天然气管道泄漏监测网络的多源数据融合方法与关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然气管网是现代城市的“生命线”之一。由于管道的劣化、老化、自然灾害和建筑施工破坏等原因,管道泄漏以及由此引发的爆炸事故时有发生,严重威胁着城市天然气供给体系的安全。利用无线传感器网络技术,可对城市天然气管网进行在线、实时安全监测,解决人工巡检效率低和现有泄漏诊断方法难以准确地识别小泄漏量、多泄漏源等问题。
     受测量噪声、传感器类型、网络节点数量和监测位置等因素的影响,传感网络中的检测信息表现出形式上的不确定性、多样性、数量的巨大性和关系的复杂性。为了能够及时、准确地识别出管道泄漏,需要解决以下问题:(a)传感器采集的原始泄漏信号的噪声剔除;(b)单节点上各类传感器检测信息的互补性处理;(c)处于不同监测位置的多个传感器节点诊断结果间联合决策。
     为此,从信息融合的角度,系统研究了管道泄漏监测网络内多源检测数据的处理方法。主要工作如下:
     (1)通过对管道泄漏监测网络的结构特点和检测数据特征分析,引入小波神经网络和D-S证据理论,建立了一种从数据级、特征级到决策级的层级式多源检测数据融合模型。在簇内成员节点处,采用小波神经网络方法对泄漏信号进行数据预处理和特征参数融合;在簇头处,利用改进的证据理论对多个节点的初始识别结果进行联合决策。
     (2)针对城市环境下传感器采集泄漏信号时受强噪声干扰的问题,优化选取Symlets小波基对声发射泄漏信号进行多层小波分解,采用启发式的小波阈值法剔除信号中的干扰噪声,然后从降噪信号中提取时频域内对泄漏敏感的特征参数。为了提高对泄漏源的定位精度,提出一种多传感器节点重复定位算法,该方法依据小波分解得到的单模态声发射信号的平均幅值对所有信号进行分组和配对,通过波形互相关分析得到每对信号定位出的泄漏点位置,最后进行加权平均。实验结果表明,多节点重复定位方法提高了对泄漏源的定位精度。
     (3)针对BP神经网络存在的收敛速度慢、识别率低且易收敛于局部最优解的不足,引入了蚁群算法全局优化网络的权值;为了保证网络同时具有较高的训练速度和识别准确率,采用“试优法”确定网络所需的隐含层神经元数,在此基础上建立了管道泄漏特征参数的蚁群神经网络融合结构,完成传感器节点对泄漏的初始识别。实验结果表明,相比于BP神经网络,蚁群神经网络能够极大地提高网络的训练速度,避免收敛于局部最小值,同时提高了泄漏识别的准确率。
     (4)考虑到处于不同监测位置的传感器节点关于泄漏事件的诊断结果间可能存在冲突,致使直接利用D-S及其修证据正组合规则可能得出与事实相悖的结论,为此,提出了一种基于可靠度和一致强度的冲突证据组合算法CECARCI。该方法依据源节点的可靠度对证据集进行预处理,引入证据的一致强度和基元支持度,合理地分配冲突和优化证据的组合次序。实验结果表明,CECARCI算法减弱了不可靠证据对组合结果造成的影响,提高了证据集对正确命题的聚焦度。
     (5)为了降低簇头决策管道是否发生泄漏时的风险,提出一种基于集合属性和优先度的D-S证据决策方法。该方法将证据决策问题分解成精细信度区间的构造和优先度比较两个层面。在构造层面上,引入集合的不确定性测度和焦元间的属性支持度,获取命题集合的精细信度区间值;在比较层面上,引入优先度评价不同命题的精细信度区间值,在优先度排序的基础上构建了证据决策模型。实验结果表明,该方法可充分利用信度区间所蕴含的信息,克服其它单点值证据决策方法所存在的误决策或不做决策的问题。
     (6)针对D-S证据理论无法处理管道泄漏监测网络内的模糊信息问题,提出一种基于距离测度的模糊证据理论扩展方法。该方法从模糊集合间距离的角度,确定模糊焦元对其它焦元的信任度、似真度函数的贡献程度,并建立了有效的模糊证据组合规则。实验结果表明,相比于其它的扩展方法,该方法能够从模糊焦元变化中获取更多的信息,避免模糊信任度函数对某些焦点元素变化不敏感的问题。
     通过对数据级预处理、异类泄漏特征参数融合和多节点联合决策等关键技术的研究,系统解决了管道泄漏监测网络的多源检测数据处理问题。基于小波神经网络和证据理论的层级式数据融合方法,可降低单传感器和单节点泄漏识别的不确定性,提高识别的准确率。
Natural gas pipeline is one of the important lifelines in the city. Considering the problems of pipeline's deterioration, aging, natural disasters, construction damage and so on, the leakage and the resulted explosion accidents occur frequently, which seriously threaten the security of gas supply system. However, it is difficult for the existed leakage detection methods to identify small and multi-sources leakage accurately. By using wireless sensor networks, it can achieve on-line and real-time security monitoring of gas supply system, and solve the problem of low efficiency of manual inspection.
     For the effects of measurement noise, sensor types, node numbers and monitoring location, the information shows the form of uncertainties, diversities, enormous quantity and complex relationship. In order to identify the pipeline leakage timely and accurately, such problems should be resolved: (a) removing noise from leakage signal, (b) dealing with the relevance of information from heterogeneous sensors, (c) making united decisions with multi-nodes' diagnosis results.
     Therefore, as viewed from information fusion, this thesis systematically studies the method of multi-source data processing in pipeline monitoring network. The main work is provided as follows:
     Firstly, by analysis of the network structure and data characteristics, a hierarchical multi-source leakage monitoring data fusion model based on wavelet neural network and D-S evidence theory is established. At sensor node, wavelet neural network is used for data-level preprocessing and feature-level fusion. Then, at the cluster head, the united decision was made to the orignial multi-nodes' diagnosis results using improved D-S evidence theory.
     Secondly, considering that the noise interference of leakage detecting signal is very strong under urban environment, the symlets wavelet and heuristic wavelet threshold method are selected for wavelet decomposition and signal-to-noise separation respectively. And the leakage sensitive characteristics of time-frequency domain can be extracted from wavelet decomposition signal. In order to improve the precision of leakage location, a multi-nodes location algorithm is proposed. The algorithm divides all signals into two groups according to the average amplitude of single-state acoustic emission signal. The leak position can be obtained from each pair of signal using waveform cross-correlation method, and then processes it with weighted average. The experiment result shows that the proposed method improves the precision of pipeline leakage location.
     Thirdly, BP neural network has the shortage of slow convergence, low recognition rate and easy to converge to local minimum value. So the ant colony algorithm is introduced to optimize network's weights. To insure that the network has high training speed and recognition accuracy, the necessary number of hidden neurons is chosen by the excellent test method. Then the fusion structure of leakage characteristic parameters based on ant neural network is established for initial leak identification. Compared with BP neural network, the experiment result shows that the ant colony neural network model can not only improve the training speed, avoid network convergence to local optimal solution effectively, but also improve the accuracy rate of leakage recognition.
     Fourthly, considering that the diagnoisis results from different nodes may seriously conflict, it is difficult for the cluster head to make correct decisions using D-S or its modified combination rules. So a novel conflicting evidence combination algorithm based on reliability and coherence intensity (CECARCI) is proposed. The algorithm preprocesses the evidence set according to nodes' reliability. By introducing the coherence intensity of evidence and support degree of base element, it obtains reasonable combination sequences and manages the conflict. The numerical example shows that proposed method not only decreases the effect of unreliable evidences on the fusion result, but also can obtain more reasonable results with good convergence.
     Fifthly, a novel evidence decision rule based on set attribute and preference degree is proposed for reducing the risk of cluster head's decision-making. The method divides the decision problem into construction and evaluation level of belief interval. At the construction level, refined belief interval of base elements in power set is calculated based on the set's uncertainty measure and support degrees between two focal elements. At the evaluation level, preference degree is used to estimate and rank the defined belief interval. So the decision-making model is constructed. Comparing with other endpoint value decision rules, the numerical example shows that the proposed method can make full use of interval information and avoid the wrong decision-making.
     Sixthly, considering the D-S evidence theory can't deal with the fuzzy information in pipeline leakage monitoring network, novel fuzzy evidence reasoning method based on distance measure is proposed. In the method, as viewed from the point of distance between two fuzzy sets, the contribution of one focal element to the other elements' belief or plausibility function is defined, and the fuzzy evidence combination rule is established. Compared with other methods, experimental results show that proposed generalization method can catch more information from focal elements' change, and avoid the insensitivity problem of fuzzy belief function to focal elements' change.
     In summary, by researching on the key technologies of data pre-processing, heterogeneous characteristic parameters fusion and multi-nodes united decision-making, this paper presents the systemic solution to the multi-source data processing in pipeline leakage monitoring network. The hierarchical data fusion method based on wavelet neural network and D-S evidence theory can reduce the identification uncertainty of single sensor and node, and improve the recognition accuracy greatly.
引文
[1] Taghvaei M, Beck S B M, Staszewski W J. Leak detection in pipelines using cepstrum analysis [J]. Measurement Science and Technology, 2006,17(2):367-372.
    [2] Gao, Xiaoming, Fan Hong, Huang Teng, et al. Natural gas pipeline leak detector based on NIR diode laser absorption spectroscopy [J]. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2006,65(1):133-138.
    [3] Chen Huali, Ye Hao, Lv Chen, et al. Application of support vector machine learning to leak detection and location in pipelines [C]. In: Proceedings of the 21st IEEE Instrumentation and Measurement Technology Conference. Como, Italy, 2004,2273-2277.
    [4] Lee M R, Lee J H. Leak detection of the pipeline using acoustic emission technique [J].American Society of Mechanical Engineers, Pressure Vessels and Piping Division, 2004,215-221.
    [5] Barbagelata A, Barbagelata L. Acoustic leak detection for underwater oil and gas pipelines [J]. Sea Technology, 2002,43(11):39-44.
    [6] Jiao Jingpin, He Cunfu, Wu Bin, et al. A new technique for modal acoustic emission pipeline leak location with one sensor [J]. Insight, 2004,46(7):392-395.
    [7] Muggleton J M, Brennan M J. Leak noise propagation and attenuation in submerged plastic water pipes [J]. Sound and Vibration, 2004, 278:527-537.
    [8] Freitas R, Maitelli A, Salazar A. A wavelet approach to pipeline leak detection by pressure analysis [C]. In: Proceedings of 23rd International Conference on Offshore Mechanics and Arctic Engineering. Vancouver, Canada, 2004,1-4.
    [9] Henrique V, Morooka C, Guilherme I, et al. Leak detection in petroleum pipelines using a fuzzy system [J]. Petroleum Science and Engineering, 2005,49:223-238.
    [10] Beck S, Curren M, Sims N, et al. Pipeline network features and leak detection by cross-correlation analysis of reflected waves [J]. Hydraulic Engineering, 2005,131:715-723.
    [11] Gao Y, Brennan M J, Joseph P F, et al. A model of the correlation function of leak noise in buried plastic pipes [J]. Sound and Vibration, 2004, 277:133-148.
    [12] Pretorius J V R, Van Shoor M C, Muller G J, et al. Piezoelectric structural acoustic leak detection for pressurized pipelines [C]. In: Proceedings of the International Society for Optical Engineering, Smart Structures and Materials. San Diego, USA, 2005,5762: 212-223.
    [13] Akyildiz I F, Su W, Sankarasubramaniam Y. Wireless sensor networks: a Survey [J]. Computer Networks, 2002,38(4):393-422.
    [14] Fuchs H V, Riehle R. Ten years of experience with leak detection by acoustic singal analysis [J]. Applied Acoustics, 1991,33(1):1-19.
    
    [15] Ellul I R. Advances in pipeline leak detection [J]. Petroleum Review, 1989,514(43):582-285.
    [16] Weimer D. Leakage control [J]. Water Supply, 1992,10(1):169-176.
    [17] Pollock A A, Hsu S Y S. Leak detection using acoustic emission [J]. Acoustic Emission, 1982,7(4):237-243.
    [18] Toshio F. Pipeline inspection and maintenance by application of computer data processing and robotic technology [J]. Computers in industry, 1986,12(1):5-23.
    [19] Deluare V. Leak detection and location for gas transmission pipelines [C]. In: Proceedings of the International Pipeline Conference. Calgary, Canada, 1996,2:1109-1115.
    [20] Liou C P. Leak detection by mass balance effective for Norman wells line [J]. Oil and Gas,1996,94(17):69-74.
    [21] Dennis W H. Real-time transient model for batch tracking, line balance and leak detection [J].Canadian Petroleum, 1981,20(3):46-52.
    [22] Liou C P. Mass imbalance errors of water-hammer equations and leak detection [J]. Fluid Engineering Transactions of ASME, 1994,116:103-109.
    [23] Furness R A. Modern pipeline monitoring techniques [J]. Pipes and Pipelines International,1985,10(2):14-18.
    [24] Muggleton J M, Brennan M J, Pinninqton R L. Wavenumber prediction of waves in buried pipes for water leak detection [J]. Sound and Vibration, 2003,249(5):939-954.
    [25] Ellul I R. Advances in pipeline leak detection techniques [J]. Pipes and Pipelines International, 1989,34(3):7-12.
    [26] Beck S B M, Williamson N J, Sims N D, et al. Pipeline system identification through cross-correlation analysis [J]. Process Mechanical Engineering, 2002,216(3): 133-142.
    [27] Kiuchi T. A leak localization method of pipeline by means of fluid transient model [J].Energy Resources, 1993,115(33):162-167.
    [28] Isermann R. Process fault detection based on modeling and estimation methods-a survey [J].Automatica, 1984,20(4):387-404.
    [29] Verde C. Multi-leak detection and isolation in fluid pipeline [J]. Control Engineering Practice,2001, 9(6):673-682.
    [30] Zhang Xuejun. Statistical leak detection in gas and liquid pipelines [J]. Pipes and Pipelines International, 1993,38(4):26-29.
    [31] Zhang Jun. Designing a cost-effective and reliable pipeline leak detection system [J]. Pipes and Pipelines International, 1997,42(1):20-26.
    [32] Reeve A. SCADA for pipeline monitoring and control [J]. Control and Instrumentation, 1987,19(11):55-59.
    [33] Stoianov I, Nachman L, Madden S, et al. PIPENET: A wireless sensor network for pipeline monitoring [C]. In: Proceedings of 6th International Symposium on Information Processing in Sensor Networks. Massachusetts, USA, 2007,264-273.
    [34] http://www.onworld.com/wsn/oil&gas.htm.
    [35] Jawhar I, Mohamed N, Mohamed M, et al. A routing protocol and addressing scheme for oil,gas, and water pipeline monitoring using wireless sensor networks [C]. In: Proceedings of the International Conference on Wireless and Optical Communications Networks. Singapore,2008,1-5.
    [36] Yuanwei Jin, Eydgahi A. Monitoring of distributed pipeline systems by wireless sensor networks [C]. In: Proceedings of the 2008 IAJC-IJME. Nashville, USA, 2008:1-10.
    [37] Ma Zhongli, Liu Hongda. Pipeline defect detection and sizing based on MFL data using immune RBF neural networks [C]. In: Proceedings of the IEEE Congress on Evolutionary Computation. Singapore, 2007, 3399-3403.
    [38] Canbulut F, Sinanoglu C, Yildirim S. Neural network analysis of leakage oil quantity in the design of partially hydrostatic slipper bearings [J]. Industrial Lubrication and Tribology, 2004,56(4):231-243.
    [39] Dempster A P. Upper and lower probabilities induced by a multivalued mapping [J]. Annals of Mathematical Statistics, 1967, 38(2):325-339.
    [40] Dempster A P. Generalization of Bayesian Inference [J]. Royal Statistical Society, 1968,205-247.
    
    [41] Shafer G. A mathematical theory of evidence [M]. Princeton University Press, 1976.
    [42] Guan J W, Bell D A. A generalization of the Dempster-Shafer theory [C]. In: Proceedings of International Joint Conference on Artificial Intelligence. Chambery, France, 1993,529-579.
    [43] Dubois D, Prade H. Belief revision and updates in numerical formalisms [C]. In: Proceedings of International Joint Conference on Artificial Intelligence. Chambery, France, 1993,620-625.
    
    [44] 刘大有,李岳峰.广义证据理论的解释[J].计算机学报,1997,20(2):158-164.
    [45] Zadeh L A. Fuzzy sets and information granularity [C]. In: Proceedings of the Advances in Fuzzy Set Theory and Application. Amsterdam, North-Holland, 1979,3-18.
    [46] Pawlak Z. Rough sets [J]. Computer and Information Sciences, 1982,11:341-356.
    [47] Smets P. The degree of belief in a fuzzy event [J]. Information Sceience, 1981, 25:1-19.
    [48] Yager R R. Generalized probabilities of fuzzy events from fuzzy belief structures [J].Information Science, 1982,28:45-62.
    [49] Ishizuka M, Fu K S, Yao J. Inference procedures and uncertainty for the problem-reduction method [J]. Information Sciences, 1982,28(2):179-206.
    [50] Ogawa H, Fu K S. An inexact inference for damage assessment of existing structures [J].Man-Machine Studies, 1985,22(3):295-306.
    [51] Yen J. Generalizing the Dempster-Shafer theory to fuzzy sets [J]. IEEE Transactions on System, Man and Cybernetics, 1990,20(3):559-570.
    [52] Yang M S, Chen T C, Wu K L. Generalized belief function, plausibility function, and Dempster's combinational rule to fuzzy sets [J]. Intelligent Systems, 2003,18(5):925-937.
    [53] Hwang C M, Yang M S. Generalization of belief and plausibility functions to fuzzy sets based on the Sugeno integral [J]. Intelligent Systems, 2007,22(11):1215-1218.
    [54] Romer C, Kandel A. Constraints on belief function imposed by fuzzy random variable [J].IEEE Transactions on System, Man, and Cybernetics, 1995,25(1):86-99.
    [55] Palacharla P, Nelson P. Understanding relations between fuzzy logic and evidential reasoning methods [C]. In: Proceedings of the 3rd IEEE Conference on Fuzzy Systems. Orlando, USA,1994,3:1933-1938.
    [56] Dubois D, Prade H. A set-theoretic view of belief functions: logical operations and approximations by Fuzzy Sets [J]. General Systems, 1986,12:193-226.
    [57] Mahler R. Combining ambiguous evidence with respect to ambiguous a priori knowledge, I: Boolean Logic [J]. IEEE Trans on Systems, Man, and Cybernetics Part A: Systems and Humans, 1996, 26(1):27-41.
    [58] Mahler R. Combining ambiguous evidence with respect to ambiguous a prior knowledge, II:Fuzzy logic [J]. Fuzzy set and systems, 1995,75(3):319-354.
    [59] Smets P. The combination of evidence in the transferable belief model [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990,12(5):447-458.
    [60] Smarandache F, Dezert J. Advances and applications of DSmT for information fusion [M].Rehoboth: America Reserch Press, 2004.
    [61] Zadeh L A. Review of Shafer's a mathematical theory of evidence [J]. AI Magazine, 1984,5:81-83.
    [62] Smets P. The combination of evidence in the transferable belief model [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990,12(5):447-458.
    [63] Yagger R R. On the Dempster-Shafer framework and new combination rules [J]. Information Science, 1989,41(2):93-137.
    [64]Inagaki T.Interdependence between safety-control policy and multiple-sensor schemes via Dempster-Shafer theory[J].IEEE Transactions on Reliability,1991,40(2):182-188.
    [65]Lefevre E,Color O,Vannoorenberghe P.Belief functions combination and conflict management[J].Information Fusion,2002,3(2):149-162.
    [66]孙全,叶秀清,顾伟康.一种新的基于证据理论的合成公式[J].电子学报,2000,28(8):117-119.
    [67]Jousselme A L,Grenier D,Bosse E.A new distance between two bodies of evidence[J].Information Fusion,2001,2:91-101.
    [68]Yager R R.On the aggregation of prioritized belief structure[J].IEEE Transactions on System,Man and Cybernetics,1996,26(6):708-719.
    [69]Daniel M.Associativity in combination of belief functions;a derivation of minC combination [J].Soft Computing-A Fusion of Foundations,Methodologies and Applications,2003,7(5):288-296.
    [70]Dezert J,Smarandache E Information fusion based on new proportional conflict redistribution rules[C].In:Proceedings of the 7th International Conference on Information Fusion.Philadelphia,USA,2005,25-29.
    [71]万江文,陈斌,冯仁剑,等.基于可靠度和一致强度的冲突证据组合算法[J].高技术通讯,2009,19(4).
    [72]Li Xiang,Liu Yong-xiang,Fu Yao-wen,et al.Decision fusion recognition based on modified evidence rule[J].Progress in Natural Science,2001,11(4):316-320.
    [73]Haenni R.Are alternative to Dempster's rule of combination real alternative? Comments on about the belief function combination and the conflict management problem-E[J].Information Fusion,2002,3(3):237-239.
    [74]Murphy C.Combining belief functions when evidence conflicts[J].Decision Support Systems,2000,29(1):1-9.
    [75]Josang A,Daniel M,Vannorenberhghe P.Strategies for combining conflicting dogmatic beliefs[C].In:Proceedings of the Sixth International Conference on Information Fusion.Queensland,Australia,2003,1133-1140.
    [76]Cben L Z,Shi W K,Deng Y,et al.Anew fusion approach based on distance of evidences[J].Zhejiang University SCIENCE,2005,6A(5):476 -482.
    [77]Guo Huawei,Shi Wenkang,Deng Yong.Evaluating sensor reliability in classification problems based on evidence theory[J].EEE Transactions on Systems,Man,and Cybernetics,2006,36(5):970-981.
    [781 Lefevre E,Color O,Vannoorenberghe P.A classification method based on the Dempster-Shafer's theory and information criteria[C].In:Proceedings of the 2nd International Conference on Information Fusion.Sunnyvale,CA,1999,1179-1184.
    [79]Ayrulu B,Barshan B.Reliability measure assignment to sonar for robust target differentiation [J].Pattern Recognition,2002,35(6):1403-1419.
    [80]陈斌,万江文,吴银锋,等.神经网络和证据理论融合的管道泄漏诊断方法[J].北京邮电大学学报,2009,32(1):5-9.
    [81]Barnett J A.Computational methods for a mathematical theory of evidence[C].In:Proceedings of the 7th International Joint Conference on Artificial Intelligence.Vancouver,Canada,1981,868-875.
    [82]Pearl J.On evidential reasoning in a hierarchy of hypothesis[J].Artifieial lntelligenee,1986,28(1):9-15.
    [83]Gordon J,Shortliffe E H.Method for managing evidential reasoning in a hierarchical hypothesis space[J].Artificial Intelligence,1985,26(3):323-357.
    [84]Ishizuka K S.Inference procedure and uncertainty for the problem-reduction method[J].Information Science,1982,28(3):179-206.
    [85]Voorbraak F.A computationally efficient approximation of Dempster-Shafer theory[J].Man-Machine Studies,1989,30(5):525-536.
    [86]Lowrance J D,Garvey T D,S(?)at T M.A framework for evidential reasoning systems[C].In:Proceedings of the 5th National Conference of the American Association for Artificial Intelligence.Philadelphia,USA,1986,896-903.
    [87]Tessem B.Approximations for efficient computation in the theory of evidence[J].Artificial Intelligence,1993,61(2):315-329.
    [88]Simard M A.Data fusion of multiple-sensors attribute information for target identity estimation using a Dempster-Shafer evidential combination algorithm[C].In:Proceedings of the International Society for Optical Engineering.Orlando,USA,1996,2759:577-588.
    [89]Bauer M.Approximations for decision making in the Dempster-Shafer theory of evidence[J].Approximate Reasoning,1997,17(2),217-237.
    [90]Dubois D,Prade H.Consonant approximation of belief function[J].Approximatre Reasoning,1990,4(4):419-449.
    [91]Seizer F,Gutfinger D.LADAR and FLIR based sensor fusion for automatic target classification[C].In:SPIE.Cambridge,MA,1988,236-246.
    [92]Liu Lei J,Yang Jing Yu.Model-based object classification using fused data[C].In:Proceedings of the International Society for Optical Engineering.Boston,USA,1991,1611:65-73.
    [93]Salzenstein F,Boudraa A O.Unsupervised multisensor data fusion approach[C].In:Proceedings of International Symposium on Signal Processing and its applications.Kuala Lumpur,2001,152-155.
    [94]Denoeux T.A K-nearest neighbor classification rule based on based on Dempster-Shafer theory[J].IEEE Transactions on Systems,Man and Cyberneties,1995,25(5):804-813.
    [95]Denoeux T.A neural network classifier based on Dempster-Shafer theory[J].IEEE Transactions on Systems,Man and Cybernetics-Part A:Systems and Humans,2000,30(2):131-150.
    [96]Florea M C,Jousselme A L,Bosse E,et al.Roubst combination rules for evidence theory[J].Information Fusion,2009,10(2):183-197.
    [97]段新生.证据理论与决策、人工智能[M].中国人民大学出版社,1993.
    [98]Sudano J J.Pignistic probability transforms for mixes of low- and high-probability events[C].In:proceedings of 4th International Conference on Information Fusion.Montreal,Canada,2001,23-27.
    [99]何兵,郝爱民,赵沁平.一种基于不确定信息的决策方法[J].计算机学报,2004,27(2):281-285.
    [100]林志贵,徐立中,严锡君,等.基于距离测度的D-S证据融合决策方法[J].计算机研究与发展,2006,43(1):169-175.
    [101]Yager R R.Uncertainty representation using fuzzy measures[J].IEEE Transactions on Systems,Man and Cybernetics(Part B),2002,32(1):13-20.
    [102]Chen L H.An extended rule-based inference for general decision making problem[J].Information Science,1997,102:111-137.
    [103]Yager R R,Filer D P.Including probabilistic uncertainty in fuzzy logic controller modeling using Dempster-Shafer theory[J].IEEE Transactions on Systems,Man,and Cyberneties,1995,25(8):1221-1230.
    [104]Wen C L,Xu Xiaobin.Modeling multisource-heterogeneous information based on random set and fuzzy set theory[J].Donghua University(English Edition),2006,23(6):87-92.
    [105]Tirumalai A P,Schunck B G,Jain R C.Evidence reasoning for building environment maps[J].IEEE Transactions on Systems,Man,and Cyberneties,1995,25(1):10-20.
    [106]Feng D C,Dias P J M.Study on information fusion based on wavelet neural network and evidence theory in fault diagnosis[C].In:Proceedings of the International Conference on Electronic Measurement and Instruments.Xi'an,China,2007,3522-3526.
    [107]Luis E O,Beatriz M T.A method to estimate emission rates from industrial stacks based on neural networks[J].Chemosphere,2004,57(7):691-696.
    [108]Oberkampf W L and Helton J C.Investigation of evidence theory for engineering applications[C].In:Proceedings of the 43rd AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference.Denver,Colorado,2002,1-15.
    [109]Zhang W X,Mi J S.Incomplete information system and its optimal selections[J].Computers and Mathematics with Applications,2004,48(5-6):691-698.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700