复合生态床系统在农业面源污染治理中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
抚仙湖是我国第二深水湖泊,近年来出现了加速富营养化趋势,促进因素主要有外来污染增加,湖滨带遭到严重破坏,氮、磷等营养盐在湖内迅速积累,湖泊生态系统过于简单、脆弱等。调研发现,径流区高强度的农作和大量使用化肥农药、村落生活污水和垃圾等面源污染经入湖河流输入湖泊是引起抚仙湖富营养化加速发展的根本原因,因而入湖河流的减污控制是保护抚仙湖的关键。
     抚仙湖的北岸是湖泊污染负荷的主要来源地。窑泥沟-农灌中沟是北岸污染最严重的河道,它汇集了径流区内20个村镇、4700多亩农田的面源污水,因此,窑泥沟-农灌中沟的减污是控制抚仙湖北部面源污染的关键。窑泥沟和农灌中沟两沟相矩50米,农灌中沟西侧有一22.5亩的荒废湖滩,清理整顿湖滩环境,建立由农灌中沟及窑泥沟的溢流堰、固体垃圾打捞平台及拦污网、生物强化沉淀调节池、氧化塘、水平潜流人工湿地、表面流人工湿地组成的面源污水复合生态床处理系统。系统设计处理规模4400m~3/day,水力滞留时间51.8小时,则系统年污水处理量为160万吨,占窑泥沟污水总量的36.3%。
     试验研究表明:系统以打捞的方式可年清除河道内各类垃圾750吨;在设计高水力负荷(44cm/d)条件下,生物强化沉淀调节池对SS、TN、TP和NH_3-N的平均去除率为61.8%、3.6%、5.9%、8.5%;氧化塘对SS、CODcr、TN、NH_3-N和TP去除率在20%~90.32%、34.55%~57.60%、-4.12%~42.53%、-28.75%~61.49%和-11.71%~35.77%之间,有二次污染现象存在;水平潜流人工湿地对CODcr、TN、NH_4~+-N和TP去除率在9.10%~29.61%、5.60%~33.71%、2.41%~27.44%、1、1.19%~60.00%之间,不同的潜流湿地结构,氮、磷的去除效果不同,TN的平均去除顺序为炉渣+芦苇(30.17%)>砾石(3-5cm)+伞竹+香蒲(25.94%)>砾石(1-3cm)+芦苇(19.11%)>公分石(2-4cm)+香蒲(18.22%),TP的平均去除顺序为砾石(3-5cm)+伞竹+香蒲(42.23%)>炉渣+芦苇(36.19%)>砾石(1-3cm)+芦苇(33.49%)>公分石(3-5cm)+香蒲(21.14%);地表流人工湿地对CODcr、TN、NH3-N和 TP 的去除率在30.29%~88.43%、21.80%~74.75%、22.33%~82.47%和16.54%~63.75%之间,平均去除率为50.99%、41.04%、59.00%和31.75%;系统依靠水生植物水芹菜、香蒲、芦苇、菱、荷的吸收作用去除的氮、磷量为6.05t/a和0.24t/a、0.14t/a和0.028t/a、0.02t/a和0.003t/a、1.01t/a和0.14t/a、0.12t/a和0.015t/a。经复合生态床污水处理系统处理后的出水的SS、BOD_5、CODcr、TN和TP浓度在0.8~10mg/l、3.0~5.3mg/l、4.1~24.5mg/l、0.9~10.4mg/l、0.2~0.98mg/l之间,工程验收达标率为100%、100%、100%、90.91%和72.73%,表面流人工湿地是该污水处理系统的主要净化单元,其次是氧化塘。
     结论:在复合生态床污水处理系统中,各级单元床之间具有较强的互助和互补性,前面单元为后续单元提供了较好的前处理,使得后续单元能够较充分地发挥处理功效,同时由于系统结合了在厌氧、兼氧以及好氧状态下微生物、高等绿色植物根系、人工土壤的同化、分解、截流、吸收、吸附和过滤等处理机制,使得该系统具有高效的污水净化性能和较强的耐冲击负荷,且系统投资小、见效快、工艺简单、运行费用低、操作管理方便,只要在系统的前段增设贮水塘储存水量大、污染负荷严重时的来水,随后在间歇的流入该处理系统,这样,就可以缓解系统超负荷运行的不理想净化效果,还可增强系统的处理能力,适宜在湖滨带推广运用。
Fuxian Lake, the second deepwater one in China, has shown a speeding nutrition-rich tendency in recent years, whose resulting factors include the increasing external pollution, the severe destruction in the lakeside zone, the quick accumulation of nutritive salts (such as N, P) in the lake and the simplicity & the weakness of the lake's ecological system, etc. It has been found that the basic cause for the speeding nutrition-rich tendency lies in the non-point source pollutions within the lake's runoff field (including the high-intensity cultivation, the mass-use of fertilizers pesticides, rural sewage & rubbish, etc.) which have been input into Fuxian Lake through some rivers, so the anti-pollution against these rivers is the key of protecting the lake.
    The main pollution source of Fuxian Lake is the northern bank whose severest pollution canal is Yaonigou-Nongguanzhonggou, which gathers all the non-point source wastewaters from twenty villages & small towns and more than 4700 mu farmlands in the runoff field. Therefore, the anti-pollution against Yaonigou-Nongguanzhonggou becomes the key to control the non-point source pollution in the northern part of Fuxian Lake. There is a distance of 50 meters between Yaonigou and Nongguanzhonggou. A 22.5-mu deserted lake beach in west of Nongguanzhonggou should be treated and then we could establish a non-point source wastewaters constructed wetland system which consists of Nongguanzhonggou, an overflow weir in Yaonigou, a solid rubbish salvaging platform, a waste boom, a precipitating adjustment tank, oxidation ponds, a subsurface flow artificial wetland and a free water system artificial wetland. Designed with a treatment scope of 4400 m3/day, the hydraulic retention time of 518 hours, this system could have a waste
    water treatment capability of 1.6 million each year which counts for 36.2% of the total wastewater in Yaonigou.
    The results of our test research showed that this system could remove all kinds of 750-ton rubbish in the canals by means of salvaging each year. On the design condition of a high hydraulic load (44cm/d), 61.8% of SS, 3.6% of TN, 5.9% of TP and 8.5% of NH3-N could be removed through the precipitating adjustment tank; 20%-90.32% of SS, 34.55% -57.60% of CODcr, -4.12%-42.53% of TN, -28.75%-61.44% of NH3-N and -11.71%-35.77% of TP could be removed, but there exists a secondary pollution phenomenon through the oxidation ponds; 9.10%-29.61% of CODcr, 5.60%-33.71% of TN, 2.41%-27.44% of NH3-N and 11.19%-60.00% of TP could be removed through the subsurface flow artificial wetland and for different
    
    
    subsurface flow wetland structure, different N and P could be removed, TN has an average removing capability order of slag plus reed(30.17%) > big pebbles plus umbel bamboo plus cattail (25.94%) > pebbles plus reed (19.11%) > centimeter stones + cattail (18.22%) and TP has the order of pebbles plus umbel bamboo plus cattail (42.23%) > slag plus reed (36.19%) > small pebbles plus reed (33.49%) > centimeter stones plus cattail (21.14%) ; 30.29%-88.43%(average:50.99%) of CODcr, 21.80-74.75%(average:41.04%) of TN, 22.33%-83.47%(average:59.00%) of NH3-N and 16.54%-63.75%(average:31.75%) of TP could be removed through the free water system artificial "wetland; 6.05t/a, 0.14t/a, 0.02t/a, 1.01t/a 0.12t/a of N and 0.24t/a, 0.028t/a, 0.003t/a, 0.14t/a & 0.015t/a of P could be removed by the absorbing action of the system-depended plants such as water celery, cattail, reed, ling and lotus. The concentration of SS, BOD5, CODcr, TN and TP in the water treated by the constructed wetland system is 0.8-10mg/l, 4.1-24.5mg/l,
     0.9-10.4mg/l & 0.2-0.98mg/l and the rate for the acceptance standard towards the project is up to 100%, 100%, 100%, 90.91 % and 72.73%.
    Conclusion: within the constructed wetland system, there are very strong inter-help and parataxis among the unit beds because the good pre-treatment of the former units lets the following nits able to make full use of their treatment functions. At the same time, this system has a high wastewater purification ability and a
引文
[1] 李荫玺,刘红,陆娅等,抚仙湖富营养化初探,湖泊科学[J],2003,15(3):285-288
    [2] 吴献花等,抚仙湖环境现状分析,玉溪师范学院学报[J],2002,18(2):18-20
    [3] Wu xianhua.The prsent environmental condition and tendency of eutrophication in the Fuxian lake. An International Workshop on the Restoration and Management of Eutrophicated Lakes. 2001, 11: 167-168
    [4] Jun liu. Study on the pollution status from agricultural sources and its control in Fuxian lake basin. An International Workshop on the Restoration and Management of Eutrophicated Lakes. 2001, 11: 177-180
    [5] 吴献花等.抚仙湖北岸景观生态建设,云南地理环境研究[J],2002,14(2):56-60
    [6] 李荫玺等.抚仙湖水污染防治工程项目建议书,国家环境保总局华南环境科学研究所,玉溪市环
    
    境科学研究所,2002
    [7] 李荫玺等,抚仙湖湖滨带生态修复工程可行性研究报告,中国科学院南京地理与湖泊研究所,玉溪市环境科学研究所,2002
    [8] 汪俊三等,抚仙湖北岸湖滨带入湖河流污染控制工程可行性研究报告,国家环境保总局华南环境科学研究所,中国科学院南京地理与湖泊研究所,玉溪市环境科学研究所,2002
    [9] 马世骏,王如松,社会-经济-自然复合生态系统,生态学报[J],1984,4(1):1-9
    [10] 马世骏,中国的农业生态工程[M],北京:科学出版社 1989
    [11] 马世骏,国内外的生态工程研究现状及我国近期发展任务,中国生态学发展战略研究[M],北京:中国经济出版社 1991
    [12] 颜京松,william J Mitsch,中国和西方国家的生态工程比较,农村生态环境[J],1994,10(1):45-52
    [13] Mitsch W J. & Jorgensen S E. Ecological Engineering. An Introduction to Ecotechology. J. Welly & Sons. New York. 1989
    [14] Fennessy M S & W J Mitsch. Design and use of wetlands fir renovation of drainage from coal mine. In:Wang R. ed. Human Ecology in China. Beijing:Sci & Techn. Oress. 1989:231-254
    [15] Etnier. C & B Guterstam. Proceeding of the International Conference of Ecological Engineering for Wastewater Treatment. March. 1991:24-28. Torsa, Sweden
    [16] Jorgensen S E . An eutrophication model for a lake . Ecol Model. 1976. 2:147-165
    [17] Richer, A F. Biomanipulation and its feasibility fir water qualitymanagement in shallow eutrophic water bodies in the Nydribiol Bull. 1986. 20(1/2):165-172
    [18] Zoller U. Groundwater Cor(?)emination and Control[M]. New York. Base. HongKong: [s. n]. 1994: 457-475
    [19] Jorgensen S E . An eutrofication model for a lake. Ecol. Modelling. 1976.2:147-165
    [20] Jorgensen S E. Fundamentals of Ecological Modelling. E;sevier. Amsterdam. 1986
    [21] Jorgensen S E & Mitsch W J. Principles of ecological engineering. In: Mitsch W J. Ecological Engineering. J. Welly & Sons. New York. 1989:21-37
    [22] 云正明,刘金铜等,生态工程[M],北京:气象出版社,1993
    [23] 沈善敏,应用生态学的现状与发展.应用生态学报[J].1990,1(1):2-9
    
    
    [24] 王智平,胡春胜.村落与农田及土地利用关系的生态学探讨生态学杂志[J],1999,18(1)
    [25] 云正明,持续发展与生态学,持续发展农业的生态学与经济学问题[M],北京:中国科学技术出版社,1993
    [26] 钦佩,安树青,颜京松,生态工程学[M],南京:南京大学出版社,1998
    [27] 张甬元,陈锡涛,唐瑜云等,鸭儿湖污染治理研究,水生生物学集刊,1983,8:113-124
    [28] 顾丁锡,二十年来太湖生态环境的若干变化,上海师范学院学报(环境保护专集),1983:50-59
    [29] 屠清瑛,顾丁锡,尹澄清等,巢湖-营养化研究[M],合肥:中国科学技术大学出版社1990
    [30] 刘建康,东湖生态学研究(一)[M],北京:科技出版社1990
    [31] 梁彦龄、刘伙泉,草型湖泊资源、环境与鱼业生态学管理(一)[M],北京:科技出版社1995
    [32] 中国科学院水生生物研究所洪湖课题组,洪湖水生生物生产力综合开发及湖泊生态环境优化研究[M],北京:海洋出版社1991
    [33] 黄玉瑶、赵忠限、高玉荣等,天津市汉沽区城镇污水的生态治理与利用,载于:中国科学院植物研究所、中国科学院动物研究所编,京津地区生物生态学研究[M],北京:海洋出版社1990
    [34] 高拯民、李宪法,城市污水土地处理利用设计手册[M],北京:中国标准出版社1991
    [35] 唐受印、戴友芝,水处理工程师手册[M],北京:化学工业出版社,2000
    [36] 沈耀良等编著,废水生物处理新技术理论与应用[M],北京:中国环境科学出版社,1999
    [37] 云南省玉溪市统计局,玉溪市统计年鉴,2003
    [38] 侯长定,抚仙湖湖滨带生态治理构想,生态经济[J],2001,12:38-40
    [39] 云南省玉溪市环境监测站,环境质量报告书,1990-2002
    [40] 云南省玉溪市人民政府,玉溪市环境规划,2001
    [41] 李建华,王宝贞,氧化塘中氮和磷的去除,中国环境科学[J],1992.12(4):53-62
    [42] 李献文,钱易,聂梅生,城市污水稳定塘设计手册[M],北京,中国建筑工业出版社,1990
    [43] 黄玉瑶,许木启,高玉荣等,汉沽生物稳定塘净化效果研究,应用与环境微生物学报,1999,5:362-366
    [44] 吴献花,人工湿地处理污水的机理,玉溪师范学院学报[J],2002,16(2):56-58
    [45] 吴晓磊,人工湿地废水处理机理,环境科学[J],1995,16(3):83-86
    [46] 彭超英、朱国洪、尹国等,人工湿地处理污水的研究.重庆环境科学[J].2000,22(6):43-45
    [47] 朱彤、许振成等.人工湿地污水处理系统应用研究[J],环境科学研究,1991,4(5):17-21
    
    
    [48] 成水平、夏宜(王争),香蒲、灯心草人工湿地的研究——Ⅱ[J],净化污水的空间,湖泊科学,1998,10(1):62-66
    [49] 李科德等,芦苇塘净化污水的机理[J],中国环境科学,1995,15(2):140-144
    [50] 赵建刚、杨琼、陈章和、黄正光,几种湿地植物根系生物量研究[J].中国环境科学,2003,23(3):290—294
    [51] 安树青,湿地生态工程—湿地资源利用与保护的优化模式(M),北京:化学工业出版社2003
    [52] 国家环保局水和废水监测分析方法编委会,水和废水监测分析方法(第二版)(M),中国环境科学出版社1989
    [53] 陆宪辉译,植物生长分析[M],北京:科学出版社,1980:10-13
    [54] 崔玉波.李相猛,赵可.潜流人工湿地废水处理技术的效能,吉林建筑工程学院学报[J],2002,19(2):7-10
    [55] Neely, R.K., Baker, J.L., 1989. Nitrogen and phosphorus dynamics and the fate of agricultrural runoff. In: van der Valk, A G. (Ed.), Northern Prairie Wetlands. Iowa State University Press, Ames, IA, pp. 92-131
    [56] Brix, H., Schierup, H., 1989. The use of aquatic macrophytes in water-pollution control, Ambio 18, 100-107
    [57] Reddy, K. R., D' Angelo, E. M., 1994. Soil processes regulating water quality in wetlands. In: Mitsch, W. J. (Ed.), Global Wetlands: Old World and New. Elsevier, Amsterdam, pp.309-324.
    [58] 曹向东,王宝贞.蓝云兰等,强化塘-人工湿地复合生态塘系统中氮和磷的去除规律,环境科学研究[J],2000,13(2):15-19
    [59] A. Drizo, C. A. Frost, K. A. Smith and J. Grace. Phosphate and Ammonium Removal by Constructed Wetlands with Horizontal Subsurface Flow, Using Shale as a Substrate. Wat. Sci. Tech., 1997 , 35(5) :95-102
    [60] C.C.Tanner,J.P.S.Sukias and M.P.Upsdell.Substratum Phosphorus Accumulation During Maturation of Gravel-Bed Constructed Wetlands.Wat.Sci.Tech.1999,40(3) :147-154

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700