Khisti A., Reed D. P., et al. A simple Cooperative diversity method based on network path selection. IEEE Journal on Selected Areas in Communications, 2006, 24(3): 659-672
    [124] Ibrahim A. S., Sadek A. K., Su W., et al. Relay Selection in Multi-Node Cooperative Communications: When to Cooperate and Whom to Cooperate with? in: Global Telecommunications Conference, GLOBECOM '06. IEEE. 2006. 1-5
    [125] Beres E., Adve R. On Selection Cooperation in Distributed Networks. 2006 40th Annual Conference on Information Sciences and Systems. 2006. 1056-1061
    [126] Madan R., Mehta N. B., Molisch A. E, et al. Energy-Efficient Cooperative Relaying over Fading Channels with Simple Relay Selection. IEEE Transactions on Wireless Communications, 2008, 7(8): 3013-3025
    [127] Mahinthan V., Lin C., Mark J. W., et al. Partner Selection Based on Optimal Power Allocation in Cooperative-Diversity Systems. IEEE Transactions on Vehicular Technology, 2008, 57(1): 511-520
    [128] 高伟东,王文博,袁广翔,et al.协作通信中的中继节点选取和功率分配联合优化.北京邮电大学学报.2008,31(2):68-71,
    [129] Hasna M. O., Alouini M. S. Optimal power allocation for relayed transmissions over Rayleigh-fading channels. IEEE Transactions on Wireless Communications, 2004, 3(6): 1999-2004
    [130] Yingwei Y., Xiaodong C., Giannakis G. B. On energy efficiency and optimum resource allocation of relay transmissions in the low-power regime. IEEE Transactions on Wireless Communications, 2005, 4(6): 2917-2927
    [131] Xitirnin D., Haimovich A. M. Power allocation for cooperative relaying in wireless networks. Communications Letters, IEEE, 2005, 9(11): 994-996
    [132] Gunduz D., Erkip E. Opportunistic cooperation by dynamic resource allocation. IEEE Transactions on Wireless Communications, 2007, 6(4): 1446-1454
    [133] Zhao Y., Adve R., Lim T. J. Improving amplify-and-forward relay networks: optimal power allocation versus selection. IEEE Transactions on Wireless Communications, 2007,6(8): 3114-3123
    [134] Yonghui L., Vucetic B., Zhendong Z., et al. Distributed Adaptive Power Allocation for Wireless Relay Networks. IEEE Transactions on Wireless Communications, 2007,6(3): 948-958
    [135] Luo J., Blum R. S., Cimini L. J., et al. Decode-and-Forward Cooperative Diversity with Power Allocation in Wireless Networks. IEEE Transactions on Wireless Communications, 2007, 6(3): 793-799
    [136] Luo J., Blum R. S., Cimini L., et al. Power allocation in a transmit diversity system with mean channel gain information. Communications Letters, IEEE, 2005, 9(7): 616-618
    [137] Jia T., Xi Z. Cross-layer resource allocation over wireless relay networks for quality of service provisioning. IEEE Journal on Selected Areas in Communications, 2007, 25(4): 645-656
    [138] Zhong Z., Shengli Z., Jun-Hong C, et al. Energy-Efficient Cooperative Communication Based on Power Control and Selective Single-Relay in Wireless Sensor Networks. IEEE Transactions on Wireless Communications, 2008, 7(8): 3066-3078
    [139]Tannious R., Nosratinia A. Spectrally-efficient relay selection with limited feedback. IEEE Journal on Selected Areas in Communications,2008, 26(8): 1419-1428
    [140] Hasna M. O., Alouini M. S. Performance analysis of two-hop relayed transmissions over Rayleigh fading channels. in: Vehicular Technology Conference, 2002. Proceedings. VTC 2002-Fall. 2002 IEEE 56th.2002. 1992-1996
    [141] Hasna M. O., Alouini M. S. Optimal power allocation for relayed transmissions over Rayleigh fading channels. in: Vehicular Technology Conference, 2003. VTC 2003-Spring. The 57th IEEE Semiannual.2003. 2461-2465
    [142] Ozarow L. H., Shamai S., Wyner A. D. Information theoretic considerations for cellular mobile radio. IEEE Transactions on Vehicular Technology, 1994, 43(2): 359-378
    [143] Simon M. Digital communication over fading channels: a unified approach to performance analysis. Wiley. New York. in. 2000.
    [144] Ahmed N., Khojastepour M. A., Sabharwal A., et al. Outage minimization with limited feedback for the fading relay channel. IEEE Transactions on Communications, 2006, 54(4): 659-669
    [145] Chu J. P. K., Adve R. S., Eckford A. W. Relay Selection for Low-Complexity Coded Cooperation. in: Global Telecommunications Conference, 2007. GLOBECOM '07. IEEE. 2007. 3932-3936
    [146] Valentin S., Karl H. Effect of User Mobility in Coded Cooperative Systems with Joint Partner and Cooperation Level Selection. in: Wireless Communications and Networking Conference, WCNC 2007. IEEE. 896-901
    [147] Eckford A. W., Chu J. P. K., Adve R. S. Low complexity and fractional coded cooperation for wireless networks. IEEE Transactions on Wireless Communications, 2008, 7(5): 1917-1929
    [148] Jun H., Duman T. M. Cooperation over frequency-selective fading relay channels. IEEE Transactions on Wireless Communications, 2008, 7(12): 5072-5081
    [149] Sang Joon K., Mitran P., Tarokh V. Performance Bounds for Bidirectional Coded Cooperation Protocols. IEEE Transactions on Information Theory, 2008, 54(11): 5235-5241
    [150] Elfituri M., Hamouda W., Ghrayeb A. A Convolutional-Based Distributed Coded Cooperation Scheme for Relay Channels. IEEE Transactions on Vehicular Technology, 2009, 58(2): 655-669
    [151] 邹玉龙,郑宝玉,崔景伍,et al.基于跨层机制的最佳协作中继选择及其系统实现.通信学报.2008,29(8):1-10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700