混凝土重力坝动力响应分析及抗震措施研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国水利水电事业的发展和筑坝技术的迅速提高,在水力资源丰富的西部地区正在设计修建高碾压混凝土重力坝,而这些地区正是高烈度地震频发地区,有的设防地震烈度甚至达到了Ⅸ度。在这种高烈度地震作用下,碾压混凝土重力坝的抗震安全直接关系到下游广大地区工农业生产和人民生命财产的安全,具有特别重大的现实意义。因此,本文采用有限元动力分析方法,对龙开口碾压混凝土重力坝的动力特性及其抗震安全性进行了研究和探讨,最后确定了大坝的抗震薄弱部位,并提出合理的工程抗震措施,为大坝的设计提供保证。
     主要做了以下几方面的工作:
     (1)已有研究表明,对混凝土坝抗震采用线弹性分析得到的最大拉应力远大于混凝土的抗拉强度,在强震作用下,坝体将不可避免地产生开裂。主要研究了龙开口非溢流坝段采用混凝土损伤塑性模型在自重、静水压力以及地震荷载作用下的动力特性、拉伸损伤分布、塑性应变分布、等效塑性应变分布、破坏路径、动力放大倍数以及耗散能。并在此基础上探讨了典型地震波、阻尼比及设计水平加速度对坝体安全可靠度的敏感性影响。
     (2)由于重力坝在坝踵处拉应力很大,常超出了混凝土的抗拉强度极限,因而在坝踵位置很容易产生裂缝,进而影响坝体的稳定。根据小湾拱坝计算所得的“坝基裂隙的存在对坝踵应力集中起到松弛释放的作用”这一结论,以改善坝踵处应力分布状态为目的,设想在坝体上游基岩上设置一条垂直诱导缝,在此基础上研究地震作用下诱导缝的设置对于坝体应力的影响以及通过优化分析求出其最优解。
     (3)在详细分析坝体开裂现象的基础上,研究了重力坝的动态开裂机理、钢筋混凝土的断裂能以及预应力锚索的数值模拟。针对此现象提出了工程抗震措施,主要包括坝体配筋和预应力锚固两种措施,并给出加固前后的拉应力损伤因子对比分析,以验证加固措施的有效性。
Now with the rapid development of water conservation and RCC dam technology, some high RCC gravity dams will be constructed in western region with plentiful water resources and frequent earthquake. The adopted design level of earthquake ground motion reached to nine degrees in these regions. It is very significant that aseismic safety for industrial and agricultural production and the safety of the people's life and property in the large region of downstream under high intensity seismic action. Therefore, in order to study deeply the dynamical characteristics and aseismic safety of Long Kai Kou RCC gravity dam in high earthquake intensity, dynamical analysis of the finite element method is used. Finally, weak zones of the dam are determined and the reasonable aseismic measures are also proposed. Thus it ensures the reliable design of dam. The main works of this paper are as follows:
     (1) The known studies indicate that peak tensile stress occurred at the upper portion of concrete gravity dam is much higher than the dynamic tensile strength of concrete during strong earthquake which resulted in the inevitably happening of cracking.The paper mainly studies the dynamic characteristics, damage distribution, plastic distribution, equivalent plastic distribution, damage course, acceleration amplification and dissipated energy of LKK non-flow dam under dead weight、hydrostatic pressure and seismic load. On this base, the influence of typical seismic waves、structural damping ratio and design horizontal acceleration on the safety reliability of dam were studied.
     (2) Due to the tensile stresses at dam heel are too high, the value often exceeds concrete strength of extension, so cracks come into being in dam heel easily, which then effects stability of dam body. According to the conclusion of " the dam foundation fracture played main role in the relaxation of stress concentrate in the dam heel" ,which calculated by Xiao Wan arch dam. In order to improve the stress distribution in the dam heel zone, the author assumes an induced joint on the bed rock of dam body upstream. On this basis induced joint arrangement under earthquake action and the effect of dam stress have been discussed. Morever, the optimal solutions are achieved through optimization design.
     (3) Based on the detailed analysis of dam cracking phenomena, the cracking mechanism, reinforced concrete fracture energy and prestressed anchor cable numerical simulation are studied. Pointing to this condition aseismic measures are put forward. It mainly includes reinforcement and prestressed anchor, also provides the result of tension damage factor comparative analysis, and demonstates the efficiency of the reinforcement measures.
引文
[1]王良琛.混凝土坝地震动力分析.北京地震出版社,1981.
    [2]陈在铁,任青文.大坝抗震安全性研究进展.世界地震工程.2005.21(4).
    [3]何蕴龙,陆述远,王宏硕.碾压混凝土重力坝地震动力分析.武汉水利电力大学学报,1998,31(1).
    [4]陈厚群.大坝抗震.中国大坝50年.北京:中国水利水电出版社.2000.
    [5]黄福德,赵彦辉,李宁.预应力锚固机理数值仿真分析研究.西北水电,1996.
    [6]林皋.混凝土大坝抗震安全评价的发展趋向.防灾减灾工程学报,2006.
    [7]郭永刚,涂劲,陈厚样.抗震钢筋对高拱坝抗震性能的影响.水利学报2004,35(3).
    [8]郭永刚,涂劲,陈厚样.高拱坝伸缩横缝间布设阻尼器对坝体地震反应影响的研究.世界地震工程,2003,19(3).
    [9]位敏.高地震烈度下碾压混凝土重力坝动力特性及抗震安全分析研究:(硕士学位论文).武汉:武汉大学,2005.
    [10]朱伯芳.有限元法原理与应用.北京:水利电力出版社,1998.
    [11]陈厚群.当前我国水工抗震中的主要问题和发展动态,振动工程学报,1997,9.
    [12]倪汉根,金崇磐.大坝抗震特性与抗震计算.大连:大连理工大学,1994.
    [13]张静.混凝土拱坝抗震性能的数值模拟分析.北京:中国农业大学,2005.6.
    [14]林皋,陈健云.混凝土大坝的抗震安全评价.水利学报,2001.
    [15]陈厚群.混凝土大坝抗震中的力学问题.力学与实践,2006.
    [16]林皋.混凝土大坝抗震技术的发展与展望Ⅰ.水科学与工程技术,2004.
    [17]林皋.混凝土大坝抗震技术的发展与展望Ⅱ.水科学与工程技术,2005.
    [18]金安桥水电站抗震技术研究阶段碾压混凝土重力坝动力模型试验报告.大连:大连理工大学工程抗震研究所,2006.11.
    [19]Clough Retal.Dynamic Interaction Effects in Arch Dam.University of California,Berkeley,1985.
    [20]Koyna Earthquake of December 1967.Report of the UNESCO Committee of Experts,New Delhi,1968.
    [21]苏自约,陈谦,徐祯祥,刘璇.锚固技术在岩土中的应用.北京.人民交通出版社,2006.
    [22]陈卫忠,朱维申.节理岩体加固效果及其在边坡工程中的应用.勘查科学技术,2001.
    [23]丁秀丽,盛谦,韩军.预应力锚索锚固机理的数值模拟试验研究.岩石力学与工程学报,2006.
    [24]曹震,陈娜,魏鹏,吴迪.强烈地震作用下混凝土重力坝损伤破坏分析.中国水运.2007.5(12).
    [25]黄福德,赵彦辉,李宁.预应力锚固机理数值仿真分析研究.西北水电,1996.
    [26]Swoboda G.Marence M.FEM modeling of rockbolts,In:Proc.Comp Meth and Adv in Geomech.Rotter-dam:A.A.Bakelma.1991.
    [27] Aydan O. The stabilization of rock engineering structures by rockbolts [Ph D Thesis]. Japan Nagoya University, 1989.
    [28] A different approach for calculation of stress intensity factorsin continuous fiber reinforced metal matrix composites. International Journal of Solids and Structures. 40(2003).
    [29] Hansen K D, Roehm L H. The Response of Concrete Dams to Earthquakes. Water Power and Dam Construction, 1979(4).
    [30] Maekawa K, Pimanmas A, Okamura H. Nonlinear Mechanics of Reinforced Concrete. Spon Press, 11 New Fetter Lane, London EC4P 4EE, 2003.
    [31] Xuehui An, Maekawa K, Okamura H. Numerical simulation of size effect in shear strength of RC beams. Concrete Library of JSCE, 1998, 31.
    [32] Lee J, Fenves GL. A Plastic-damage concrete model for earthquake analysis of dams. Earthquake Engineering and Structural Dynamics, 1998,27(9).
    [33] Chopra A K, Chakvabauti P. The Koyna Earthquake and the Damage to the Koyna Dam. Bulletin of Seismological Society of America, 1973,63(2).
    [34] Skrikerud PE, BachmannH. Discrete crack modeling for dynamically loaded: unreinforced concrete structures. Earthquake Engineering and Structural Dynamics, 1986,14(2).
    [35] Chopra A. K., Chakrabarti P. The earthquake experience at. Koyna dam and stresses in concrete gravity dams. Earthquake Engineering and Structural Dynamics, 1972,1(2).
    [36] Skrikerud P E, Bachmann H. Discrete crack modeling for dynamically loaded: unreinforced concrete structures. Earthquake Engineering and Structural Dynamics, 1986,14(2).
    [37] Bhattachajee S S, Leger P. Seismic cracking and energy dissipation in concrete gravity dams. Earthquake Engineering and Structural Dynamics, 1993, 22(11).
    [38] Yusuf Calayir, Muhammet Karaton. Seismic fracture analysis of concrete gravity dams includingdanrreservoir interaction. Computer and Structures, 2005, 83.
    [39] Leger P., Lecterc M. Evaluation of earthquake ground motions to predict cracking reponse of gravity dams. Earthquake Engineering and Structrual Dynamics, 1996, 25(3).
    
    [40] 陈万吉. 裂缝重力坝的非线性分析. 计算结构力学及其应用. 1985,2(3).
    
    [41] Zhang Chuhan, Wang Guanglun, Wang Shaomin. Experimental tests concrete and nonlinear fracture analysis of rolled compacted concrete dams. Civil Engineering, 2002,14(2).
    [42] Ghrib F, Tinawi R. An application of damage mechnics for seismic analysis of concrete gravity dams. Earthquake Engineering and Structrual Dynamics, 1995,24
    [43] Cevera M, Oliver J, Faria R. Seismic evaluation of concrete dams via continuum damage models. Earthquake Engineering and Structural Dynamics, 1995, 24.
    [44] Valliappan S, Yazdchi M, Khalili N. Seismic analysis of arch dams: a continuum damage mechanics approach. International Journal for Numerical Methods in Engineering, 1999, 45.
    [45]Jeeho Lee,Grengory L.Fenves.A plastic-damage concrete model for earthquake analysis of dams.Earthquake Engineering and Structural Dynamics,1998,27(9).
    [46]Yazdchi M,Khalili N,Valliappan S.Non-linearseismic behavior of concrete gravity dams using coupled finite-boundary element technique.International Journal for Numerical Methods inEngineerin,1999,45.
    [47]杜成斌,苏擎柱.混凝土坝地震动力损伤分析.工程力学,2003,20(5).
    [48]张我华,邱战洪,余功栓.地震荷载作用下坝及其岩基的脆性动力损伤分析.岩石力学与工程学报,2004,23(8).
    [49]邱战洪,张我华,任廷鸿.地震荷载作用下大坝体统的非线性动力损伤分析.水利学报.2005.(5).
    [50]陈健云,李静,林皋.基于率性损伤模型的混凝土重力坝地震响应分析.哈尔滨工业大学学报,2005,37(6).
    [51]杜荣强,林皋,胡志强.混凝土重力坝弹塑性损伤安全评价.水利学报,2006,37(9).
    [52]陈厚群,侯顺载,涂劲等.丰满大坝抗震动力分析与安全评价.大坝与安全,1999,(3).
    [53]冯树荣,肖峰.龙滩碾压混凝土重力坝挡水坝段抗震特性研究.水力发电,2004,30(6).
    [54]张国新,金峰,王光纶.基于流形元的子域奇异边界元法模拟重力坝的地震破坏闭.工程力学,2001,18(4).
    [55]陶家明.石泉大坝的预应力锚索加固.南京水利科学研究院水利水运科学研究,1998.
    [56]刘志国,王立帮,孙云天.预应力锚固技术在丰满大坝加固工程中的应用.水利水电技术2000,10(31).
    [57]王显治.混凝土重力坝抗震配筋及抗震设防标准研究:(硕士学位论文).南京:河海大学,2007.
    [58]邓良军,张杰,李双宝.金安桥水电站碾压混凝土重力坝抗震研究,工程抗震与加固改造,2005,12(27).
    [59]王忠.坝库相互作用及抗震技术研究.成都:四川大学,2001,4.
    [60]徐道远,符晓陵,朱为玄等.坝体混凝土损伤-断裂模型.大连理工大学学报.1997.
    [61]潘坚文,王进廷,张楚汉.超强地震作用下拱坝的损伤开裂分析.水利学报.2007.38(2).
    [62]韩立军,张茂林,贺永年,林凳阁.岩土加固技术.徐州:中国矿业大学,2005
    [63]陈健云,张杰.金安桥水电站碾压混凝土重力坝坝体动力分析及抗震安全评价.大连:大连理工大学工程抗震研究所,2004.10.
    [64]杨清平,李俊杰.重力坝坝踵主拉应力区分布规律的探讨.水利学报.2004.4.
    [65]王春涛,练继建.重力坝坝踵应力集中问题的有限元法研究.水利水电技术.2003.34(5).
    [66]熬麟.重力坝坝基附近的应力分布及有限单元法解答.水利学报.1984(8).
    [67]张志良.预应力锚索加固病险坝的实践与经验.水力发电.1999.11
    [68]林皋.混凝土重力坝抗震安全评价的发展趋向.2006.26(1).
    [69]刘明宏,裴双喜,张宪宏.重力坝坝头对其抗震性能的影响.1992.(2).
    [70]水利水电科学研究院结构材料所.新丰江大坝地震后产生裂缝原因初步探讨.1962.
    [71]周维垣,胡云进,林鹏,杨若琼.小湾拱坝上游诱导缝设置研究.第八次全国岩石力学与工程学术大会论文集.
    [72]隆文非.高坝动水压力及气幕隔震机理研究:(博士学位论文).成都:四川大学,2005.
    [73]沈崇刚,陈厚群,张楚汉等.新丰江水库地震及其对大坝的影响.中国科学.1974.2.
    [74]张晗旭.关于预应力锚索加固效应研究的几点看法.河海大学学报.1999.27(4).
    [75]高大水.国内岩土预应力锚固技术应用及锚固技术参数统计.长江科学院院报.2004.21(6).
    [76]渠时勤,黄中木.锚杆锚固段合理设计长度分析.重庆交通学院学报.2000.19(3).
    [77]张旭东.预应力锚索在潘家口41号坝段裂缝处理中的应用.河北水利科技.1998.19(4).
    [78]杨继华.地震作用下重力坝动力特性的探讨.水利水运科学研究.1982.2.
    [79]常晓林,位敏,高作平.高地震烈度下金安桥碾压混凝土重力坝动力分析.水利水电技术,2005.7
    [80]冯树荣,肖峰,欧红光.龙滩碾压混凝土重力坝挡水坝段抗震特性研究.水力发电2004.30(6).
    [81]DL 5108-1999混凝土重力坝设计规范.
    [82]DL 5073-2000水工建筑物抗震设计规范.
    [83]SL 212-98水工预应力锚固设计规范.
    [84]李黎明.ANSYS有限元分析实用教程.北京:清华大学出版社.2005.
    [85]王金昌,陈页开.ABAQUS在土木工程中的应用.杭州:浙江大学出版社.2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700