实现机床溜板1nm分辨率运动的相关理论及关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米级分辨率的运动是当今超精密机床精度指标的特征标志。为了实现机床溜板1nm分辨率的运动,本文结合超精密机床的发展规律,运用优化设计的方法,在分析多种实施条件可行性的基础上,确定了两大主要技术研究对象:机床的溜板结构和驱动结构,并对其深入研究。在机床溜板结构技术研究中,为了避免导轨误差产生的流体激振,设计了无迟滞、自耦合的溜板结构;为了使溜板具有适于纳米驱动的稳定状态,针对超精密机床中的微振动进行了成因分析和特征辨识及抑制方法研究。在驱动结构中设计了高分辨率的机械传动结构与驱动控制的技术方案。最终通过实验的方法验证了设计与研究的合理性,实现了溜板1nm分辨率的运动目标。本文的主要工作有:
     (1)论证了影响纳米分辨率运动的测试及实施的条件技术,分析了研究的可行性并确定了多影响因素中目标的优化途径及技术的主成分。
     (2)设计了无迟滞、自耦合的溜板结构。对于结构中的多孔质轴承的微观分形结构、流体力学原理和特性进行了分析和CFD仿真。对于导轨副的误差引起的激振原理以及解决方法做了论述。
     (3)在超精密机床中提出了微振动的概念。从溜板轴承内部流体和溜板外部摄动两个方面对微振动的成因进行了分析。建立了多孔质轴承的管道模型结构。指出了控制微振动的三个基本要素。
     (4)对微振动的特征辨识做了研究。运用频谱分析、小波变换、非线性动力学等方法进行了辨识研究。通过功率谱分析、李雅普诺夫指数、分形维数及柯熵的研究,确立了微振动与混沌的关系。提出了基于混沌控制的微振动的抑制方法。
     (5)设计了高分辨率的机械传动结构并提出驱动控制的技术方案。传动结构具有两大主要特点:即径向悬浮式主导结构和差异刚性联接与隔振驱动一体化结构。在基于赫兹理论的滚动体的受力分析的基础上,设计了可调整预负荷的螺母结构和联接结构。
     (6)对开发的技术方案进行了分析验证。内容包括:对地基的激振扰动实验、用功率谱方法测定溜板的刚度实验、溜板与床身微振动的相序关系检验、微振动系统的相轨迹和吸引子结构、微振动抑制条件下机床金刚石刀具的切削效果验证等。最终实验证明技术方案可以实现溜板1nm分辨率的运动,并证明所开发的系统可以获得0.28nm的运动响应。
Motion resolution in nanometer scale is the important characteristic indicator of ultra-precision machine tool. To achieve the target of 1nm motion resolution, two main technical-research objects, which were the mechanical structures of the carriage and the driving of machine tool, were confirmed by combining with developing feature of ultra-precision machine tool, application of the optimizing design method and on the base of analyzing feasibility under multi-condition of implement. In the research of the mechanical structures of the carriage, to avoid vibration exciting of fluid caused by the geometry error of the guideway, the carriage structure of non-hysteresis and autocoupling was designed; to acquire stable state for the carriage which was suitable for nanometer driving, the causing analyzing, the characteristic identification and suppressing methods of micro-vibration in ultra-precision were studied. In the research of the mechanical structures of the driving, high-resolution driving structure and CNC control technical scheme were proposed and analyzed. Finally, the rationality of the design and the research were verified by experiments, and the target of 1nm motion resolution was achieved.
     This dissertation has obtained the following innovative results:
     (1) The architecture environment, which affects the measurement and the implement of nanometer resolution motion, was demonstrated. The feasibility was analyzed; the optimizing routes and the main factors among the multiple affecting factors were confirmed.
     (2) The carriage structure of non-hysteresis and autocoupling was designed. The microcosmic fractal structure, the principle and characteristic of fluid dynamics and the CFD simulation were demonstrated and analyzed. The principle of vibration exciting of fluid caused by the geometry error of guideway and the solution methods were also demonstrated.
     (3) The conception of micro-vibration in ultra-precision machine tool was proposed. The causes of the micro-vibration were analyzed from two aspects: the inner fluid in the aerostatic bearing and the outer perturbation of the carriage. The pipe mould of porous bearing was built and three primary elements to suppress the micro-vibration were proposed.
     (4) The characteristic identification of the micro-vibration was researched by using the methods of frequency spectrum, wavelet transform and nonlinear dynamics. The relationship between the micro-vibration and chaos was confirmed under the research of analyzing power spectrum, Lyapunov exponent, fractal dimension and Kolmogorov entropy. Suppressing methods to the micro-vibration based on chaos control were proposed.
     (5) The mechanical structure of the high-resolution driving structure was designed and CNC control technical scheme was proposed. The driving structure has two main characters: one was radial levitation-style dominant structure and the other was integrating structure of anisotropic rigidity and vibration-isolate connector between the screw-nut and the carriage. The screw-nut structure, of which the preload can be adjusted, was designed based on roller force analysis under the Hertz theory.
     (6) The rationality of the design and the research were verified by experiments. The experiments include exciting disturbance to the foundation of the machine tool, measurement method of the carriage rigidity by using power spectrum, phase angle checking between the carriage and its bed, the phase loci and the attractor structures of micro-vibration, diamond cutting effect under the condition of suppressed micro-vibration. The final experiments proved: 1nm resolution motion can be achieved by developed technical scheme, and the system has the ability of 0.28nm motion response.
引文
[1]李德胜、关佳亮、石嫩耀、张建辉.微纳米技术及其应用.科学出版社,244-245
    [2]李同保.纳米计量与传递标准.上海计量洲试,2005,1:37-42
    [3]崔铮.微纳米加工技术及其应用.高等教育出版社,2005,6:2-7
    [4]Norio Taniguchi.The state of the art of nanotechnology for processing of ultraprecision and ultrafine products.Precision Engineering.January 1994 Vol.16 No.1:69-82
    [5]Wang-jong Kim and David L.Trumper.High-Precision Magnetic Levitation Stage for Photolithography.Precision Engineering,1998(22):66-77
    [6]Mike Holmes and David Trumper.Magnetic/Fluid-bearing Stage for Atomic-Scale Motion Control(The Angstrom Stage).Precision Engineering,1996,18:38-49
    [7]Hiroshi Mizumoto,Shiro Aril,Yoshihiro Kamit,Kenji Goto,Tsuyoshi Yamamoto,and Masashi Kawamoto.Active Inherent Restrictor for Air-bearing Spindles.Precision Engineering,1996,19:141-147
    [8]H.Mizumoto,T.Matsubara,N.Hata and M.Usuki.E55 Zero-Compliance Aerostatic Bearing for An Ultra-Precision Machine.Precision Engineering,April 1990 Vol 12 No2
    [9]Alexander H.Slocum,Paul A.Scagnetti,Nathan R.Kane,and Christoph Brunner.Design of Self-Compensated Water-Hydrostatic Bearings.Precision Engineering,July 1995 Vol 17No 3:372-401
    [10]K.Sawada,T.Kawai,Y.Takeuchi.Improvement of Air Bearing Performance by Means of Laminarization and its Application to Ultraprecision Micromaching.proceed of the euspen International Topical Conference,Aachen,Germany,May 19~(th)/20~(th),2003:120-124
    [11]Eric S.Buice,Hua Yang,Richard M.Seugling,Stuart T.Smith,Robert J.Hocken.Assessment of Thin Film UHMWPE Bearing for Precision Slideways.American Society for Precision Engineering,2004 Annual Meeting Volume 34:397-403
    [12]A.F.Monteiro and D.G.Chetwynd.Load-Dependent Behavior in PTFE-Glass Slideways.Precision Engineering,1997,20:153-160
    [13]Chih-Liang Chu,Sheng-Hao Fan.A Novel Long-Travel Piezoelectric-Driven Linear Nanopositioning Stage.Precision Engineer 30(2006):85-95
    [14]Yung-Tien Liu,Toshiro Higuchi,Rong-Fong Fung.A Novel Precision Positioning Table Utilizing Impact Force of Spring-Mounted Piezoelectric Actuator----Part Ⅱ:Theoretical Analysis.Precision Engineering 27(2003) 22-31
    [15]Chang-Soo Han,Suk Baek,Hoong-Ok Kang,Seong-Wook Hong,Myounggyu D.Noh.Multi-Axis Nano Positioning Flexure Stage Using Magnetically Preloaded PZT Actuator.American Society for Precision Engineering,2003 Annual Meeting Volume 30
    [16]Sung-Q Lee, Dac-Gab Gweon.A New 3-DOF Z-Tilts Micropositioning System Using Electromagnetic Actuators and Air Bearings.Precision Engineering 24(2000): 24-31
    [17]C.L.Chen, M.J.Jang, K.C.Lin.Modeling and High-Precision Control of A Ball-Screw-Driven Stage.Precision Engineering 28 (2004): 483-495
    [18]Junhong Mao, Hiroyuki Tachikawa, Akira Shimokohbe.Precision Positioning of A DC-Motor-Driven Aerostatic Slide System.Precision Engineering 27 (2003): 32-41
    [19]Yuichi Okazaki, Siji Ichikawa, Jiro Otsuka.A Simple Hybrid Positioning Stage with     [20]Paul I.Ro and Peter I.Nonlinear Micro-Dynamic Behavior of A Ball-Screw Driven Precision Slide System, Hubbel.Precision Engineering, October 1992 Vol 14 No 4
    [21]Kazuhiro Tsuruta, Teruo Murakami, Shigeru Futami.Nonlinear Friction Behavior of Discontinuity at Stroke End in a Ball Guide Way.American Society for Precision Engineering, 2003 Annual Meeting Volume 30:345-360
    [22]Paul I.Ro, Wonbo Shim, Sanghwa Jeong.Robust Friction Compensation for Submicrometer Position and Tracking for A Ball-Screw Slide System.Precision Engineering 24(2000): 160-173
    [23]S.Fukada, T.Mikoshiba, T.Inagaki.Ultra-precise Positioning with Nanometric Resolution Using Rolling Guide Way and Leadscrew Mechanism Equipped with Viscous-elastic Element, proceed of the euspen International Topical Conference, Aachen, Germany, May 19~(th)/20~(th),2003:291-298
    [24]C.L.Chao, J.Neou.Model Reference Adaptive Control of Air-Lubricated Capstan Drive for Precision Positioning.Precision Engineering 24 (2000): 285-290
    [25]Hiroshi Mizumoto, Makoto Yabuya, Tatsuhito Shimizu, and Yoshihiro Kami.An Angstrom-Positioning System Using A Twist-Roller Friction Drive.Precision Engineering, 1995, 17:57-62
    [26]Eiji Shamoto and Toshimichi Moriwaki.Development of a "Walking Driver" Ultraprecision Positioner.Precision Engineering, 1997(20): 85-92
    [27]Hayato Yoshioka, Kou Komatsu, Hashizume, Hidenori Shinno, Tadahiko Shinshi and Kaiji Sato.A Planar Nano-Positioning Table System for Advanced Machine Tools.American Society for Precision Engineering, 2004 Annual Meeting Volume 34:48-59
    [28]Yoshiyuki Tomite, Yasushi Koyanagawa, and Fumiaki Satoh.A Surface Motor- Driven Precise Positioning System, Precision Engineering, July 1994 Vol 16 No 3:223-245
    [29]Kaiji Sato, Keisuke Nakamoto, Akira Shimokohbe.Practical Control of Precision Mechanism with Friction, Precision Engineering 28 (2004): 426-434
    [30]Wahyudi, Kaiji Sato, Akira Shimokohbe.Characteristics of Practical Control for Point-to-Point (PTP) Positioning Systems, Precision Engineering 27(2003): 157-169
    [31]Junhong Mao, Hiroyuki Tachikawa, Akira Shimokohbe.Double-Integrator Control for Precision Positioning in the Presence of Friction, Precision Engineering 27 (2003): 419-428
    [32]S.B.Chang, S.H.Wu, and Y.C.Hu.Submicrometer Overshoot Control of Rapid and Precision Positioning, Precision Engineering, 1997 (20): 161-170
    [33]Witoon Panusittikorn, Kenneth P.Garrard, Thomas A.Dow.Error Compensation Using Inverse Actuator Dynamics, American Society for Precision Engineering, 2003 Annual Meeting Volume 30: 342-369
    [34]Hong Yang, Jim Ni.Dynamic Neural Network Modeling for Nonlinear, Nonstationary Machine Tool Thermally Induced Error, International Journal of Machine Tools & Manufacture, 2005 (45): 455-465
    [35]K.M.Lawton, S.R.Patterson.A High-Stability Air Temperature Control System,Precision Engineering, 2000 (24) : 174-182
    [36]Eugene I.Rivin.Vibration Isolation of Precision Equipment, Precision Engineering, 1995(17):41-56
    [37]Eric R.Marsh and Alexander H.Slocum.An Integrated Approach to Structural Damping, Precision Engineering, 1996 (18):103-109
    [38]Eberhard Bamberg, Alexander Slocum.Concrete-based Constrained Layer Damping, Precision Engineering, 2002 (26):430-441
    [39]Active Vibration Isolation of an Unbalanced Machine Tool Spindle, American Society for Precision Engineering, 2004 Annual Meeting Volume 34:1201-1222
    [40]Alexander H.Slocum, Eric R.Marsh, and Douglas H.Smith.A New Damper Design for Machine Tool Structures: The Replicated Internal Viscous Damper, Precision Engineering,July 1994 Vol 16No3:897-910
    [41]Shinji Wakui.Incline Compensation Control Using An Air-Spring Type Active Isolated Apparatus, Precision Engineering, 2003 (27): 170-174
    [42]Min-Seok Kim and Sung-Chong Chung.Integrated Design Methodology for High-Precision/Speed Servomechanisns, American Society for Precision Engineering, 2003 Annual Meeting Volume 30:768-781
    [43]J.Franse, J.W.Roblee, K.Modemann.Dynamic Characteristics of the Lawrence Livermore National Laboratory Precision Engineering Research Lathe, Precision Engineering, July 1991 Vol 13 No3:353-368
    [44]A.A.Elmustafa, Max G.Lagally.Flexural-Hinge Guided Motion Nanopositioner Stage for Precision Machining: Finite Element Simulations.Precision Engineering, 2001 (25):77-81
    [45]Wei Gao, Shuichi Dejima, Hiroaki Yanai, Kei Katakura, Satoshi Kiyono, Yoshiyuki Tomita.A Surface Motor-Driven Planar Motion Stage Integrated with an XY9z Surface Encoder for Precision Positioning, Precision Engineering, 2004 (28): 329-337
    [46]Ignacio Lira,George Cargill.Uncertainty Analysis of Positional Deviations of CNC Macine tools,Precision Engineering,2004(28):232-239
    [47]Jimmie A.Miller,Robert Hocken,Stuart T.Smith,and Salaam Harb.X-Ray Calibrated Tunneling System Utilizing A Dimensionally Stable Nanometer Positioner,Precision Engineering,1996(18):95-102
    [48]Tim Thomas,Chris Hamaker,Jerry Martyniuk,and Gene Mirro.Nanometer-Level Autofocus Air Gauge,Precision Engineering,1998(22):233-242
    [49]Ashok V.Kulkarni,B.Bhushan.Nanoscale Mechanical Property Measurements Using Modified Atomic Force Microscopy,Thin Solid Films,1996:206-210
    [50]王贵林,李胜怡,粟时平.基于超精密应用的高刚度高阻尼空气静压导轨研究.航空精密制造技术,2001年12月第37卷第6期
    [51]王加春,李旦,董中.超精密机床溜板的模糊-PID振动主动控制研究.热山大学学报,第25卷第1期2001年1月
    [52]庄菱,薛洪俊,柴青.空气静压导轨的应用研究.光学 精密工程,第3卷第3期,1995年6月
    [53]杜金名,卢泽生.气体静压多孔质止推轴承静态特性的理论发展.润滑与密封,2001年第4期
    [54]景岗,杨清好,王元勋,陈日曜.一种新型的高刚度气浮润滑轴承.制造技术与机床,1994年第5期
    [55]王波,赵万生,董中.超精密车床伺服机构的微动特性研究.哈尔滨工业大学学报,第31卷第2期,1999年4月
    [56]董吉洪.空气静压丝杠的发展与高刚性化.光机电信息,12/2001
    [57]王小慧,袁哲俊,高栋.超精密车削微量进给机构的试验研究.航空工艺技术,1994年第2期
    [58]王立松,苏宝库,董申,张晶.大行程高精度两级定位工作台的控制方法研究.机械设计与制造,2001年8月
    [59]杨兴,贾振元,文东辉.超磁致伸缩微位移驱动系统的研究.制造技术与机床,2001年第9期
    [60]王加春、李旦、董中.超精密机床减振分析,航空精密制造技术.2000年2月第36卷第1期
    [61]张士义,张先彤,张庆春,董中.超精密加工中的隔振技术研究,仪器仪表学报,第16卷第1期,1995年2月
    [62]陈智锋,张绍宗,吕海宝,张海峰.隔振设计在超精密加工与测量中的应用.航空精密制造技术,2002年6月第38卷第3期
    [63]张明明,李旦,董中,盖玉先.超精密机床垂向有源隔振系统的实验研究.制造技术与机床,2001年第2期
    [64]盖玉先,滕燕,董中.超精密机床磁致伸缩作动器隔振系统.制造技术与机床,2001年第1期
    [65]梁迎春,张庆春,董中,李宗海.超精密恒温控制系统抗干扰能力的研究.仪器仪表学报,第17卷第1期,1996年2月
    [66]胡鹏浩.非均匀温度场中机械零部件热变形的理论及应用研究.合肥工业大学,2001,博士论文
    [67]苗恩铭,费业泰.热膨胀系数同弹性模量数学模型分析.黑龙江科技学院学报,第13卷第2期,2003年6月
    [68]李成贵,赵清亮,董中.微纳米尺寸测量技术.实用测试技术,第1期,1999年1月
    [69]房丰洲,袁哲俊,吕小明.超精密机床定位测量技术.中国机械工程,1994年第5卷第2期
    [70]张永伟,王自强.分子动力学方法在研究材料力学行为中的应用进展.力学进展,第26卷第1期1996年2月
    [71]张田忠,、郭万林.纳米力学的数值模拟方法.力学进展,第32卷第2期,2002年5月
    [72]J.W.Powell.Design of aerostatic bearings.London:The Machinery Publishing Co.LTD,1970.
    [73]袁哲俊,王先逵.精密和超精密加工技术.2版,北京机械工业出版社,2007.5:2-8
    [74]孙靖民,米成秋.机械结构优化设计.哈尔滨工业大学出版社,1985.5:150-157
    [75]钟秉林,黄仁.机械故障诊断学.北京:机械工业出版社,2006.12:171-174
    [76]Wiley.Fuller D.Theory and practice of lubrication for engineers.2nd ed.New York,1984:181-185.
    [77]E.Hornbogen,International Materials Review,34,277(1989)
    [78]J.C.Russ.Fractal Stereolgy,Plenum Press,New York
    [79]D.L.Misell.Image Analysis,Enhancement and Interpretation,Practical Methods in Electron Microscopy,Vol.7,North-Holland Publishing Company,Amsterdam(1978).
    [80]L.F.Richardson.General System Yearbook,139(1961)
    [81]B.B.Mandelbrot.The Fractal Geometry of Nature,Freeman,New York(1983)
    [82]Yong Tian.Static study of the porous bearing by the simplified finite element analysis[J].Wear,1998,(218):203-209.
    [83]S Yoshinoto,H Tozuka,S Dambara.Static characteristics of aerostatic porous journal bearing with a surface-restricted layer,Proc.Instn Mech.Engrs Vol.217 Part J:J.Engineering Tribology
    [84]Fuller D,Theory and practice of lubrication for engineers.2nd ed.New York:Wiley,1984:181-185
    [95]张国强,吴家鸣.流体力学.北京:机械工业出版社,2005,10:163-165
    [96]Mori H,Murakami K.A pseudo shock theory of pressure depression in externally pressurized circular thrust bearings[D],Kyoto Univ.,1972.
    [97]Mori H,Ezuka H.A pseudo shock theory of pressure depression in externally pressurized circular thrust bearings[C],Proc.JSLE-ASLE Intern.Lubr.conf.,Tokyo,June 1975:286-294
    [98]Salem E,Khalil F.Choked flow in externally pressurized spherical gas bearing[J],Wear.1978,47(I):61-67
    [99]孙昂,马文琦,王祖温.静压气体轴承中的激波与边界层相互影响的研究进展.机械工程学报,第42卷第9期2006年9月
    [100]K.Sawada,T.Kawai,K.Ebihara,Y.Takeuchi.Improvement of air bearing performance by means of laminarization and its its application to ultraprecision micromachining,Proceed.of the euspen International Topical Conference,Aachen,Germany,May 19th/20th,2003
    [101]T.Kawai,K.Ebihara and Y.Takeuchi.Improvement of Machining Accuracy of 5-Axis Control Ultraprecision Machining by Means of Laminarization and Mirror Surface Finishing,CIRP Annals - Manufacturing Technology,Volume 54,Issue 1,2005:329-332
    [102]Ikawa N.,Shimada S.Trans.Limitation of accuracy in ultra-precision machining(in Japanese),JSPE,1986,52(12)
    [103]Mori H.,Yabe H.,Theoretical investigation of externally pressurized gas-lubricated porous journal bearing with surface-loading effect.,Trans.ASME,J.Lubric.Technol.,1973,95(2):195-203
    [104]Kawashima I.,Togo S.,Sato S.,Tamada N..Study on characteristic of porous ceramic gas bearing(in Japanese).JSPE,1990,56(10):1853-1858
    [105]Cui C.,Ono K..Theoretical and experimental investigation of an externally pressurized porous annular thrust gas bearing and its optimum design.Trans.ASME,J.Tribology,1997,119(3):486-492
    [106]张兆顺.湍流.北京机械工业出版社,2001.1:150-198
    [107]Morgan V.Symposium on powder met.Special Report,1956:58-81
    [108]宝鸡有色金属研究所.粉末冶金多孔材料.北京:冶金工业出版社,1978
    [109]Kline SJ.Etal.The structure of turbulent boundary layer,JFM,30-741,1967
    [110]Corino E R.and Brodkey R S.A visual investigation of the wall region in turbulent flow.JFM,1969:37-100
    [111]Kim H T.et al.The Production of turbulence near a smooth wall in a turbulent boundary layer.JFM,1971:50-133
    [112]Cantwell B J.Organized motions in turbulent flow.Annual Review of Fluid Mechanics,,1981:13-457
    [113]Robinson S K.Coherent motions in turbulent boundary layer.Annual Review of Fluid Mechanics,1991:23-601
    [114]Van Dyke M.An Album of Fluid Motion.The parabolic Press,1982
    [115]Brown F N M.,Roshko A.On density effects and large structure in turbulent mixing layer.JFM,1974:64-775
    [116]Roshko A.Structure of turbulent shear flows:a new book.AIAAJ.14-1349,1976
    [117]Zhang Zhaosun,Cheng Zhan.Numerical study of turbulent flows over wavy boundaries.ACTA MECHANICA SINICA,1989:5-197
    [118]Bushnell D M.,McGinley C B.,Turbulence control in wall flows,Annual Review of fluid mechanics,1989:21-100
    [119]刘习军,贾启芬.工程振动技术与测试技术.北京:高等教育出版社,2004.11:292-297
    [120]K.Sawada,T.Kawai,K.Ebihara,Y.Takeuchi.Improvement of A Air Bearing Performance by Means of Laminarization and its Application to Ultraprecision Micromachining.Proceeding of the euspen International Topical Conference,Aachen,Germany,May 19th/20th,2003
    [121]Yabe H.,Kitahama T.and Mori H.,A study on fundamental characteristics of externally pressurized porous thrust gas bearing(in Japanese),JSLE,1981,26(1):49-45
    [122]刘乘正,彭建华.非线性动力学.北京:高等教育出版社,2005:375-469
    [123]徐玉秀、张剑、侯荣涛.机械系统动力学分形特征及故障诊断方法.北京:机械工业出版社,2006:163-191
    [124]Olivier Rioul,Pierre Duhamel.Fast Algorithms for Discrete and Continuous Wavelet Transform,IEEE Trans.On Information Theory,1992,38(2):569-538
    [125]何旭初.广义逆矩阵的基本理论和计算方法.上海:上海科学技术出版社,1985
    [126]张贤达.现代信号处理.北京:清华大学出版社,1995
    [127]Eric J.Kostelich.Problems in estimating dynamics from date.Physics D,1992(58):193-201
    [128]Huberman B.A.,Lumer E.Dynamics of adaptive systems.IEEE Trans CAS,1990:37-547
    [129]Sinha S.,Ramaswamy R.,Rao J.Adaptive control in nonlinear dynamics.Physics,1990,D43:118-128
    [130]杨卫,马新玲,王宏涛,洪伟.纳米力学进展,力学进展.第32卷第2期:161-174
    [131]Bahr D F,Kramer D E,Gerberich W W.Nonlinear deformation mechanisms during nanoindentation.Acta Mater,1998(46):3605-3617
    [132]F.Al-Bender,W.Symens,Characterization of frictional hysteresis in ball-bearing guideways,Wear 258(2005):1630-1642
    [133]NSK Technical Report,CAT.No.A728
    [134]J.J.Kalker,Three-Dimensional Elastic Bodies in Rolling Contact,Kluwer Academic Publishers,Dordrecht,The Netherlands,1990.
    [135]D.A.Hills,D.Nowell,and A.Sackfield,Mechanics of Elastic Contacts,Butterworth-Heinemann,Oxford,UK,1993.
    [136]K.L.Johnson,Contact Mechanics,Cambridge University Press,Cambridge,UK,1985.
    [137]Farid Al-Bender and Kris DeMoerlooze.A Model of the Transient Behavior of Tractive Rolling Contacts,Advances in Tribology Volume 2008,Article ID 214894
    [138]刘延柱,陈立群.非线性振动.北京:高等教育出版社,2001.8:33-41
    [139]张义民.机械振动.北京:清华大学出版社,2007.3:266-268

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700