注浆控制岩溶隧道突水地质灾害的机理和模拟方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
岩溶地貌是具有溶蚀力的水对可溶岩进行溶蚀等作用所形成的地表和地下形态的总称,又称为喀斯特地貌。分布在世界各地可溶岩地区的岩溶地貌,面积达2200万平方公里,涉及十亿人口,我国的岩溶地貌的面积约有130万平方公里,其中尤以西南地区最为集中。
     岩溶地区的生态环境异常脆弱,需要细心的管理和保持,但为了各地区的平衡协调发展,大型基础工程在岩溶区不断上马。隧道等地下工程往往成为地下水排泄的新通道,从而严重影响岩溶区原有的水文地质环境,甚至造成隧址区的环境灾难,所以需要改变以往隧道建设过程中以排为主的理念。
     纵观隧道发展史,其建设趋势在向着“长、大、深”方向发展。在此过程中,隧道的常规建设技术得到了长足进步,但是在面对突水、岩爆、塌陷等地质灾害时,人类也遭受了前所未有的惨痛教训。在各种地质灾害中,论及破坏力之大和发生频率之高,非突水莫属。其破坏力轻则冲毁机具、淹没隧道、耽误工期,重则造成人员伤亡、甚至报废整个工程,给国民经济造成极大损失。为了尽可能的降低突水的破坏性和指导突水防治工作,本文采用FLOW-3D软件对不同驱动力的隧道突水进行了数值分析工作。
     本文以沪蓉西高速公路龙潭隧道、齐岳山隧道和锦屏二级电站的引水辅助洞为依托工程。龙潭隧道在施工过程中多次发生涌水涌泥,耗时五年零五个月,接近预计工期的两倍,仅仅左线的最后五米,就耗时五个月,可见突水突泥的严重性。齐岳山隧道穿越清江之源,其中管道交错,溶洞密布,暗河穿越,地质极为复杂,在施工过程中也多次发生涌水事件,往往隧外下大雨,隧内涌大水,多次淹没逆坡施工的出口段,极大的耽误了工程进度。引水辅助洞埋深超过两千米,其岩溶形态多以贯通性较好的溶隙裂隙存在,在极大水头压力的作用下,以极快的速度瞬间进发而出,其破坏力与高压水枪无异。
     随着现代注浆技术的不断发展,以及新型浆材的不断涌现和注浆设备的不断改进,注浆技术已经成为处理岩溶隧道突水地质灾害的主要手段。但是作为一门科学,它的理论性和系统性还有待完善。注浆理论的研究需要从被注介质特性和浆液流变特性两个方面进行。本文从岩溶区特有的地质特点出发,对被注介质的特性进行研究,认为岩溶区的浆液扩散不再由岩体渗流理论所控制,而必须从流体的质量和动量守恒方程出发,对其进行系统研究。浆液扩散研究必须考虑浆液的粘度时变性,在综合考虑理论合理性和求解可行性的基础上,本文采用粘度时变性的牛顿流体作为浆液模型。在两者的基础上,推导出了质量和动量守恒方程,形成了关于速度场和压力的封闭方程组。
     由质量和动量守恒所推导而得的控制方程是复杂的二阶偏微分方程,以现在的数学和流体力学理论无法对其进行理论求解,所以必须借助于现代的计算机技术进行离散求解。本文以流体动力学中应用最为广泛的有限体积法为基础,分别采用HQUICK、中心差分、Crank-Nicolson、Adams-Bashforth等离散格式对控制方程对流和扩散等项在空间域和时间域上进行离散,得到控制方程的离散格式,最后采用压力泊松方程法在非交错非结构的离散网格上求得压力和速度场,从而在理论上完成了整套的数值求解工作。
     借助于Matlab(?)高级编程语言,对离散格式的控制方程进行了代码编译工作,开发出了GSK(Grouting Simulation in Karst zone)软件包。GSK主要包括网格构建、参数设置、计算分析和结果显示四个部分。借助于非结构网格的优势,GSK可以建立任意形状的网格,从而满足了岩溶区被注介质的形状复杂性要求。参数设置主要包括初边值条件、浆液属性、计算参数等几个方面。结果显示部分可以用云图、矢量图、等值线图以及动画方式展示速度场、压力等结果,也可以绘制注浆量、注浆压力等随时间的变化曲线。
     提出了集综合预报、预警和处治为一身的三位一体岩溶水防治体系。岩溶区突水的防治工作是一个系统工程,单纯的依靠注浆堵水技术往往事倍功半,甚至可能半途而废,所以在防治过程中必须依靠隧道综合超前地质预报技术,以对被注介质的缺陷做到了然于胸,使注浆工作有的放矢。岩溶隧道突水具有极大的危害性,一旦发生,后果往往不堪设想,但借助于先进的预警体系和设备可以有效减小突水的灾难性后果。本文最后将岩溶突水的三位一体防治体系成功应用于现场试验,并采用自己开发的GSK软件包对其中的串跑浆现象进行了模拟验证。
Karst landform is a general name for the morphology of the earth's surface and underground, which formed in the process of soluble rock dissolved by the running water. Karst landform distributes in the whole world with the total area of about 22 million square kilometers, and influences one billion people's life. For China, the area is about 1.3 million square kilometers, and it mainly centralized in the Southwest area.
     In the karst area, the ecological environment is very weak, which requires management and maintenance with patience. However, in order to keep the balance of development between the regions, many large foundation engineering are constructing in the karst area. The tunnel will be the new path for the underground water, and the hydrogeology will be seriously affected. Therefore, the traditional concept, which mainly depends on the drainage method, should be changed during the tunnel construction.
     Throughout the history of tunnel development, the construction trend is longer, larger, and deeper. During this process, conventional technology for the tunnel has a considerable progress. However, when facing geological disasters, such as water inrush, rock burst, and collapse, human still suffered the bitter lessons. Among all the disasters, water inrush is the worst one, because of its destructive effects and frequent occurrences. Water inrush can destroy the equipments, submerge the tunnel, delay the construction period, scrap the whole project, and even cost great loss of the national economy. In order to decrease the destructive force of water inrush and guide the treatment, numerical computation was studied in this paper under different driving forces in the tunnel with the FLOW-3D.
     For this dissertation, the research is based on three tunnels, one is Longtan tunnel, the other one is Qiyueshan tunnel in the Hurong west, the last one is auxiliary tunnel for the Jinping second hydropower station. Disasters of water and mud inrush have occurred many times during the construction of Longtan tunnel. The construction period is five months and five years which is twice of the predicted one. For the last 5 meters of the left line, it cost five months to pass, from which we can know the severity of the disasters. The Qiyueshan tunnel passes through the source of Qingjiang, which is full of conduits, cavities, and even underground rivers. The geological condition is so complex that water inrush has occurred many times during the construction process. Especially when it was raining outside, water was running in the tunnel. The outlets for the reverse slope construction have also been submerged several times. The engineering's process has been severely delayed. The buried depth of the auxiliary tunnel is more than two thousand meters, and the karst morphology is mainly fractures with good interconnectivity. Under the high pressure, water will inrush into the tunnel in an extremely high speed, and the destructive force would be ghastly.
     With the development of the modern grouting technology, emergence of the new grouts and improvement of the grouting equipments, grouting has become the main way to treat the water inrush geological disaster in the karst tunnel. However, as a science, the theory of grouting and its systematicness still need to be well established. For the grouting theory research, the model of injected medium and the rheological property of the grouts have to be studied. Starting from the unique features in the karst zone, by studying the injected medium, the conclusions obtained in the dissertation are that the grouts diffusion in karst zone isn't controlled by the seepage theory, but by the mass and momentum conservation. Because the viscosity changes with time has to be considered, based on the feasibility of the solution and the rationality of the theory, Newton fluid model with changing viscosity upon time has been selected. The mass and momentum conservation equations have derived from thess theory, and the closed equations in the velocity and pressure have been acquired.
     The control equations about the mass and momentum conservation are complicated partial difference ones, it is impossible to solve them using the mathematics and fluid mechanics for now, so numerical solution based on the modern computer technology has to be selected. In this dissertation, based upon the finite volume method which are widely used in the fluid dynamics, several discretizations schemes such as HQUICK, Central Difference, Crank-Nicolson, Adams-Bashforth, have been applied to discrete the diffusion and convection term in the time and spatial domain. Based on the discrete form of the equation, the velocity and pressure have been solved by the Pressure Poisson Equation Method by applying the non-staggered and non-structural grid. Now, the numerical solution has been theoretically calculated.
     Based on the advanced programming software Matlab(?), the discrete form of equations has been programmed, and the GSK (Grouting Simulation in Karst zone) software package has been developed. GSK software package includes four parts, which are grid construction, preferences, analysis, and post-processing. By using non-structural gird, the model with arbitrary shape can be established, so the complexity requirement of the injected medium in the karst zone can be satisfied. Preferences part includes the initial and boundary condition, grouts properties and computational parameters. Run and restart are the two functions of the analysis parts. The pressure and velocity can be plotted by the contour map, vector map, cloud map, and in the animation form. It can plot the curves, which indicate the grouting volume, grouting pressure, diffusion radius changes with respect to time as well.
     Triune control system of the karst water has been proposed, it can be revealed as the comprehensive advanced predictions, early warning and treatment. Water inrush controlling is a systematic engineering in the karst zone. If only depending on the grouting technology itself, the effects might not be good enough, or it even doesn't work. But when combining with the comprehensive advanced predictions, the exact condition of the injected medium could be well understood, and the grouting work will be more efficient. In order to reduce the catastrophic damage caused by the water inrush in the karst zone, the advanced early warning system and device must be adopted. At last, the control system of the karst water inrsush is successfully applied to the field test, and the simulation of the grout loss phenomenon has been verified by the GSK package.
引文
[1]李术才,李树忱,张庆松等.岩溶裂隙水与不良地质情况超前预报研究[J].岩石力学与工程学报,2007,26(2):218-225.
    [2]沈继方,李焰云,徐瑞玲.清江流域岩溶研究[M].北京:地质出版社,1996.
    [3]中国科学院地质研究所岩溶研究组.中国岩溶研究[M].北京:科学出版社,1979.
    [4]张之淦.岩溶发生学——理论探索[M].桂林:广西师范大学出版社,2006,12.
    [5]王凯,位爱竹,陈彦飞等.煤层底板突水的突变理论预测方法及其应用[J].中国安全科学学报,2004,1(1):]1-14.
    [6]王勐,许兆义,王连俊.圆梁山毛坝向斜段隧道涌突水灾害及对地下水的影响[J].中国安全科学学报,2004,14(5):6-10.
    [7]苏仲杰,于广明,杨伦.地层塌陷的灾害及其防治研究中的关键问题[J].中国安全科学学报,1997,7(5):46-50.
    [8]周训高.歌乐山隧道突发性涌水整治技术[J].隧道/地下工程,2006,11:69-71.
    [9]刘建国,刘义立.华蓥山隧道特大涌水突泥的综合治理[J].公路,2003,10:25-29.
    [10]张民庆,刘招伟.圆梁山隧道岩溶突水特征分析[J].岩土工程学报,2005,27(4):422-426.
    [11]喻洪,晃伦海.通渝隧道不良地质段设计与施工措施[J].公路交通技术,2008,(2):105-109.
    [12]李苍松,何发亮,陈成宗.渝怀线武隆隧道岩溶涌水量计算新方法[J].中国铁道科学,20056(5):41-46.
    [13]杨兵,肖广智.宜万铁路马鹿箐隧道高压富水岩溶治理技术[J].中国工程科学,2009,11(12):69-76.
    [14]徐红星,邓谊明.野三关隧道DK 124+602突水相关水文地质分析[J].铁道工程学报,2010,4:29-34.
    [15]彭峰.齐岳山隧道穿越高压富水宽张裂隙注浆堵水施工技术[J].铁道建筑技术,2006,6:64-67.
    [16]刘斌,李术才,张庆松.隧道地质灾害预警体系中岩溶裂隙水综合预报技术研究[J].山东大学学报,2009,39(3):115-121.
    [17]孙克国,李术才,张庆松.TSP在岩溶区山岭隧道预报中的应用研究[J].山东大学学报,2008,38(1):74-79.
    [18]吴世勇,王坚,王鸽.锦屏水电站辅助洞工程地下水及治理对策[J].岩石力学与工程学报.2007.26(10):1959-1967.
    [19]孙克国,李术才,张庆松等.特长山岭隧道衬砌监测及模拟研究[J].岩石力学与工程学报,2007,26(2):4465-4470.
    [20]熊厚金.国际岩土锚固与灌浆新进展[M].北京:中国建筑工业出版社,1996.
    [21]张景秀.坝基防渗与灌浆技术[M].北京:水利电力出版社,1992.
    [22]熊厚金,林天健,李宁.岩土工程化学[M].北京:科学出版社,2001.
    [23]《岩土注浆理论与工程实例》协作组.岩土注浆理论与工程实例[M].北京:科学出版社,2001.
    [24]关宝树.岩质隧道的围岩压注浆止水技术[M].北京:中国铁道出版社出版,2001.
    [25]王广国,杜明芳,苗兴城.压密注浆机理研究与效果检验[J].岩石力学与工程学报,2000,19(5):670-673.
    [26]李治国.隧道岩溶处理技术[J].铁道工程学报,2002,(4):61-67.
    [27]杨新安,陆士良,葛家良.软岩巷道锚注支护技术及其工程实践[J].岩石力学与工程学报,1997,16(2):171-177.
    [28]周书明,陈建军.软流塑淤泥质地层地铁区间隧道劈裂注浆加固[J].岩土工程学报,2002,24(2):222-224.
    [29]伍振志,傅志锋,王静等.浅埋松软地层开挖中管棚注浆法的加固机理及效果分析[J].岩石力学工程学报,2005,24(6):1025-1029.
    [30]张成平,张顶立,王梦恕等.高水压富水区隧道限排衬砌注浆圈合理参数研究[J].岩石力学工程学报,2007,26(11):2270-2276.
    [31]倪宏革,孙峰华,杨秀竹等.采用粘土固化浆液进行岩溶路基注浆加固实验研究[J].岩石力学工程学报,2005,24(7):1242-1247.
    [32]刘招伟,张顶立,张民庆.圆梁山隧道毛坝向斜高压富水区注浆施工技术[J].岩石力学工程学报,2005,24(10):1728-1734.
    [33]Bell, A L. Grouting in the Ground[M]. London:Thomas Telford,1992.
    [34]Donald A. Bruce, G. Stuart Littlejohn, Alex M. C. Naudts. Grouting Materials for Ground Treatment: A Practitioner's Guide, ASCE GSP,1997,66:306-334.
    [35]Ross W. Boulanger, Robert F. Hayden. Aspects of Compaction Grouting of Liquefiable Soil[J]. Journal of Geotechnical Engineering.1995,12 (121):844-855.
    [36]Joseph A. Fischer, Joseph J. Fischer, Richard S. Ottoson, Grouting in Karst Terrane-Concepts and Case Histories, ASCE GSP,2003,120:953-966.
    [37]Kenneth D. Weaver, Donald A.Bruce. Dam Foundation Grouting[M]. ASCE Press,2007.
    [38]Chris Gause, Donald A. Bruce. Control of Fluid Properties of Particulate Grouts, Part 1-General Concepts and Part 2-Case Histories[J], ASCE GSP,1997,66:212-230.
    [39]A. C. Houlsby. Construction and Design of Cement Grouting[M]. John Wiley & Sons, Inc.1990.
    [40]Heinz, WF. Mining Grouting:a rational approach[J], ASCE GSP,2003,120:1115-1129.
    [41]Gallagher, Patricia M & Koch, Alyssa J. Model Testing of Passive Site Stabilization:A New Grouting Technique[J], ASCE GSP,2003,120:1478-1489.
    [42]TL. Dreese, DB. Wilson, DM. Heenan, etc. State of the Art in Computer Monitoring and Analysis of Grouting[J]. ASCE GSP,2004,120:1440-1453.
    [43]Shuttle, DA, Glynn, E.. Grout Curtain Effectiveness in Fractured Rock by the Discrete Feature Network Approach[J]. ASCE GSP,2003,120:1405-1416.
    [44]Wehling, Timothy M, Rennie, David C. California Aqueduct Foundation Repair Using Multiple Grouting Techniques[J]. ASCE GSP 2003,120:893-904.
    [45]D. Gouvenot. State of the art in European grouting[J]. Proceedings of the ICE-Ground Improvement,2010,2(2):51-67.
    [46]Jouko Lehtonen, Stefan Aronsson. Grouting of Micropiles in Scandinavian[J]. ASCE GSP,2003, 120:780-790.
    [47]Weaver, K D. A Retrospective on the History of Dam Foundation Grouting in the U.S[J]. ASCE GSP, 2003,120:857-868.
    [48]Tirupati Bolisetti. Experimental and Numerical Investigations of Chemical Grouting in Heterogeneous Porous Media[D]. University of Windsor,2005.
    [49]Reuben H. Karol. Chemical Grouts and Their Properties[J]. Grouting in Geotechnical Engineering, ASCE,1982,359-377.
    [50]Reuben H. Karol. Chemical Grouting and Soil Stabilization[M].3rd ed. New York, NY:Marcel Dekker, Inc.,2003.
    [51]Roy H. Borden, Raymond J. Krizek, Wallace H. Baker. Creep Behavior of Silicate-Grouted Sand[J]. Grouting in Geotechnical Engineering Proceedings of the Conference, ASCE,1982:450-469.
    [52]Baker, Wallace Hayward. Planning and Performing Structural Chemical Grouting[J]. Grouting in Geotechnical Engineering, Proceedings of the Conference, ASCE,1982:515-539.
    [53]R. H. Karol. Seepage Control with Chemical Grout[J]. Grouting in Geotechnical Engineering, ASCE, 1982:564-575.
    [54]Almer E. C. van der Stoel. Pile Foundation Improvement by Permeation Grouting[J]. ASCE GSP 2003,120:728-739.
    [55]Georg Breitsprecher, Paul Stefan Toth. Underpinning of a Pier by Microfine Cement Grouting and Compensation Grouting[J]. ASCE GSP No.120:740-751.
    [56]M Chuaqui, D. A. Bruce. Mix Design and Quality Control Procedures for High Mobility Cement Based Grouts[J]. ASCE GSP,2003,120:1153-1168.
    [57]郝哲,王介强,刘斌.岩体渗透注浆的理论研究[J].岩石力学与工程学报,2001,20(4):492-496.
    [58]邝健政,咎月稳,王杰等.岩土注浆理论与工程实践[M].北京:科学出版社,2001.
    [59]R. te Grotenhuis. Fracture Grouting in Theory; Modeling of Fracture Grouting in Sand[D]. Delft University of Technology,2004.
    [60]Vliet, M.J. van; Finite element modeling of fracture grouting by means of discrete fractures[D]; Delft University of Technology,2002
    [61]白云,侯学渊.软土地基劈裂注浆加固的机理和应用[J].岩土工程学报,1991,13(2):89-93.
    [62]邹金锋.劈裂注浆机理分析及应用研究长沙[D],中南大学,2004.
    [63]张忠苗,邹健.桩底劈裂注浆扩散半径和注浆压力研究[J].岩土工程学报,2008,30(2):181-185.
    [64]孙锋,陈铁林,张顶立等.基于宾汉体浆液的海底隧道劈裂注浆机理研究[J].北京交通大学学 报,2009,33(4):1-6.
    [65]邹金锋,李亮,杨小礼等.土体劈裂灌浆力学机理分析[J].岩土力学,2006,27(4):625-628.
    [66]张旭芝,符飞跃,王星华.南京地铁软流塑淤泥质地层劈裂注浆试验研究[J].水文地质工程地质,2004,31(1):67-70.
    [67]Graf, E. D. Compaction Grouting Technique and Observations[J]. ASCE Journal of Soil Mechanics and Foundations,1969,95(5):1151-1158.
    [68]Eugene A. Miller Glen A. Roycroft Compaction Grouting Test Program for Liquefaction Control[J]. Journal of Geotechnical and Geo-environmental Engineering,2004,130(4):355-361.
    [69]Jesus E. Gomez, Allen W. Cadden. Shallow Foundations in Karst:Limited Mobility Grout or Not Limited Mobility Grout. ASCE GSP2003,120:941-952.
    [70]James Warner, Norbert Schmidt, John Reed. Recent Advances in Compaction Grouting Technology[J]. ASCE GSP,1992,30:252-264.
    [71]Bandimere, Samson W. Compaction Grouting-State of the Practice-1997 ASCE GSP,1997,66: 18-31.
    [72]James Warner, Douglas R. Brown. Planning and Performing Compaction Grouting[J]. Journal of the Geotechnical Engineering Division,1974,100(6):653-666.
    [73]John H. Schmertmann, James F Henry. A Design Theory for Compaction Grouting. ASCE GSP, 1992,30:215-228.
    [74]J. Byle Michael. Limited Mobility Displacement Grouting:When Compaction Grout is Not Compaction Grout[J]. ASCE GSP,1997,66:32-43.
    [75]James Warner. Fifty Years of Low Mobility Grouting[J].ASCE GSP,2003,120:1-24.
    [76]Samson W. Bandimere, On Firm Ground[J]. Concrete Construction MAGAZINE,1999,44(1): 100-.
    [77]Steven W. Perkins, Joe Harris. Using the Grouting Intensity Number (GIN) to Assess Compaction Grouting Performance[J]. ASCE GSP,2003,120:991-1009.
    [78]Michael J Byle. Design Considerations for Inclusions by Limited Mobility Displacement Grouting[J]. ASCE GSP,2003,120:1071-1081.
    [79]James Warner. Compaction Grouting Mechanism-What Do We Know[J]. ASCE GSP,1997,66:1-16.
    [80]Lawrence F. Johnsen, Andy Anderson, Jon J. Jagello. Low Strain Testing of Compaction Grout Columns[J]. ASCE GSP,2003,120:1044-1055.
    [81]白峰青,卢兰萍,缑书宝等.德盛煤矿特大突水治理技术[J].煤炭学报,2007,32(7):741-743.
    [82]童立元,邱钰,杜广印等.高速公路下伏多层采空区注浆充填法治理试验研究[J].公路交通科技,2002,19(5):19-22.
    [83]邓洪亮,谢向文,郭玉松.公路隧道穿越采空区注浆加固技术研究[J].地下空间与工程学报,2007,3(6):1182-1186.
    [84]卢正,邓喀中,靳永强.长壁开采老采空区注浆充填范围确定方法[J].采矿与安全工程学报, 2008,25(4):499-501.
    [85]乌效鸣,胡郁乐等.钻井液与岩土工程浆液[M].武汉:中国地质大学出版社,2009.
    [86]刘文永.注浆材料与施工工艺[M].北京:中国建材工业出版社,2008.
    [87]P. Lunardi. Ground improvement by means of jet-grouting[J]. Ground Improvement,1997,1(2):65-85.
    [88]Ing Hieng Wong, Teoh Yaw Poh. Effects of Jet Grouting on Adjacent Ground and Structures[J]. Journal of Geotechnics and Geo-environment Engineering,2000,126(3):247-256.
    [89]B. Nikbakhtan, K. Ahangari. Estimation of jet grouting parameters in Shahriar dam, Iran [J]. Mining Science and Technology (China),2010,20(3):472-477.
    [90]Babak Nikbakhtan, Morteza Osanloo. Effect of grout pressure and grout flow on soil physical and mechanical properties in jet grouting operations[J]. International Journal of Rock Mechanics and Mining Sciences,2009,46(3):498-505.
    [91]徐至钧,全科政.高压喷射注浆法处理地基[M].北京:机械工业出版社,2004.
    [92]昝月稳.国外高压喷射注浆技术的发展[J].岩土工程技术,1998,2:63-65.
    [93]孙星亮,景诗庭.水平钻孔旋喷注浆加固底层效果研究[J].岩石力学与工程学报,1998,]7(5):589-593.
    [94]L.Borgesson, R. Pusch. Rock sealing in radwaste repositories using modern grouting methods and smectite clay [A], Proc.7th ISRM Inter. Cong. On Rock Mechanics[C]. V.1,1991.
    [95]G. Lombardi, D. Deere. Grouting design and control using the GIN principle[J]. Water power and dam construction,1998, June,15-22.
    [96]张志良.对GIN灌浆法的看法[J].水利水电工程设计,1997,1:50-53.
    [97]王兆印,任裕民,工兴奎.宾汉体泥浆湍流的结构特征[J].水利学报,1992,12:9-17.
    [98]刘慈群,非牛顿流体的广义Maxwell模型及其解[J].力学与实践,1995,17(2):21-23.
    [99]陈文芳,蔡扶时.非牛顿流体的一些本构方程[J],力学学报,1983,15(1):16-26.
    [100]陈文芳,范椿.非牛顿流体力学[J].自然杂志,1985,4:243-247.
    [101]陈文芳.非牛顿流体力学[M].北京:科学出版社,1984.
    [102]李兆敏,蔡国琰.非牛顿流体力学[M].东营:石油大学出版社,1998.
    [103]韩式方.非牛顿流体本构方程和计算解析理论[M].北京:科学出版社,2000.
    [104]范镜泓,高芝晖.非线性连续介质力学基础[M].重庆:重庆大学出版社,1987.
    [105]吴望一.流体力学[M].北京:北京大学出版社,1982.
    [106]杜嘉鸿,秦明武,肖荣久.国外化学注浆教程[M].北京:水利电力出版社,1987.
    [107]李传亮,孔祥言,杜志敏等.多孔介质的流变模型研究[J].力学学报,2003,35(2):230-234.
    [108]陈波,李宁.多孔介质的变形场—渗流场—温度场耦合有限元分析[J].岩石力学与工程学报,2001,20(4):467-472.
    [109]李培超,孔祥言,卢德唐.饱和多孔介质流固耦合渗流的数学模型[J].水动力学研究与进展,2003,]8(4):419-426.
    [110]王媛,速宝玉.等效连续裂隙岩体渗流与应力全耦合分析[J].河海大学学报,1998,26(2):26-30.
    [111]朱维申,王平.节理岩体的等效连续模型与工程应用[J].岩石力学与工程学报,1992,14(2):1-11.
    [112]柴军瑞.考虑渗透动水压力时等效连续岩体渗流场与应力场耦合分析的数学模型[J].四川大学学报,2001,33(6):14-17.
    [113]柴军瑞,仵彦卿.岩体渗流场与应力场耦合分析的多重裂隙网络模型[J].岩石力学与工程学报,2000,19(6):712-717.
    [114]周创兵,熊文林.双场耦合条件下裂隙岩体的渗透张量[J].岩石力学与工程学报,1996,15(4):338-344
    [115]陈平,张有天.裂隙岩体渗流与应力耦合分析[J].岩石力学与工程学报,1994,13(4):299-308
    [116]冯增朝,赵阳升,文再明.煤岩体孔隙裂隙双重介质逾渗机理研究[J].岩石力学与工程学报,2005,24(2):236-240.
    [117]杨栋,赵阳升,段康廉等.广义双重介质岩体水力学模型及有限元模拟[J].岩石力学与工程学报,2000,19(2):182-185.
    [118]吉小明,白世伟,杨春和.裂隙岩体流固耦合双重介质模型的有限元计算[J].岩土力学,2003,24(5):748-750.
    [119]USA. The State of Art-Soil Grouting. Final report,1978
    [120]郝哲.岩体注浆行为研究及其计算机模拟[D].沈阳:东北大学博士学位论文,1998.
    [121]G.S.Littlejohn. Chemical Grouting[J]. Grouting Engineering,1985,4:10-12.
    [122]Shroff, AV., Shah, DL. Grouting technology in tunneling and dam construction[M]. AA Balkema, 1999.
    [123]刘嘉材.裂隙注浆扩散半径的研究[M].水利水电科学院研究论文集,1988.
    [124]G.Lombardi.The role of the cohesion on cement grouting of rock[A].15th congress on large dams[C], Lausanne,1985:235-261.
    [125]Kenneth D. Weaver, Donald A. Bruce. Dam Foundation Grouting[M], Virginia:ASCE press,2007.
    [126]D.A. Bruce. Grouting in the Ground[M]. London:Thomas Telford,1994.
    [127]C.F. Grundy. The treatment by grouting of permeable foundations of dams[A]. Proc.5th Cong. Large Dams[C]. France,1955:647-674.
    [128]罗平平.裂隙岩体可灌性及灌浆数值模拟研究[D].南京:河海大学博士学位论文,2006.3.
    [129]王金发高鸣安GJY型灌浆自动记录仪及其在三峡工程的应用[J].人民长江,1999,30(9):9-10.
    [130]郑长成.裂隙岩体灌浆的模拟研究[D].长沙:中南工业大学博士学位论文,1999.3.
    [131]刘国昌.地质力学及其在水文地质工程地质方面的应用[M].北京:地质出版社,1979.
    [132]张之淦.岩溶圈系统及其研究方法[J].中国岩溶,2007,26(1):1-10.
    [133]ZHANG Zhigan. Karst type in China[J]. GeoJournal,1980,4(6):541-570.
    [134]姜云,王兰生.深埋长大公路隧道高地应力岩爆和岩溶涌突水问题及对策[J].岩石力学与工程学报,2002,21(9):1319-1323.
    [135]陈绍林,李茂竹,陈忠恕等.四川广(安)-渝(重庆)高速公路华蓥山隧道岩溶突水的研究与整治[J].岩石力学与工程学报,2002,21(2):1344-1349.
    [136]刘丹.铁路隧道涌水研究的发展趋势[J].铁道工程学报,1998,(S):599-603.
    [137]邬立,万军伟,陈刚等.宜万铁路野三关隧道“8.5”突水事故成因分析[J].中国岩溶,2009,28(2):212-218.
    [138]徐则民,黄润秋,罗杏春.特长岩溶隧道涌水预测的系统辨识方法[J].水文地质工程地质,2003.4:50-54.
    [139]李冰,白明洲,许兆义.宜万铁路野三关隧道施工期岩溶灾害危险性分析与安全对策研究[J].中国安全科学学报,2006,16(9):4-9.
    [140]王建秀,杨立中,何静.大型地下工程岩溶涌(突)水模式的水文地质分析及其工程应用[J].水文地质工程地质,2001,4:49-52.
    [141]林传年.齐岳山隧道岩溶裂隙水超前预报与治理研究[J].地下空间与工程学报,2008,4(4):789-792.
    [142]李学东,董健,任亚等.龙潭特长公路隧道突水涌泥坍塌治理措施探讨[J].中外公路,2008,28(6):179-183.
    [143]Hrit C.W., Nichols B.D. Volume of fluid (VOF) method for the dynamics of free boundaries [J]. Journal of Computational Physics,1981,39(1):201-225.
    [144]Min Soo Kim, Woo Ⅱ Lee. A new VOF-based numerical scheme for the simulation of fluid flow with free surface. Part I:New free surface-tracking algorithm and its verification[J]. International Journal for Numerical Methods in Fluids,2003,42(7):765-790.
    [145]D. Gao, N. B. Morley, V. Dhir. Numerical simulation of wavy falling film flow using VOF method[J]. Journal of Computational Physics,2003,192(2):624-642.
    [146]J. H. Jeong, D. Y. Yang. Finite element analysis of transient fluid flow with free surface using VOF (volume-of-fluid) method and adaptive grid[J]. International Journal for Numerical Methods in Fluids,1998,26(10):1127-1154.
    [147]李谊乐,刘应中,缪国平.二阶精度的VOF自由面追踪方法及其应用[J].船舶力学,1999,3(1):44-52.
    [148]陈大宏,李炜.自由表而流动数值模拟方法的探讨[J].水动力学研究与进展,2001,16(2):412-422.
    [149]刘全,舒志,王志军等.数值模拟界面流方法进展[J].力学进展,2002,32(2):407-418.
    [150]赵大勇,李维仲.VOF方法中几种界面重构技术的比较[J].热科学与技术,2003,2(4):318-323.
    [151]张健,方杰,范波芹.VOF方法理论与应用综述[J].水利水电科技进展,2005,116(4):67-70.
    [152]何晓晖,王建平,李峰等.基于流体体积法的溢流堰粘性流场数值模拟[J].解放军理工大学学报,2006,7(2):161-165.
    [153]陈为博,杨敏.用VOF方法数值模拟溢流堰流场[J].水利水运过程学报,2004,15(6):42-45.
    [154]袁丽蓉,沈永明,郑永红.用VOF方法模拟横流下窄缝紊动射流[J].海洋学报,2005,27(4):155-160.
    [155]阮文军.基于浆液粘度时变性的岩体裂隙注浆扩散模型[J],岩石力学与工程学报,2005,24(15):2710-2714.
    [156]冯志强.破碎煤岩体化学注浆加固材料研制及渗透扩散特性研究[D].2007.
    [157]王福军.计算流体动力学分析[M].北京:清华大学出版社出版社,2006.
    [158]郑哲敏.非线性连续介质力学,中国科学院院刊,1993,8(4):283-289.
    [159]CH. Hirsch. Numerical computation of internal and external fows[M]. John Wiley & Sons,2001.
    [160]S.V. Patankar. Numerical heat transfer and fluid flow[M].Washington, DC, Hemisphere Publishing Corporation,1980.
    [161]E. Erturk, T. C. Corke, C. Gokcol. Numerical Solutions of 2-D Steady Incompressible Driven Cavity Flow at High Reynolds Numbers[J]. International Journal for Numerical Methods in Fluids,2005, 48:747-774.
    [162]U.Ghia, K. N. Ghia, C.T.Shin. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method[J], Journal of Computational Physics.1982,48(3):387-411.
    [163]孙广忠.军都山隧道快速施工超前地质预报指南[M].北京:中国铁道出版社,1990.
    [164]李术才,薛翊国,张庆松等.高风险岩溶地区隧道施工地质灾害综合预报预警关键技术研究[J].岩石力学与工程学报,2008,27(7):1297-1307.
    [165]张庆松,许振浩,李术才等.岩溶隧道综合超前地质预报方法与工程应用[J].山东大学学报,2009,39(4):7-11.
    [166]李苍松,何发亮,丁建芳.武隆隧道岩溶地质超前预报综合技术[J].水文地质工程地质,2005,(2):96-100.
    [167]薛翎国,李术才,张庆松等.隧道信息化施工岩溶裂隙水超前地质预报[J].岩土力学,2008,29(12):3360-3364.
    [168]李天斌,孟陆波,朱劲等.隧道超前地质预报综合分析方法[J].岩石力学与工程学报,2009,28(12):2429-2436.
    [169]张庆松,李术才,孙克国等.公路隧道超前地质预报应用现状与技术分析[J].地下空间与工程学报,2008,4(4):766-771.
    [170]苏茂鑫,李术才,李貅.瞬变电磁三维成像技术在地质预报中的应用[J].山东大学学报,2009,39(4):61-64.
    [171]薛翊国,李术才,张庆松等.TSP203超前预报系统探测岩溶隧道的应用研究[J].地下空间与工程学报,2007,3(7):1187-1191.
    [172]钟世航.陆地声纳法的原理及其在铁路地质勘测和隧道施工中的应用[J].中国铁道科学,1995,16(4):48-55.
    [173]杨军.关于防灾减灾预警机制及预警工程的若干讨论[J].防灾减灾工程学报,2003,23(2):1-9.
    [174]张曹力.关于我国公共危机预警机制的研究[D].西南交通大学,2007.
    [175]葛颜慧.岩溶隧道突水风险评价与预警机制研究[D].山东大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700