固阀洗涤塔对煤气化飞灰的洗涤特性及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以多喷嘴对置式气流床气化技术为研究背景,合成气初步净化工艺中的关键设备-洗涤塔为研究对象,采用实验和数值模拟相结合的方法对固阀塔板上的多相流动、洗涤特性及洗涤机理等进行了系统研究。主要内容和研究结果如下:
     1.利用电导探针从单孔固阀塔板鼓泡入手,重点研究了单孔和多孔固阀塔板上气液两相流动情况,得出固阀塔板轴向高度上气液界面参数-局部气含率、气泡速度、气液比表面积及气泡尺寸统计规律。
     2.通过实验研究洗涤塔内气体流量、液体流量、颗粒粒径、颗粒浓度以及塔板数对洗涤效率的影响,发现15μm以上飞灰颗粒洗涤效率几乎为100%;3-15μm的飞灰颗粒,洗涤效率均随着气体流量的增加而增加;1μm以下飞灰颗粒随气体流量的增加洗涤效率逐渐降低。不同粒径飞灰颗粒的洗涤效率均随液体流量的增加而增加。随着气相中颗粒浓度的增加,5μm以上飞灰颗粒的洗涤效率会略有增加,3-5μm之间飞灰颗粒的洗涤效率受颗粒浓度影响不大,3μm以下颗粒随飞灰浓度的增加,洗涤效率显著降低。综合分析固阀塔板上气泡流体力学、系统特性及操作变量对洗涤效率的影响,根据固阀塔板上飞灰质量守恒原则提出预测固阀洗涤塔的洗涤效率模型:
     3.通过矩估计方法对固阀塔板上洗涤除尘过程进行了深入研究,分析了气液流动特性对洗涤效率的影响、飞灰颗粒在洗涤过程中的粒径分布特性及颗粒润湿性对洗涤效率的影响。发现飞灰颗粒穿过塔板上密集鼓泡层的过程中,飞灰颗粒的几何标准偏差逐渐降低;扩散作用主导区域下的飞灰颗粒其几何平均粒径逐渐增加,惯性撞击占主导作用下的飞灰颗粒,其几何平均粒径迅速下降;但处于扩散作用向惯性撞击作用过渡区的飞灰颗粒,其几何平均粒径几乎没有变化。气泡速度,气泡尺寸和气含率等气液界面参数对固阀塔板的洗涤效率有较大影响。随气泡尺寸的降低和气含率的增加,各粒度级飞灰颗粒洗涤效率均明显提高;随气泡速度的增加,扩散作用占主区域下的飞灰颗粒其洗涤效率逐渐降低,但惯性撞击占主导作用下的飞灰颗粒其洗涤效率逐渐增加。
     4.对固阀塔板上泡沫层中飞灰颗粒浓度分布及塔板上方分离空间颗粒夹带速率进行研究。发现塔板上泡沫层内悬浮颗粒浓度与泡沫层高度、颗粒粒径及气液流量等因素有关。对于给定的表观气速和泡沫层高度,悬浮颗粒百分含量与颗粒粒径成反比,但受灰水浓度影响不大。泡沫层上方颗粒夹带速率受板间距、表观气速和泡沫层表面颗粒浓度影响较大。随气体流量增加或泡沫层表面颗粒浓度增大,颗粒夹带量会增加;随泡沫层高度增加,颗粒夹带量减少。泡沫层表而颗粒浓度随着表观气速的增加和溢流堰高度的降低而增大。通过对飞灰颗粒在气泡尾涡内的受力分析,建立了泡沫层内飞灰颗粒浓度分布模型,并且结合塔板上方分离空间的雾沫火带速率,建立了固阀塔板上颗粒火带速率模型。
This study is motivated against Opposed Multi-Burner (OMB) entrained-flow gasification background. The study object is fixed valve tray column that is the key equipment used in syngas preliminary purification process. The multiphase flow fields, scrubbing characteristics and mechanism of fixed valve tray column have been investigated by experimental and numerical simulation. The detailed contents are as follows:
     1. Starting with the single-orifice bubbling with the double-sensor conductivity probe, the study lays stress on the gas-liquid two-phase flow on fixed valve trays with single and multiple orifices. The statistical laws of the phase interfacial parameters-gas holdup, interfacial area concentration, mean bubble size and mean bubble velocity along the axial height on the fixed valve tray have been obtained.
     2. The effect of gas and liquid flow rate, particle size, particle concentration and tray number on collection efficiency of fixed valve tray column have been studied through experiment. For particles larger than15μm, the collection efficiency can achieve about100%. For particles3-15μm, the collection efficiency will increase with increasing gas flow rate while for particles smaller than1μm, the collection efficiency decreases with increasing gas flow rate. The collection efficiencies of all particles increase with liquid flow rate. With increasing inlet particle concentrations, for particles larger than5μm the collection efficiencies increases slightly while for particles smaller than3μm, the collection efficiencies decrease apparently and for particle size between them the collection efficiency have no obvious improving. Comprehensive analysis the effects of bubble hydrodynamics, system property, and operation conditions on the collection efficiency, and a mathematical model based on mass balance was proposed to predict fly-ash particle collection efficiency in fixed valve tray column:
     3. The moment method was introduced to analysis the scrubbing process on fixed valve tray.The effect of gas-liquid flow characteristics and particle wettability on particle collection efficiency were also studied.The effect of gas-liquid flow characteristics on particle collection efficiency and particle size distribution properties in scrubbing process were analyzed. The results show that as particles pass through the bubble column, the geometric standard deviations of the size distribution of fly-ash particles decrease. The geometric mean diameter of fly-ash particles in the diffusion-dominant region increases, whereas it decreases in the impaction-dominant region. Bubble velocity, bubble size and gas hold-up play an important role in determining the particle collection efficiency of bubble columns. The collection efTiciency is enhanced in the entire particle size range either as bubble size decreases or as gas hold-up increases. With increase of bubble velocity, the particle collection efficiency in the diffusion-dominant region decreases, whereas it increases in the impaction-dominant region.
     4. The suspend particle concentration distribution in froth and particle entrainment rate above the froth of fixed valve tray column were investigated experimentally and theoretically. The experiment results indicate that only a fraction of the particle loading gets suspended in the froth. This fraction turns out to be largely dependent on the froth height, particle size, gas and liquid flow rates. However it is insensitive to particle loading variations. The results also reveal the particle entrainment rates above the froth depend more sensitively on the froth height, the bubbling rate and the vertical distance from the froth surface. With increasing gas flow rate or surface particle concentration, particle entrainment rate will increase while with increasing froth height, particle entrainment rate decreases. The surface particle concentrations will increase with increase superficial gas flow rate or decrease weir height. Equations of describing the particle concentration distribution in the froth are derived by force analysis and combine with liquid entrainment rate, a mathematical model was presented to predict fly-ash particle entrainment rates in fixed valve tray column.
引文
[1]Wang W S, Huang S D, Zou J L. The Present Situation and Policy Suggestion of Clean Coal Technology in China. Advanced Materials Research .2013, 616:1120-1123.
    [2]Li A J, Li Z. General Equilibrium Analysis of Developing Clean and Low-Carbonized Coal-Fired Power Technologies in China. Advanced Materials Research. 2012, 347: 1127-1131.
    [3]于广锁,牛苗任,王亦飞,梁钦锋,于遵宏.气流床煤气化的技术现状和发展趋势.现代化工.2004,24(5):23-26.
    [4]王辅臣,于广锁,龚欣,刘海峰,王亦飞,梁钦峰.大型煤气化技术的研究与发展.化工进展.2009,28(2):173-180.
    [5]Higman C, Van der Burgl M, Gasification [M]. Burlington, Gulf professional publishing. 2011
    [6]Dullien FAL. Introduction to industrial gas cleaning [M].San Diego, CA : Academic Press, 1989,55-90.
    [7]Hiroshi Sasatsu. Hot gas particulate cleaning technology applied for PFBC/IGCC condition ceramic tube filter (CTF) and metal filter. 5th International Symposium on Gas Cleaning at High Temperature. Morgantown.USA.2007 .
    [8]Schumaeher Umwelt-und Trenntechnik GmbH. Filtration Separation.2002, (5):22-27.
    [9]陈雪莉.气流床煤气化系统中初步净化过程研究[D].上海:华东理工大学2003.
    [10]Cummer K R, Brown R C. Ancillary equipment for biomass gasification. Biomass and Bioenergy. 2002. 23 (2): 113-128.
    [11]Qian J, Qi R, Zhu S.High-powered adaptive valve tray: A new generation tray offers new advantages. Chemical Engineering Research and Design. 2006, 84 (2): 155-158.
    [12]王良华,姚克俭,李育敏,俞晓梅,刘炳炎.新型固定阀塔扳的流体力学和传质性能研究.化学工程.2005,33(2):4-8
    [13]Bilski J, McLean K, McLean E, Ostgarden J, Lander M. Preliminary studies on a coal fly ash utilization as growth media for selected cereal crops. Electronic Journal of Environmental, Agricultural and Food Chemistry .2012, 11 (5): 558-564.
    [14]Das S K. Mathematical model to predict effects of fly ash hardness and angularity on erosion response of typical boiler grade steels. Tribology-Materials. Surfaces & Interfaces. 2012, 6 (2):84-92.
    [15]F' C Lockwood. S Yousif. A model for the particulatc matter enrichment with toxic metals in solid fuel flames. Fuel Processing Technology. 2000. 65:439-457
    [16]A R Mclennan. Ash formation in reducing condition[D]. The University of Newcastle. Australia, 1998.
    [17]Neville M, Quann R, Haynes B, Sarofim A. In Vaporization and condensation of mineral matter during pulverized coal combustion, Symposium (International) on Combustion, Elsevier.1981,1267-1274.
    [18]Quann R J, Neville M, Janghorbani M, Mims C A, Sarofim A F.Mineral matter and trace-element vaporization in a laboratory-pulverized coal combustion system. Environmental Science & Technology.1982,16(11):776-781.
    [19]Wan S, Chen W Y, Shi G. Roles of mineral matter in the early stages of coal combustion. Energy & Fuels.2009,23(2):710-718.
    [20]Huffman G P, Huggins F E, Dunmyre G R. Investigation of the high-temperature behaviour of coal ash in reducing and oxidizing atmospheres. Fuel.1981,60 (7): 585-597
    [21]McLennan A, Bryant G,Stanmore B, Wall T. Ash formation mechanisms during pf combustion in reducing conditions. Energy & Fuels.2000,14 (1):150-159
    [22]Liu Y, Gupta R, Wall T. Ash formation from excluded minerals including consideration of mineral-mineral associations. Energy & Fuels.2007,21 (2):461-467.
    [23]Srinivasachar S, Helble J, Ham D, Domazetis G. A kinetic description of vapor phase alkali transformations in combustion systems. Progress in Energy and Combustion Science.1990,16 (4):303-309.
    [24]于敦喜.燃煤细微颗粒物的模态识别及其形成机理[D].武汉:华中科技大学,2007.
    [25]Ramsden A. A microscopic investigation into the formation of fly-ash during the combustion of a pulverized bituminous coal. Fuel.1969,48 (2):121-137.
    [26]Hu Y H, Chan H M, Wen Z X, Harmer M P. Scanning electron microscopy and transmission electron microscopy study of ferroelectric domains in doped BaTiO3. Journal of the American Ceramic Society.1986,69(8):594-602.
    [27]上官炬,常丽萍,苗茂谦.气体净化分离技术[M].北京:化学工业出版社.2012.
    [28]林肇信,童志权,佘名汉等.大气污染控制工程[M].北京:高等教育出版社.1991.
    [29]黄静.大气环境污染与洁净煤技术.科技情报开发与经济.2001,11(3):19-20.
    [30]K H van Heek.Progress of coal science in the 20th century.Fuel.2000,79:1-26.
    [31]中华人民共和国国家标准.工业炉窑大气污染物排放标准[S].(GB 9078-1996)
    [32]季学李.大气污染控制工程[M].上海:同济大学出版社1992.
    [33][美]RN切雷米西诺夫,R 扬格.大气污染控制设计手册(胡大龙,李大志译)[M].北京:化学工业出版社.1984.
    [34]杨林军,颜金培,沈湘林.蒸汽相变促进燃烧源PM2.5凝并长大的研究现状及展望.现代化工.2005,25(11):22-26.
    [35]S. Calvert, J. Goldshmid, D. Leith. Scrubbing performance for particle collection, AICHE Symp. Ser.1974,72:357-364.
    [36]Azbel, D. Two phase flows in chemical engineering, Cambridge University Press.1981.
    [37]姚玉英等.化工原理(下册)[M].天津:天津大学出版社.1999.
    [38]谭天佑等.工业通风除尘技术[M].北京:中国建筑工业出版社,1984.
    [39]Ebert F, Buttner H. Recent investigations with nozzle scrubbers.Powder technology.1996,86 (1):31-36.
    [40]Song Haihua(宋海华),Wang Xiuli(王秀丽),LiHonghai(李红海)Measurement and prediction of interfacial area of distillation tray. Journal of Chemical Industry and Engineering (China)(化工学报).2003,54(81):1112-1117.
    [41]LehrF, Mewes D. A transport equation for the interfacial area density applied to bubble columns. Chemical Engineering Science,2001,56 (I):1159-1166.
    [42]李群生,许莉,李通,周土红,王宝华.新型导向圆盘形浮阀塔板的流体力学性能.北京化工大学学报(自然科.学版).2011,6:4-9.
    [43]Wang J, Tang Y X, Liu Y S, Cao R, Chen T X, Hu Y F, Fan X J. A new dry tray pressure drop model of float valve trays. AIChE Journal.2013. DOI:10.1002/aic.14027
    [44]Chen Xueli(陈雪莉),Zhou Shunzeng(周顺增),Lu Shusen(吕术森).Bubbling characteristic of single bubble cap in stagnant liquid. Journal of East China University of Science and Technology.2004,30(1):115-118.
    [45]Lu Shusen(吕术森),Chen Xuelif陈雪莉),Yu Guangsuo(于广锁)Measurement of the Bubble Parameter in Bubble Column by Conductivity Probe. Chemical Reaction of Engineering and Technology.2003,19 (4):344-351.
    [46]兰州石油机械研究所.现代塔器技术(第二版)[M].北京:中国石化出版社,2005.
    [47]孙兰义,李军.IEFV固阀塔板流体力学与传质性能研究.石油化工设备.2008,37(1):8-11.
    [48]时均,汪家鼎,余国琮.化学工程手册[J].北京:化学工业出版社.1996.
    [49]梁治国,亓荣彬,田原字等.新型NS导向馏塔板工业应用[J].石油化工设备.2001,30(4):38-39.
    [50]Nutter D E. The MVGTM Tray at FRI [J].Chemical Engineering Research and Design. 1999,77(6):493-497.
    [51]Drake J B. Heindel T J. Local time-average gas holdup comparisons in cold flow fluidized beds with side-air injection. Chemical Engineering Science.2012,68 (I): 157-165.
    [52]Tayler A B, Holland D J, Sederman A J, Gladden L F. Applications of ultra-fast MRI to high voidage bubbly flow:Measurement of bubble size distributions, interfacial area and hydrodynamics. Chemical Engineering Sctence.2012.71:468-483.
    [53]Bao Y, Chen L. Gao Z,Chen J.Local void fraction and bubble size distributions in cold-gassed and hot-sparged stirred reactors. Chemical Engineering Science.2010,65 (2):976-984.
    [54]孙科霞,陈学俊.张鸣远等.水平管泡状流相分布特性.化工学报.1999,50(5):719-725.
    [55]杨建,张鸣远,苏玉亮,张超杰,王金照.水平管泡状流局部实验参数的概率统计方法.化工学报.2002,53(8):871-878.
    [56]秦岭,靳海波,杨索和.筛板结构对多级鼓泡塔中流体力学参数的影响.化学工程.2010,38(9):15-18.
    [57]韩梅,沙作良,伍倩,张念,王铁峰,工金福.双探针电导探头测量气泡参数的信号质量.过程工程学报.2009,9(2):222-227.
    [58]张进明,吕砚山.微机化气泡参数自动测量系统.北京化工学院学报(自然科学版).1990,17(2):60-65
    [59]P Angeli, G F Hewitt. Flow structure in horizontal oil-water flow, Int. J. Multiphase Flow.2000,26(7):1117-1140.
    [60]Ishii M. Thermo-Fluid Dynamic Theory of Two-phase Flow [M]. Eyrolles, Paris; Scientific and Mddical publication.1975.
    [61]Lehr F, Millies M, Mewes D. Bubble-Size distributions and flow fields in bubble columns. AIChE Journal.2004,48 (11):2426-2443.
    [62]Majumder S K, Kundu G, Mukherjee D. Bubble size distribution and gas-liquid interfacial area in a modified downflow bubble column. Chemical Engineering Journal.2006,122(1):1-10.
    [63]Jo D, Revankar S T, Bubble mechanisms and characteristics at pore scale in a packed-bed reactor. Chemical Engineering Science.2009,64 (13):3179-3187.
    [64]Benkrid K, Rode S, N Pons M, Pitiot P, Midoux N. Bubble flow mechanisms in trickle beds-an experimental study using image processing. Chemical Engineering Science. 2002,57 (16):3347-3358.
    [65]Liao Y, Lucas D. A literature review of theoretical models for drop and bubble breakup in turbulent dispersions. Chemical Engineering Science.2009,64 (15):3389-3406.
    [66]KIM J W, LEE W K. Coalescence behavior of two bubbles in stagnant liquids. Journal of chemical engineering of Japan.1987,20 (5):448-453.
    [67]Sekoguchi K, Takeishi M. Interfacial structures in upward huge wave flow and annular flow regimes. International journal of multiphase flow.1989,15 (3):295-305.
    [68]Drew D, Lahey Jr R. Rge virtual mass and lift force on a sphere in rotating and straining inviscid flow. International journal of multiphase flow.1987,13(1):113-121.
    [69]Rice RG, Geary NW.Prediction of liquid circulation in viscous bubble columns.AIChE Journal.1990,36(9):1339-1348.
    [70]Geary NW, Rice RG. Circulation and scale-up in bubble columns.AIChE Journal.1992, 38(l):76-82.
    [71]Chilekar VP,Singh C,van der Schaaf J.Kuster BFM.Schouten JC.A Gas hold-up model for slurry bubble columns.AIChE Journal.2007.53(7):1687-1702.
    [72]B C Meikap. G Kundu. Prediction of the interfacial area of contact in a variable area multi-stage bubble column. Ind. Eng. Chem. Res.2001,40(26):6194-6200.
    [73]Polonsky S,Shemer L, Barnea D. The relation between the Taylor bubble motion and the velocity field ahead of it. International journal of multiphase flow.1999,25(6): 957-975.
    [74]Herringe R, Davis M. Structural development of gas-liquid mixture Hows. J. Fluid Mech 1976,73(1):97-123.
    [75]Burgess J, Calderbank P. The measurement of bubble parameters in two-phase dispersions-1:The development of an improved probe technique. Chemical Engineering Science.1975,30 (7):743-750.
    [76]Nicklin D J.Two phase flow in vertical tubes [D].1961.
    [77]Davies R, Taylor G. The mechanics of large bubbles rising through extended liquids and through liquids in tubes. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.1950,200 (1062):375-390.
    [78]Strand M, Pagels J, Szpila a, Gudmundsson a, Swietlicki E, Bohgard M, Sanati M. Fly Ash Penetration through Electrostatic Precipitator and Flue Gas Condenser in a 6 MW Biomass Fired Boiler, Energy & Fuels.2002, (16):1499-1506.
    [79]K B Schnelle Jr, C A Brown. Air Pollution Control Technology Handbook.CA Brown:CRC Press.2002.
    [80]Meikap B C, Biswas M N. Fly-ash removal efficiency in a modified multi-stage bubble column scrubber. Separation and Purification Technology.2004,36 (3):177-190.
    [81]Kaldor T G. Phillips C R. Aerosol Scrubbing by Foam. Industrial & Engineering Chemistry Process Design and Development.1976,15:199-206.
    [82]N A Fuchs. The Mechanics of Aerosols. New York:Pergamon Press,1964.
    [83]Lee K W, Giescke J A. Collection of aerosol particles by packed beds. Environmental Science & Technology.1979,13 (4):466-470.
    [84]Jung C, K Lee. Filtration of fine particles by multiple liquid droplet and gas bubble systems. Aerosol science and technology.1998,29(5):389-401.
    [85]Park S H, Lee B K. Development and application of a novel swirl cyclone scrubber (2) Theoretical. Journal of hazardous materials.2009,164(1):315-21.
    [86]李兴龙;颜卓勇;梁钦锋;于广锁,基于双色法测量气化火焰温度场的研究.煤炭转化.2008,31(3),23-26.
    [87]廖胡,郭庆华,梁饮锋,张健,廖敏,于广锁.多喷嘴对置式气化炉中飞灰性质.化工学报.2009,(11):2918-2923.
    [881 Linak W P. Wendt J O L. Toxic metal emissions from incineration:mechanisms and control. Progress in Energy Combustion and Science.1993.19(2):145-185.
    [89]刘昊,何通.双比重瓶粉体真密度测定法.比重与测试技术.2005,(3):39-40.
    [90]谢广元.选矿学[M].中国矿业大学出版社:2001.
    [91]蒋子铎,邝生鲁,杨诗兰.动态法测定粉末-液体体系的接触角.化学通报.1987.7:31-33.
    [92]Kemoun A, N Rados. Gas holdup in a trayed cold-flow bubble column. Chemical Engineering Science.2001,56(3):1197-1205.
    [93]Bandyopadhyay A, Biswas M N. Fly ash scrubbing in a novel dual flow scrubber. Waste management.2007,27 (12):1845-1859
    [94]Cooper D W. Theoretical comparison of efficiency and power for single-stage and multiple-stage particulate scrubbing. Atmospheric Environment.1967,10(11): 1001-1004.
    [95]Zarei S, Jamshidi E, Afshar Ebrahimi A. PVC dust removal from the air by a new dynamical scrubber. Chemical Engineering and Processing:Process Intensification 2010, 49 (11):1193-1198.
    [96]袁一.化学工程师手册[M].北京:机械工业出版杜.1 998.
    [97]Meikap B C, Kundu G, Biswas M N.Scrubbing of fly-ash laden SO2 in modified multistage bubble column scrubber.AIChE Journal.2002,48(9):2074-2083.
    [98]Licht W. Air pollution control engineering:Basic calculations for particulate collection. CRC Press:1988.
    [99]Green H L, Lane W R. Particulate clouds:dusts, smokes, and mists:their physics and physical chemistry and industrial and environmental aspects. London:Taylor & Francis. 1957.
    [100]Kolmogoroff A N.On the breaking of drops in turbulent flow. Dokl. Akad. Nauk. SSSR.1949,66:825-828.
    [101]Batchelor G K, The theory of homogeneous turbulence. London:Cambridge university press.1982.
    [102]Liang Y C, Zhou Z, Shao M,Geng J, Wu Y T, Zhang Z B. The impact of valve tray geometry on the interfacial area of mass transfer. AIChE Journal 2008,54 (6), 1470-1477.
    [103]Hesketh RP, Russell TWF. Bubble size in horizontal pipelines. AIChE Journal.1987, 33(4):663-667.
    [104]Jacimovic B, S B Genie. Froth porosity and clear liquid height in trayed columns. Chemical engineering & technology.2000,23(2):171-176.
    [105]Bandyopadhyay a, M N Biswas. Fly-Ash Scrubbing in a Tapered Bubble Column Scrubber. Process Safety and Environmental Protection.2006,84(1):54-62.
    [106]Shah Y, Kelkar B G, Godbole S,Deckwer W D. Design parameters estimations for bubble column reactors. AIChE Journal.1982,28 (3):353-379.
    [107]孙露娟,杨林军,张霞,颜金培,张宇,沈湘林.洗涤塔脱除燃烧源超细颗粒的实验研究.化工学报.2008,59(6):1508-1514.
    [108]Tucker W, An overview of PM< sub> 2.5 sources and control strategies. Fuel Processing Technology.2000.65:379-392.
    [109]疏学明,方俊,申世飞,刘勇进,袁宏永,范维澄.火灾烟雾颗粒凝并分形特性研究.物理学报.2006,55(9):4466-4471.
    [110]Tandon P, Rosner D E. Monte Carlo simulation of particle aggregation and simultaneous restructuring. Journal ofcolloid and interface science. 1999, 213 (2): 273-286.
    [111]Wu J J, Flagan R C.A discrete-sectional solution to the aerosol dynamic equation. Journal of colloid and interface science. 1988, 123 (2), 339-352.
    [112]Jung C H, Kim Y P, Lee K.A moment model for simulating raindrop scavenging of aerosols. Journal of Aerosol Science. 2003, 34 (9):1217-1233.
    [113]Lee K, Liu B. On the minimum efficiency and the most penetrating particle size for fibrous filters. Journal of the Air Pollution Control Association. 1980, 30 (4):377-38l.
    [114]Herne H. The classical computations of the aerodynamic capture of particles by spheres. Aerodynamic Capture of Particles,1960, 26-34.
    [115]Taheri M, Calvert S. Removal of small particles from air by foam in a sieve-plate column. Journal of the Air Pollution Control Association. 1968, 18 (4): 240-245.
    [116]Stulov L,Murashkevich F. Fuchs N. The efficiency of collision of solid aerosol particles with water surfaces. Journal of Aerosol Science 1978, 9(1), 1-6.
    [117]陈雪莉,栗冬,王辅臣,龚欣,于遵宏.泡罩塔板上气液两相局部统计特性实验测定.化学反应工程与工艺.2005,21(5):417-421.
    [118]王良华,姚克俭,李育敏,俞晓梅,刘炳炎.新型固定阀塔扳的流体力学和传质性能研究.化学工程.2005,33(2):4-8.
    [119]Heidenreich S, Vogt U, Biittner H, Ebert F. A novel process to separate submicron particles from gases-a cascade of packed columns. Chemical Engineering Science.2000, 55(15):2895-29O5.
    [120]Meikap B, Kundu G, Biswas M. Modeling of a novel multi-stage bubble column scrubber for flue gas desulfurization. Chemical Engineering Journal .2002,86 (3): 331-342.
    [121]Bandyopadhyay A, Biswas M N. Participate scrubbing in a novel two - stage hybrid scrubber. AlChE Journal. 2006, 52 (2): 850-854.
    [122]Yang L, Bao J, Yan J. Liu J,Song S. Fan F. Removal of fine particles in wet Hue gas desulfurization system by heterogeneous condensation. Chemical Engineering Journal. 2010,156(1): 25-32.
    [123]Dayan A, Ullmann A, Zalmanovich S. Measurements of solid particle suspension concentrations in boiling pools. Nuclear engineering and design. 2000, 199 (3): 203-214.
    [124]黄洁,余国琮,刘海玲.筛扳雾沫夹带二维分布的研究.化工学报.1989,40(4):430-437.
    [125]叶詠恒,史季芬,周亚夫.塔扳上操作工况的过渡和雾沫夹带转变点.化工学报.1981.4:8-13.
    [126]李倩英,路季林.浮阀塔扳的临界气速和雾沫夹带.化工装备技术.1990,5:2-6.
    [127]刘秀囡,路秀林.雾沫夹带对蒸馏塔板效率的影响.化工学报.1990,6:16-22.
    [128]Huppert H E, Kerr R C, Lister J R, Turner J S.Convection and particle entrainment driven by differential sedimentation. Journal of Fluid Mechanics.1991,226:349-369.
    [129]Bain J L, Van Winkle M.A study of entrainment, perforated plate column-air-water system. AIChE Journal.1961,7 (3):363-366.
    [130]Wang Q, Chen X, Gong X. Theoretical and experimental investigation on the characteristics of fly-ash scrubbing in a fixed valve tray column. AIChE Journal.2012, DOI:10.1002/aic.13967
    [131]Hsieh K, Rajamani R. Mathematical model of the hydrocyclone based on physics of fluid flow. AIChE Journal.1991,37 (5):735-746.
    [132]Chanson H. Bubble entrainment, spray and splashing at hydraulic jumps. Journal of Zhejiang University SCIENCE A.2006,7 (8):1396-1405.
    [133]Jacimovic B. Entrainment effect on tray efficiency. Chemical Engineering Science. 2000,55 (18):3941-3949.
    [134]Lockett M, Rahman M, Dhulesia H. The effect of entrainment on distillation tray efficiency. Chemical Engineering Science.1983,38 (5):661-672.
    [135]Dayan A, Zalmanovich S. Axial dispersion and enterainment of particles in wakes of bubbles. Chemical Engineering Science.1982,37 (8):1253-1257.
    [136]Pinto A, Pinheiro C, Campos J. Coalescence of two gas slugs rising in a co-current flowing liquid in vertical tubes. Chemical Engineering Science.1998,53 (16):2973-2983.
    [137]Campos J, Guedes de Carvalho J. An experimental study of the wake of gas slugs rising in liquids. Journal of Fluid Mechanics.1988,196:27-37
    [138]Cardoso O, Sotto Mayor T, Pinto A, Campos J.Axial dispersion of particles in a slugging column-the role of the laminar wake of the bubbles. Chemical Engineering Science.2003,58 (18):4159-4172
    [139]Hunt C D A, Hanson D, Wilke C. Capacity factors in the performance of perforated-plate columns. AIChE Journal.1955,1 (4):441-451.
    [140]Kister H Z, Pinczewski W V, Fell C J. Entrainment from sieve trays operating in the spray regime. Industrial & Engineering Chemistry Process Design and Development. 1981,20 (3):528-532.
    [141]Colwell C S, Khalsa S S, Block G D. Cellular mechanisms of entrainment. Chronobiology International.1992,9 (3):163-179.
    [142]Bennett D L, Kao A S, Wong L W. A mechanistic analysis of sieve tray froth height and entrainment. AIChE Journal.1995,41 (9):2067-2082.
    [143]Xue J, Al Dahhan M, Dudukovic M. Mudde R. Bubble velocity, size, and interfacial area measurements in a bubble column by four-point optical probe. AIChE Journal. 2007.54 (2):350-363.
    [144]Bhaga D, Weber M.Bubbles in viscous liquids:shapes, wakes and velocities. Journal of Fluid Mechanics.1981.105 (I):61-85.
    [145]Cantwell B, Coles D. An experimental study of entrainment and transport in the turbulent near wake of a circular cylinder. Journal of Fluid Mechanics.1983,136 (I): 321-374.
    [146]Polonsky S, Shemer L, Barnea D, The relation between the Taylor bubble motion and the velocity field ahead of it. International journal of multiphase How.1999,25 (6): 957-975.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700