基于静力弹塑性的水电站厂房地震反应分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国在建和拟建的大型水电站多数处于强地震活动区域,水电站厂房的抗震性能问题十分突出。长期以来,水电站厂房结构的抗震计算大多是基于线弹性材料未考虑水工钢筋混凝土在高荷载作用下所具有的明显的非线性特征。开展处在强烈地震作用下水电站厂房的弹塑性地震响应研究有重要的理论意义和实际应用价值。
     本文介绍了水电站厂房弹塑性地震分析的研究背景、分析方法、历史现状及问题的特殊性。以实际工程项目——某水电站厂房为研究背景,建立了有限元模型,并根据水电站厂房结构加速度的分布情况,推导建立了等效地震惯性力的方法。同时,基于ANSYS有限元程序对该水电站厂房进行了非线性地震分析。得到了地震情况下,结构不同方向上的结构延性、应力、塑性区域与裂缝的分布;探讨了考虑材料弹塑性后对结构抗震性能的影响,并得出了一些有意义的结论。本文的主要内容和结论如下:
     1、介绍了钢筋混凝土数值仿真中的各种混凝土本构模型、钢筋混凝土模型、裂缝模型,重点介绍了大型有限元通用程序ANSYS对于混凝土非线性本构模型及对混凝土开裂的处理方法。
     2、建立了某水电站厂房的有限元模型,通过模态计算分析,得到了结构的动力特性和加速度分布系数的分布情况,分析讨论了结构刚度、质量的分布,揭示了两种厂房结构动力性能的不同。
     3、本文采用了按以加速度分布情况作为水平惯性力的分布模式,并推导了相关的公式;同时,根据屈服对结构反应的减小作用,论证了静力弹塑性方法验算水电站厂房结构的抗震能力是有效的。
     4、用静力非线性方法对厂房结构进行计算,分析了在水平地震惯性力下的结构响应,建立了地震系数与顶点位移的关系曲线,计算了结构的延性系数,分析了结构随烈度加大,应力的发展规律、裂缝的出现顺序,讨论了结构的抗侧能力和容易产生裂缝的薄弱部位。
     5、本文提出的静力弹塑性方法能够在宏观上体现结构的抗震性能和在地震惯性荷载作用下的一些规律,并且得到了结构的薄弱部位,同时避免了采用动力时程方法计算时的困难。
In China, many hydroelectric power stations in progress and planned are located in the region of strong earthquake activity. The problem of seismic performances in hydropower station powerhouse is quite distinct. For a long time, seismic calculation of hydropower station powerhouse structure has been based on the linear and elastic material, which does not consider the obvious nonlinear characteristics of hydraulic reinforced concrete under heavy load. The development of the elastoplasticity earthquake response of hydroelectric power station workshop under the strong earthquake function has the important theory significance and the practical application value.
     This paper has introduced the research background, the analysis method, the history present situation of the analysis on elastic-plastic earthquake response, and the peculiarity of this problem. Combined with one practical engineering project -a hydropower station powerhouse, a refined finite element model It has been established, and a method of equivalent seismic inertia force has been deduced according to the acceleration distribution of hydropower station powerhouse. Meanwhile, the nonlinear seismic response of powerhouse has been studied based on the finite element program (ANSYS). The structural ductility, stress, plastic zones and fracture distribution in different directions has been gotten, the effect of materials' elasticity and plasticity to the aseismic performance has been studied, and a few useful conclusions were obtained. The main contents and conclusions are as follows:
     1、Concrete constitutive model, reinforced concrete model, and concrete crack model included inreinforced concrete numerical simulation has been introduced. Mainly the treatment of ANSYS to concrete nonlinear constitutive model and concrete crack has been introduced.
     2、In order to discover the differences of structural dynamic characteristics between two kinds ofpowerhouses, one hydropower house FEM model has been established, structure dynamic characteristic has been got, distribution coefficient of acceleration has been got, the distribution of structure rigidity and quality has been analyzed and discussed.
     3、The product of distributive acceleration as the horizontal inertia forces has been given, and correlated formula has been derived. Meanwhile, according to the reduced effect of yield to the structural response, the paper has demonstrated the effectiveness of checking the earthquake-resistant capacity for hydropower house using method of static elastic-plasticity.
     4、According the response of concrete workshop under horizontal earthquake effect with static nonlinear method, the curve between earthquake coefficient and top point displacement has been built, the structure ductile coefficient has been got, the law of stress' development and the order of crack appearing with the intensity increasing has been analyzed, the lateral resistance capacity and the place apt to crack of concrete structure has been discussed.
     5、The method of static elastic-plasticity given in this paper, which can embodied structure earthquake-resistant capacity and a few law under effect of earthquake inertia forces, and found weak sections of the structure. Also the difficulty of calculate when using dynamic time history method has been avoided.
引文
[1]张光斗,王光纶等.水工建筑物[M].北京:中国水利电力出版社,1992
    [2]潘家铮.中国水利建设的成就、问题和展望[J].中国工程科学,2002,4(2):42-51
    [3]罗奇峰,石春香,曹炳政,杨树龙,熊华,李仕栋.中国近4年结构抗震进展介绍[J].地震学报,2003,25(6):637-652
    [4]陈厚群.当前我国水工抗震中的主要问题和发展动态[J].振动工程学报,1997,5(3):253-257
    [5]林皋.混凝土大坝抗震安全评价的发展趋向[J].防灾减灾工程学报,2006,26(1):1-12
    [6]林皋.混凝土大坝抗震技术的发展现状与展望(Ⅱ)[J].防灾减灾工程学报,2006,26(1):1-12
    [7]林皋.拱坝抗震分析与安全评价的近代发展[C].水电2006国际研讨会,2006,26(1):420-428
    [8]祁庆和.水工建筑物[M].北京:中国水利电力出版社,1986
    [9]吴眉玲.水工建筑物[M].北京:清华大学出版社,1991
    [10]匡会健.水电站[M].北京:中国水利水电出版社 2005
    [11]华东水利学院,华北水利水电学院编.水电站.[M].北京:水利出版社 1980
    [12]陕西工业大学水利系水能利用教研组等编.水电站[M].北京:中国工业出版社 1961
    [13]别列日诺依.水电站厂房的主要构件:河床式、坝后式和引水道式水电站.[M].北京:水利电力出版社 1960
    [14]王树人,董毓新.水电站建筑物[M].北京:清华大学出版社 1992
    [15]董毓新,李彦硕.水电站建筑物结构分析[M].大连:大连理工大学出版社 1995
    [16]王树人.水电站建筑物[M].北京:清华大学出版社 1984
    [17]金泰来等.高坝闸门总体布置[M].北京:科学出版社 1994
    [18]苏礼邦,刘云贺,李守义.灯泡贯流式水电站厂房坝段的抗震分析[J].西北农林科技大学学报(自然科学版),2007,35(7):203-206
    [19]欧阳金惠,陈厚群,张超然,李德玉.三峡电站15#机组厂房结构动力分析[J].中国水利水电科学研究院学报,2007,5(2):137-142
    [20]侯顺载,李德玉,梁爱虎.三峡大坝动力反应及抗震安全评估[J].水力发电,1998,12:40-43
    [21]管昌生,李创第.三峡大坝厂房坝段结构抗震动力特性分析[J].广西工学院学报,2000,11(1):9-11
    [22]武颖利.混凝土重力坝及坝后式厂房整体静动力分析[D].南京:南京水利科学研究院,2007:7
    [23]宋兴君.厂内溢流式水电站厂房结构的水力激振动态响应与抗震研究[D].西安:西安理工大学,2006:3
    [24]刘云贺,宋兴君,李守义.溢流式水电站厂房结构动力特性研究[J].水力发电学报,2007,26(3):39-43
    [25]Wieland M.Seismic aspects of dams,general report question 83,International Commission on Large Dams[A].Proc.21th Congress of ICOLD[C],Mon-treal,Canada:[s.n.].2003
    [26]涂劲,候顺载,陈厚群.纵缝对重力坝地震反应影响的研究[J].水利学报,2000,12:53-58
    [27]Proulx J.,Darbre G.R.,Kamileris N.Analyticaland experimental investigation of damping in arch dams based on recorded earthquakes[A].Proc.13th WCEE[C].Vancouver,Canada:[s.n.].2004, 68
    [28]Ariga Y,Gao Z,Watanabe H..Development of 3-D dynamic analysis method for coupled Dam-Jnints-Foundation-Reservoir system[A].Proc.13th WCEE[C]Vancouver,Canada:[s.n.].2004.412
    [29]Toyoda Y.,Shiojiri H.,Ueda M.,Tsunekawa K..Dynamic analysis of an existing arch dam including joint Non-linearity and Dam-Water-Foundation rock interaction[A].Proc.13th WCEE[C].Vancouver,Canada:[s.n.].2004,822
    [30]熊斌伟.水电站厂房结构、材料力学法与有限元法的计算对比分析[D].西安:西安理工大学,2005.03
    [31]颜晓梅.重力坝溢流坝段动力特性及地震响应研究[D].武汉:武汉大学,2004:5
    [32]闫晓荣.正交各向异性损伤模型在混凝土坝抗震安全评价中的应用[D].大连:大连理工大学,2005:6
    [33]Ghanaat Y.Seismic performance and damage criteria for concrete dams[A].Proc.3rd U.S.-Japan Work-shop on Advanced Research on Earthquake Engineering for Dams[C].California:San Diego,2002,22-23
    [34]Kanenawa K.,Sasaki T.,Yamaguchi Y.Advanced research activities on dynamic analysis for concrete dams in Japan and a study on seismic performance of concrete gravity dams by smeared crack model[A].Proc.35th Joint Meeting US-Japan Panel on Wind and Seismic Effects[C].Tsakuka,Japan:[s.n.].2003.14-17
    [35]Darbre G.R,Swiss guidelines for the earthquake safety of dams[A].Proc.13th WCEE[C].Vancouver,Canada.2004,1794
    [36]Bischoff PH,Perry SH.Compressive behaviour of concrete at high strain rates[J].Materials and Structures 1991,(24):425-450
    [37]晏启祥.有横缝高拱坝的非线性地震响应分析[D].成都:四川大学,2002:11
    [38]黎勇,栾茂田,林皋.有缝重力坝动力非线性数值计算模型及其应用[J].世界地震工程,2004,20(1):1-9
    [39]Malvar LJ,Ross CA.Review of strain rate effects for concrete in tension CJ].ACI Materials Journal,1998,95(6):735-739
    [40]Chopra A K.Earthquake analysis,design and safety evaluation of concrete arch dams[A].Proc.Tenth WCEE[C].Madrid,Spain:[s.n.].1992.6763-6782
    [41]Lin G,Xiao S.Y..Seismic response of arch dams in-cluding strain-rate effects[A].Proc.Of the International Conference on Advances and New Challengesin Earthq.Engrg Research[C].Harbin and Hong Kong,China:[s.n.].2002.331-338
    [42]Fenves GL,Mojtahedi S and Reimer RB,Effect of Contraction joints on earthquake response of an arch dam,Journal of Structural Engineering,ASCE,118(4):1039-1055,1992
    [43]Zhang CH,Xu YJ,Wang GL and Jin F,Non-linear seismic response of arch dam with contraction joint opening and jnint reinforcements,Earthquake Engineering and Structural Dynamics,29:1547-1566,2000
    [44]赵永宣.应用ANSYS软件进行大坝动力计算抗震分析[J].水力发电,2000,12:57-59
    [45]杜修力,涂劲,陈侯群.有缝拱坝—地基系统非线性地震波动反应分析方法[J].地震工程与工程振动,2000,20(1):11-20
    [46]Du Xiu-li,Zhang Yan-hong and Zhang Bo-yan,Nonlinear seismic response analysis of archdam-foundation systems,New Development in Dam Engineering,Edited by Wieland M.,Ren Q.and Tan S.Y,Taylor&Francis Group plc,London,U.K.2004
    [47]H.Watanabe,S.D.Razaxi,K.Takashima and H.Taniyama,Interaction of material nonlinearity and joint opening on the seismic response of a concrete dam,Dam Engineering,Vol.10 No.4,276-288,2000
    [48]Tan H,Chopra A K,Earthquake analysis of arch dams including dam-water-foundation rock interaction,Earthquake Engineering and Structural Dynamics,24(11):1453-1474,1995
    [49]位敏.高地震烈度下碾压混凝土重力坝动力特性及抗震安全分析研究[D].武汉:武汉大学,2005.5
    [50]刘洋.混凝土重力坝的抗震性能研究[D].北京:中国农业大学,2005.6
    [51]Lee J.,Fenves G.A plastic-damage concrete model for earthquake analysis of dams[J].Earthquake Engrg.Struct.Dyn.1998,(27):937-956
    [52]Miura F.,Okinaka H..Dynamic analysis method for 3D soil-structure interaction system with the viscous boundary based on the principle of virtual work[J].Proc,of JSCE,1989,(404/Ⅰ-Ⅱ):395-404
    [53]张伯艳,刘云贺,刘克平,李德玉.向家坝升船机的抗震计算[J].水利水电技术,2004,4:17-19
    [54]吉晓红,张燎军,翟利军.ANSYS软件在水电厂房分析中的应用[J].东北水利水电,2006,24(258):1-3
    [55]Cervera M.,Oliver J.Seismic evaluation of concrete dams via damage models[J].Earthquake Engineering and Structural Dynamics,1995,(24):1225-1245
    [56]Ghrib F.,Tinawi R.An application of damage mechanics for seismic analysis of concrete gravity dams[J].Earthquake Engineering and Structural Dynamics,1995,(24):157-173
    [57]Valliappan S.,Yazdchi M.,Khalili N..Seismic analysis of arch dams-a continuum damage mechanics approach[J].International Journal for Numerical Methods in Engineering,1999,(45):1695-1724
    [58]张辉东,王日宣,王元丰.大型水电站厂房结构地震时程响应非线性数值模拟[J].水力发电学报,2007,26(4):96-102
    [59]尚岩.大体积混凝土材料静、动力学性能数值模拟[D].南京:河海大学,2004:3
    [60]王显治.混凝土重力坝抗震配筋及抗震设防标准研究—金安桥水电站工程大坝抗震设计[D].南京:河海大学,2007:6
    [61]杜荣强.混凝土静动力弹塑性损伤模型及在大坝分析中的应用[D].大连:大连理工大学,2006:5
    [62]任朝军.基于细观层次混凝土静、动力学性能的数值模拟[D].南京:河海大学,2005:5
    [63]卢向丽.高拱坝静、动力分析及开裂研究[D].天津:天津大学,2005.01
    [64]林皋.中国地震工程研究进展(第一版)[M].北京:地震出版社,1992:104-105
    [65]李刚,耿程东.基于性能的结构抗震方法—理论、方法与应用[M].北京:科学出版社,2004:293-321.
    [66]日土木协会.地震反应分析及实例[M].北京:地震出版社 1983
    [67]胡聿贤.地震工程学(第2版)[M].北京:地震出版社,2006:67-72,129-142,166-169,282-286,460-468.
    [68]N.M.Newmark and E.Rosenbluth.地震工程学原理[M].北京:地震出版社,1985.
    [69]L.Robert Weight.地震工程学[M].科学出版社,1979.
    [70]《地震工程概论》编写组.地震工程概论(第二版)[M].北京:科学出版社,1985
    [71]李杰,李国强.地震工程学导论[M].北京:地震出版社,1992
    [72]M.帕兹,李裕澈等.结构动力学:理论与计算[M].北京:地震出版社 1993
    [73]张子明,杜成斌,江泉.结构动力学[M].南京:河海大学出版社,2001.
    [74]龙驭球,包世华.结构力学(下册)[M].北京:高等教育出版社,1996:25-60,88-140.
    [75]张雄,王天舒.计算动力学[M].北京:清华大学出版社,2007:123-139,162-176.
    [76]王焕定等.结构力学(Ⅱ)[M].北京:高等教育出版社,2001.
    [77]秦荣著.计算结构力学[M].北京:科学出版社 2001
    [78]R.W.克拉夫J.彭津著,王光远等译.结构动力学(第一版)[M].北京:科学出版社,1981.
    [79]倪振华.振动力学[M].西安:西安交通大学出版社,1989
    [80]Anil K.Chopra.Dynamics of Structures:theory and Application to Enrthquake Engineering(Second Edition)[M].北京:高等教育出版社,2005:117-131,187-222,534-547.
    [81]吕西林.复杂高层建筑结构抗震理论与应用[M].北京:科学出版社,2007:57-99.
    [82]潘文.Push-over方法的理论与应用[D].西安:西安建筑科技大学,2005:5
    [83]张新培.钢筋混凝土抗震结构非线性分析[M].北京:科学出版社,2003:6-12,43-70,73-86.
    [84]汪梦甫.高层建筑结构抗震弹塑性分析方法及抗震性能评估的研究[J].土木工程学报,2003,36(11):44-49
    [85]北京金土本软件技术有限公司,中国建筑标准设计研究院.Sap2000中文版使用指南[M].北京:人民交通出版社,2006.
    [86]江见鲸,陆新征,叶列平.混凝土结构有限元分析[M].北京:清华大学出版社,2003:44-176,211-224,236-243,320-325.
    [87]江见鲸,钢筋混凝土结构非线性有限元分析,当代土木建筑科技丛书.[M].秧西:陕西科学技术出版社,1994年。
    [88]过镇海,钢筋混凝土原理.[M].北京:清华大学出版社,1999年3月第一版。
    [89]过镇海,时旭东.钢筋混凝土原理和分析[M].北京:清华大学出版社,2003:82-127,130-135,175-183,239-256.
    [90]陈惠发,Af.萨里普.弹性与塑性力学[M].北京:中国建筑工业出版社,2004:45-60,120-135.
    [91]陈惠发.土木工程材料的本构方程(第二卷 塑性与建模)[M].武昌:华中科技大学出版社,2001.
    [92]D.R.J.欧文,E.辛顿.塑性力学有限元—理论与应用[M].北京:兵器工业出版社,1989
    [93]陈明祥.弹塑性力学[M].北京:科学出版社,2007
    [94]L.M.卡恰诺夫.塑性理论基础(第二版)[M].北京:人民教育出版社 1982
    [95]谢贻权,何福保.弹性和塑性力学中的有限单元法[M].北京:机械工业出版社,1981
    [96]陈洪军,王呼佳,汪艳萍,姚新军等.ANSYS在机械与化工装备中的应用(第2版)[M].北 京:中国水利水电出版社,2006:24-25,27-34.
    [97]周宁,冼进.ANSYS机械工程应用实例[M].北京:中国水利水电出版社,2006:94-125,139-191.
    [98]R,帕克,T.波利.钢筋混凝土结构[M].重庆:重庆大学出版社,1985
    [99]薛建阳,赵鸿铁.型钢混凝土粘结滑移理论及其工程应用[M].北京:科学出版社,2007:115-133.
    [100]过镇海.砼的多轴强度介绍[J].建筑结构学报,1994,15(6):72-75
    [101]过镇海.混凝土的强度和本构关系—原理与应用[M].北京:中国建筑工业出版社,2004。
    [102]宋天霞,黄荣杰,社太生.钢筋混凝土非线性有限元及其优化设计[M].武昌:华中科技大学出版社,2003
    [103]董哲仁.钢衬钢筋混凝土压力管道设计与非线性分析[M].北京:中国水利水电出版社,1998:138-210,170-209,263-288,341-393.
    [104]董哲仁.钢筋混凝土非线性有限元原理与应用[M].北京:中国铁道出版社,1993;138-210,170-209,263-288,341-393.
    [105]小岚工作室.最新经典ANSYS 8.0及Workbench教程[M].北京:电子工业出版社,2004
    [106]博弈创作室.ANSYS 9.0经典产品基础教程与实例详解[M].北京:中国水利水电出版社,2006:77-95,120-125.
    [107]王勖成.有限单元法[M].北京:清华大学出版社,2003.7。
    [108]王勖成,绍敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社,1997.
    [109]郭乙木,陶伟明,庄茁编著.线性与非线性有限元及其应用[M].北京:机械工业出版社 2004
    [110]Ted Belytschko,Wing Kam Liu,Brian Moran.Nonlinear Finite Element for Continua and Structures[M].London:Springer-Verlag,2000
    [111]庄茁.连续体和结构的非线性有限元[M].北京:清华大学出版社,2002
    [112]何君毅,林祥都.工程结构非线性问题的数值解法(M].北京:国防工业出版社 1994
    [113]户川隼入.振动分析的有限元法[M].北京:地震出版社 1985
    [114]凌道盛,徐兴编著.非线性有限元及程序[M].杭州:浙江大学出版社 2004
    [115]Saeed Moaveni.Finite Element Analysis Theory and Application with ANSYS[M].New York:Prentice Hall,2004.
    [116]ANSYS.Inc,ANSYS Advanced Analysis Techniques Guide[M].ANSYS 7.0 HTML Online Documentation.2002.
    [117]张朝晖.ANSYS结构分析工程应用实用实例解析(第2版)[M].北京:机械工业出版社,2008:39-98,170-209,263-288,341-393.
    [118]郝文化.ANSYS土木工程应用实例[M].北京:中国水利水电出版社,2005.
    [119]包陈,吴志俊等.ANSYS工程分析进阶实例[M].北京:中国水利水电出版社,2006:28-42,168-188.
    [120]陈晓霞.ANSYS 7.0高级分析[M].北京:机械工业出版社,2004
    [121]周宁,ANSYS APDL高级工程应用实例分析与二次开发[M].北京:中国水利水电出版社,2006:8-142,234-334.
    [122]谭长剑,张娟等.ANSYS高级工程应用实例分析与二次开发[M].北京:电子工业出版社,2006
    [123]博弈创作室.ANSYS 7.0基础教程与实例详解[M].北京:中国水利水电出版社,2004:81-95,129-164,166-204.
    [124]倪栋,段进,徐久成.通用有限元分析ANSYS7.0实例精解.[M].电子工业出版社,2003.
    [125]夸克工作室.有限元分析基础篇—ANSYS与Mathematical[M].北京:清华大学出版社,2002.
    [126]祝效华,余志样.ANSYS高级工程有限元分析[M].北京:电子工业出版社,2004.
    [127]强锋科技.ANSYS有限元分析实例教程[M].北京:清华大学出版社,2005:18-42,85-117.
    [128]博弈创作室.APDL参数化有限元分析技术及其应用实例[M].北京:中国水利水电出版社,2006:8-142,234-334.
    [129]博嘉科技.有限元分析软件—ANSYS融会与贯通[M].北京:中国水利水电出版社,2004:5-105,164-179.
    [130]黄国权.有限元法基础及ANSYS应用[M].北京:机械工业出版社,2004.
    [131]李传才主编.水工混凝土结构[M].武汉:武汉大学出版社 2001
    [132]SDJ 10-78.水工建筑物抗震设计规范(试行)[S].北京:电力工业出版社,1981:
    [133]N.N.戈里坚布拉特.水工道路与特种结构抗震设计[M].北京:地震出版社,1981:1-12,25-71.
    [134]华东水利学院.水工设计手册(3)—结构计算[M].北京:中国水利电力出版社,1984
    [135]DL5073-2000水工建筑物抗震设计规范[S].北京:中国电力出版社,2001:
    [136]中国水利水电科学研究院抗震所,奏格水电站地震安全性评价报告[R].北京:中国水利水电科学研究院抗震所,2006.
    [137]范立础,卓卫东.桥梁延性抗震设计[M].北京:人民交通出版社,2001:81-135.
    [138]陈惠发,段炼.Bridge Engineering Seismic Design[M].北京:机械工业出版社,2007:120-153,199-201.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700