Nodosin对恶性胶质瘤的作用及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     恶性胶质瘤,是中枢神经系统最常见的原发性肿瘤,已成为危害人类健康的重要脑部疾病。化疗是其临床综合治疗的重要手段之一,是治疗晚期恶性肿瘤以及防止复发必不可少的。然而,对于占恶性肿瘤90%以上的实体瘤,化疗尚未能取得满意的效果。且化疗药物对肿瘤细胞与正常细胞的选择性较差,对人体往往产生一定的毒副作用。因此,寻找高效、特异和低毒的抗肿瘤药物是肿瘤防治研究中的重要课题。
     Nodosin是从唇形科香茶菜属植物中提取出来的一种五环二萜类化合物,来源广泛,具有抑菌、抗炎等作用。本课题以恶性胶质瘤细胞株C6、U87和C6移植瘤模型为研究对象,研究nodosin对脑胶质瘤的抑制作用,并探讨其作用机制,为其临床抗胶质瘤的研究提供有力的实验依据和理论基础,为进一步开发新型抗胶质瘤药物扩展新视野。
     方法:
     采用倒置显微镜对胶质瘤细胞进行形态学观察;采用四甲基偶氮唑蓝(MTT)法测定细胞生存率,乳酸脱氢酶(LDH)法检测细胞毒性,BrdU检测法检测细胞增殖情况;应用流式细胞仪技术研究nodosin对细胞周期的影响;采用Hoechst33342染色法、原位末端标记技术(TUNEL)法观察nodosin对细胞凋亡的影响。
     采用western blot方法对细胞周期相关蛋白cyclin B1和cdc2和细胞凋亡相关蛋白bcl-2、Bcl-xL、 Bax、Bak及相关胶质瘤细胞内信号通路的蛋白水平进行检测;以及通过对caspase-3/7、caspase-8、caspase-9活性检测和细胞线粒体膜电位的测定(JC-1染色),来研究nodosin抑制胶质瘤细胞增殖及诱导细胞凋亡的机制。同时,应用GSK3β抑制剂LiCl联合nodosin,研究nodosin对细胞凋亡的影响。
     选择划痕实验和Transwell细胞迁移、侵袭实验评价nodosin对胶质瘤细胞的侵袭迁移能力;应用激光共聚焦扫描显微镜对胶质瘤细胞骨架进行观察,并通过western blot方法检测MMP-9的蛋白含量来研究nodosin对胶质瘤细胞的迁移与侵袭的机理。
     通过建立大鼠恶性胶质瘤细胞株C6细胞皮下移植瘤模型,探讨在在体条件下nodosin对肿瘤体积、肿瘤重量等的影响,并通过HE染色观察肿瘤病理组织学的改变。
     成果:
     MTT结果显示nodosin对胶质瘤细胞的生长有明显的抑制作用,且呈现明显的量效、时效关系,处理细胞24h后,对大鼠胶质瘤C6细胞和人胶质瘤U87细胞的IC50分别为:25.81μM、11.05μM;而nodosin在24h时对人正常胶质细胞HEB及大鼠原代胶质细胞的存活率影响不大,其IC50分别为:32.06μM、46.69μM。LDH检测发现,nodosin对C6及U87没有细胞毒作用。这些结果表明,nodosin的抗肿瘤作用具有较强的细胞选择性,其抗肿瘤作用机制可能与细胞周期阻滞、细胞凋亡诱导和侵袭转移抑制有关。
     BrdU检测法和流式细胞术检测结果显示,nodosin对C6及U87胶质瘤细胞具有较好的增殖抑制作用,通过使胶质瘤细胞组滞于G2/M期的机制,抑制胶质瘤细胞进入下一增殖周期,从而抑制胶质痈细胞增殖。Western blot法实验显示,5μM、10μM、15μM的nodosin处理C6、U87细胞24h后,cyclinBl和cdc2蛋白表达水平下调。
     细胞形态学观察、Hoechst33342染色法染色以及原位末端标记技术(TUNEL)检测结果显示,nodosin能诱导胶质瘤细胞的凋亡,作用胶质瘤细胞24h后,细胞形态发生改变,细胞数量与密度减少,随着剂量增加,培养基中悬浮的死亡细胞增多,出现染色质边集,细胞核碎片化,凋亡小体形成。Caspase活性检测发现,nodosin能够增加C6、U87细胞中caspase-3/7、caspase-8、caspase-9的活性,并成一定的剂量依赖关系,提示着我们,nodosin诱导胶质瘤细胞凋亡的作用,既通过死亡受体通路,亦通过线粒体通路。Western blot法结果显示,nodosin能够下调Bcl-2、Bcl-x1蛋白表达水平,上调Bak蛋白的表达水平,Bax蛋白水平不变;同时,能抑制P38MAPK、 PI3K/Akt和PKC信号通路;应用GSK3β抑制剂LiCl联合nodosin,发现LiCl可阻断nodosin引起的细胞凋亡。
     划痕实验和Transwell细胞迁移、侵袭实验结果显示,nodosin能够剂量依赖性地阻止胶质瘤细胞的迁移与侵袭;cofocal结果发现,nodosin可抑制微管聚集;western blot分析结果显示,5、10和15μM的nodosin能以剂量依赖方式减少MMP-9蛋白表达水平。提示,nodosin对胶质瘤细胞的迁移侵袭抑制机制与其促进细胞微管解聚以及下调MMP-9蛋白表达水平相关。
     接种胶质瘤C6细胞后第3d,对照组和nodosin组的肿瘤生长没有明显差异。接种后第4d到第12d,对照组的肿瘤生长快速,nodosin组的肿瘤生长缓慢,差异有显著性意义(P<0.05);裸鼠肿瘤重量、肿瘤体积增长率均明显小于对照组。HE染色显示,对照组C6胶质瘤细胞丰富密集,坏死很少,nodosin组C6胶质瘤细胞生长密度低于对照组,并可见到细胞体积变小,核固缩深染的凋亡形态学改变,部分区域出现液化坏死。
     结论:
     (1)首次在胶质瘤细胞模型上研究nodosin抗恶性胶质瘤的作用,发现nodosin对胶质瘤细胞的生长具有明显的选择性抑制作用;
     (2) Nodosin对胶质瘤细胞具有细胞增殖抑制作用,这种作用通过阻滞细胞周期于G2/M期以及下调cyclinBl和cdc2蛋白水平来实现;
     (3) Nodosin具有诱导胶质瘤细胞凋亡的作用,其机制为:nodosin通过增加Caspase-3/7、Caspase-8、Caspase-9活性、降低线粒体膜电位、下调Bcl-2、Bcl-x1蛋白的表达水平以及上调Bak蛋白的表达水平来诱导胶质瘤细胞凋亡;nodosin能抑制P38MAPK、Akt和PKC等相关胶质瘤细胞内信号通路的蛋白水平;GSK3β在nodosin诱导细胞凋亡中是必需的。
     (4) Nodosin能通过促进细胞微管解聚以及下调MMP-9蛋白水平来抑制胶质瘤细胞的迁移侵袭。
     (5)首次在体内实验中,发现nodosin能抑制裸鼠内胶质瘤的肿瘤生长及减少肿瘤重量,具有体内抗恶性胶质瘤作用。
Objective
     Malignant glioma is the most common primary tumor in the central nervous system(CNS), which has become an important brain disease endangering human health. Chemotherapy, as one of the important means of clinical comprehensive treatment methods, is essential for the management of advanced tumor and prevention of its recurrence. However, chemotherapy has not been able to achieve satisfactory result to those solid tumors, which take account for90%of malignant tumors. Chemotherapeutic drugs have poor selectivity between tumor cells and normal cells, and have toxic and side effects. Therefore, it remains an important issure in tumor research to look for efficient drugs with lower toxicity.
     Nodosin, a pentacyclic6,7-seco-ent-kaurane diterpenoid with an enmein skeleton extracted from the genus Isodon (Labiatae), has the functions of antimicrobial, anti-inflammatory and so on, as well as broad source. In this study, the malignant glioma cells C6, U87and transplantation tumors model with C6cells injection were used as the research objects, to determine the antitumor effect of nodosin in glioma and its mechanism. And the results would suppor to the clinical research of the resist of glioma with powerful experimental and theoretical basis, and expand horizon for the development of the new glioma drugs.
     Methods
     Morphologic observation of nodosin on C6cells was determined by phase contrast microscopy;cell viability was tested by MTT assay; the cytotoxicity of nodosin was evaluated by lactate dehydrogenase(LDH) leakage method; cell proliferation was detected by Brdll assay; and Hoechst33342staining and the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) analysis was used to check the apoptotic cells.
     The western bloting method was used to detect the cyclin proteins involved in cell cycle of cyclin B1and cdc2and the cell apoptosis related proteins of Bcl-2, Bcl-xL,Bax, Bak and the cell signal pathway protein levels about glioma in glioblastoma C6and U87cells. The activity of caspase-3/7, caspase-8and caspase-9were evaluated by the determination kits, and the cell mitochondrial membrane potential was tested by JC-1staining. All these methods were used to study the mechanism of nodosin in the glioma cell proliferation and apoptosis. In the meanwhile, using the GSK33inhibitor LiCl combined with nodosin to study the effect of nodosin on glioma cell apoptosis.
     The effects of nodosin on the migration and invasion ability of C6and U87glioma cells were assayed by wound healing method, cell migration transwell and invasion transwell experiments. To study the mechanism of nodosin on migration and invasion in glioma cells, we observed the change of cytoskeleton by nodosin treatment using confocal laser scanning microscope and detected the protein MMP-9using the western blotting method.
     To establish the in situ in vivo animal model, we innoculated the C6glia cells into Balb/c nude mice, and then determine the effects of nodosin on tumor growth and tumor weight. And the HE staining was used to observe tumor histologic changes in the mice.
     Results
     MTT assay results showed that nodosin inhibited the rat C6glioma cells and the human U87glioma cells proliferation in time-and dose-dependent manners, and the IC50value of nodosin were about25.8μM and11.05P-M after24h treatment in the C6cells and U87cells, respectively. While the inhibitional effects of nodosin on the normal glia cells HEB and primary rat glia cells is small, with the IC50value were32.06μM and46.69μM, respectively. LDH test found that there is no effect of nodosin on the cell cytotoxicity of C6and U87cells. These results suggested that nodosin has the anti-tumor effect with strong cell selectivity, and its antitumor mechanism may be related to cell cycle arrest, apoptosis induction and invasion and metastasis suppression.
     BrdU assay and flow cytometry showed that the nodosin have good cell proliferation inhibition effects in C6and U87glioma cells. Cell cycles were significantly arrested the cell cycle at G2/M phase, which inhibited the cell cycle to the next cycle. Western blot experiments results have shown that after24h treatment of nodosin(5,10,15μM) in the C6and U87cells, the cell cycle associated protein levels of cyclinBl and cdc2were decreased.
     Cell morphological observasion, hoechst33342staining and the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) analysis powerfully testified that nodosin could induce the apoptosis of glioma cells. After24h of nodosin treatment, glioma cells had morphological changes, which show up in the cell number and density decreasing, with the number of death cells increasing as the dose increased in the supernatants, chromatin edge set, the nucleus fragmentation and apoptotic body formation. Caspase activity experiments found that nodosin increases the activity of caspase-3/7, caspase-8and caspase-9in C6and U87glioma cells in a certain dose-response relationship,which reminded us that nodosin induced apoptosis in the glioma cells, through both the death receptor pathway and the mitochondria! pathway. According to the results of western blot method, nodosin can downregulat the Bcl-2, Bcl-X1. protein expression levels, and upregulate Bak protein expression level without influencing Bax. At the same time, we found the nodosin can suppress P38MAPK signaling pathway, Akt signaling pathway and PKC signaling pathway. And using the GSK30inhibitor LiCl combined with nodosin on the glioma cells, we found that LiCl could block cell apoptosis induced by nodosin.
     Wound healing method, cell migration and cell invasion assays by transwell furtherly indicated that nodosin can inhibit migration and invasion of glioma cells without cytotoxicity against the cancer cells. Cofocal results indicated that nodosin can inhibit microtubules gathered; according to western blot analysis,5,10and15μM of nodosin can decrease MMP-9protein expression level in a dose-dependent manner. These results suggested that the mechanism of nodosin on the glioma cells migration and invasion maybe correlated with cytoskeleton reorganization and the MMP-9protein expression level.
     In the in vivo experiments, there were no tumor growth and mice weight significantly change between the control group and nodosin group in the third day after innoculated C6glia cells into Balb/c mice. Day4to12days after inoculation, compared with the control group, the nude mice tumor weight and tumor volume growth rate of the nodosin group were significantly less(P<0.05). HE staining showed that the C6glioma cells of control group were of high density and very few of necrosis, while in the nodosin group the density of cells are lower than that in the control group, with the cell numbers reduced, the size of cell becomes smaller, apoptosis of nuclear pyknosis morphological,even part of the region of the liquefaction.
     Conelusion
     (1) It is the first time for the study of nodosin on the glioma cell model, and we found that nodosin has obvious selectively inhibitory effect on the cell growth.
     (2)Nodosin inhibits glioma cells proliferation, which associated with cell cycle blocking in G2/M phase and downrugulating cell cycle associated protein,such as cyclinBl and cdc2protein levels.
     (3)Nodosin has the effect of inducing glioma cell apoptosis by increasing the activity of Caspase-3/7, Caspase-8, Caspase-9, decreasing mitochondrial membrane potential, downrugulating the Bel-2and Bcl-XL protein expression levels, and upregulating Bak protein expression level. More over, nodosin suppress the signaling pathways proteins of glioma, such as the P38MAPK signaling pathway, Akt signaling pathway and PKC signaling pathway. And the GSK3βis necessary for the glioma cell apoptosis induced by nodosin.
     (4)Nodosin inhibits migration and invasion metastasis of glioma cells associated with promoting cell microtubule depolymerization and decreasing the protein levels of MMP-9.
     (5)We found that nodosin has the fuction of resistance malignant glioma in vivo experiments for the first time, which inhibits tumor growth and reduces the tumor weight in nude mice.
引文
[1]Westphal M., Lamszus K. The neurobiology of gliomas:from cell biology to the development of therapeutic approaches[J]. Nat Rev Neurosci,2011,12(9):495-508.
    [2]Zustovich F., Lombardi G., Della P. A., et al. A phase Ⅱ study of cisplatin and temozolomide in heavily pre-treated patients with temozolomide-refractory high-grade malignant glioma[J]. Anticancer Res,2009,29(10):4275-4279.
    [3]Rulseh A. M., Keller J., Klener J., et al. Long-term survival of patients suffering from glioblastoma multiforme treated with tumor-treating f ields[J]. World J Surg Oncol,2012, 10:220.
    [4]Smoll N. R., Schaller K., Gautschi O. P. Long-term survival of patients with glioblastoma multiforme (GBM)[J]. J Clin Neurosci,2013,20(5):670-675.
    [5]Glas M., Happold C., Rieger J., et al. Long-term survival of patients with glioblastoma treated with radiotherapy and lomustine plus temozolomide [J]. J Clin Oncol,2009,27(8): 1257-1261.
    [6]Dehdashti A. R., Hegi M. E.,Regli L., et al.New trends in the medical management of glioblastoma multiforme:the role of temozolomide chemotherapy [J]. Neurosurg Focus,2006, 20(4):E6.
    [7]Lai A., Tran A., Nghiemphu P. L., et al. Phase Ⅱ study of bevacizumab plus temozolomide during and after radiation therapy for patients with newly diagnosed glioblastoma multiforme [J]. J Clin Oncol,2011,29(2):142-148.
    [8]倪林,李树华,卢海啸等.HPLC法测定显脉香茶菜中nodosin的含量[J].广东药学院学报,2010,26(6):605-607.
    [9]高幼衡,吴顺华.显脉香茶菜化学成分的研究[J].中草药,1999,30(6):407-409.
    [10]高幼衡,李广义.显脉香茶菜化学成分的研究[J].中国中药杂志,1994,19(5):295-296.
    [11]高幼衡,程怡,叶会呈.显脉香茶菜化学成分的研究[J].中草药,2000,31(9):645-646.
    [12]魏志雄,高幼衡,侯媛芳等.显脉香茶菜化学成分研究Ⅲ[J].中药新药与临床药理,2011,22(1):76-78.
    [13]陈秋铃,高幼衡,张丽媛Nodosin对脂多糖刺激RAW264.7细胞分泌NO及细胞因子的影响[J].广州中医药大学学报,2013(2):211-213.
    [14]Burguillos M. A., Deierborg T., Kavanagh E., et al.Caspase signalling controls microglia activation and neurotoxicity[J]. Nature,2011,472(7343):319-324.
    [15]Lawrence T. Macrophages and NF-kappaB in cancer[J]. Curr Top Microbiol Immunol,2011, 349:171-184.
    [16]Condeelis J.,Pollard J. W.Macrophages:obligate partners for tumor cell migration, invasion, and metastasis[J]. Cell,2006,124(2):263-266.
    [17]Pikarsky E., Porat R. M., Stein I., et al.NF-kappaB functions as a tumour promoter in inflammation-associated cancer[J]. Nature,2004,431(7007):461-466.
    [18]Du Y, Liu P., Zhu H., et al. A sensitive analysis method for 7 diterpenoids in rat plasma by liquid chromatography-electrospray ionization mass spectrometry and its application to pharmacokinetic study of Isodon serra extract[J]. J Chromatogr A,2011, 1218(43):7771-7780.
    [19]Fallica B., Makin G., Zaman M. H. Bioengineering approaches to study multidrug resistance in tumor cells[J]. Integr Biol (Camb),2011,3(5):529-539.
    [20]Garcion E., Lamprecht A., Heurtault B., et al. A new generation of anticancer, drug-loaded, colloidal vectors reverses multidrug resistance in glioina and reduces tumor progression in rats[J]. Mol Cancer Ther,2006,5(7):1710-1722.
    [21]刘伟国.脑胶质瘤综合治疗进展[J].实用肿瘤杂志,2004,19(6):462-464.
    [22]熊学辉,袁苏涛.神经胶质瘤治疗方法进展[J].福建医药杂志,2011,33(4):145-147.
    [23]Nimsky C., Ganslandt 0., von Kel ler B., et al. Preliminary experience in glioina surgery with intraoperative high-field MRI[J]. Acta Neurochir Suppl,2003,88:21-29.
    [24]Duffner F., Ritz R., Freudenstein D., et al. Specific intensity imaging for glioblastoma and neural cell cultures with 5-aminolevulinic acid-derived protoporphyrin IX[J]. J Neurooncol,2005,71(2):107-111.
    [25]Niyazi M., Siefert A., Schwarz S.B., et al. Therapeutic options for recurrent malignant glioma[J]. Radiother Oncol,2011,98(1):1-14.
    [26]孙广卫,张少军,李健.脑胶质瘤免疫治疗的进展[J].蚌埠医学院学报,2012,37(2):244-247.
    [27]Okada H., Kohanbash G., Zhu X., et al. Immunotherapeutic approaches for glioma[J]. Crit Rev Immunol,2009,29(1):1-42.
    [28]惠国桢.脑胶质瘤基因治疗的现状和展望[J].中国微侵袭神经外科杂志,2001,6(4):193-196.
    [29]Gilbertson R. J., Rich J. N. Making a tumour's bed:glioblastoma stem cells and the vascular niche[J]. Nat Rev Cancer,2007,7(10):733-736.
    [30]Rooprai H. K., Vanmeter T., Panou C., et al. The role of integrin receptors in aspects of glioma invasion in vitro[J]. Int J Dev Neurosci,1999,17(5-6):613-623.
    [31]Lotem J.,Sachs L. Epigenetics wins over genetics:induction of differentiation in tumor cells[J]. Semin Cancer Biol,2002,12(5):339-346.
    [32]Leszczyniecka M., Roberts T., Dent P., et al. Differentiation therapy of human cancer: basic science and clinical applications[J]. Pharmacol Ther,2001,90(2-3):105-156.
    [33]朱文博.神经胶质瘤诱导分化治疗的研究进展[J].中山大学研究生学刊:自然科学与医学版, 2008,29(1):1-7.
    [34]费洪荣,王凤泽,赵雪梅等.唇形科香茶菜属植物中主要二萜类成分的抗肿瘤活性研究进展[J].中国药房,2010(7):661-663.
    [35]林涛,李刚,刘青林等.冬凌草甲素诱导人脑胶质瘤U251细胞的凋亡及其机制[J].山东大学学报:医学版,2010,48(8):8-12.
    [36]尹波,俞利生,林坚等.冬凌草甲素诱导C6脑胶质瘤细胞凋亡的初步研究[J].温州医学院学报,2012,42(5):436-440.
    [37]Yin B., Sheng H.,Lin J., et al.The cell death of C6 astrocytoma cells induced by oridonin and its mechanism[J]. Int J Clin Exp Pathol,2012,5(6):562-568.
    [38]徐霞,张小莉,等.冬凌草甲素等二萜类化合物的抗氧化作用[J].海峡药学,2002,14(6):28-31.
    [39]林朝展,祝晨蔯,钟志勇等.狭基线纹香茶菜对刀豆蛋白所致小鼠免疫肝损伤的保护作用[J].中药新药与临床药理,2006,17(5):325-328.
    [40]张春芬,李建美,王道生等.香茶菜甲素乙酰化物对心肌缺血所致心脏功能低下的作用[J].中药药理与临床,1996,12(2):15-17.
    [41]Rai S.J., Gupta P.C.,Saxena O. C. Microdetermination of naturally occurring nodosin[J]. Planta Med,1971,20(2):133-135.
    [42]Cox P.J., Meng Y..Sarker S.D., et al. Nodosin [J]. Acta Crystallogr C,2001,57 (Pt2):203-204.
    [43]尚校军,马素英,邵芃等.Nodosin在水中的平衡溶解度和稳定性研究△[J].中国药房,2013(07):603-605.
    [44]Xiang W., Li R. T., Wang Z. Y., et al. ent-Kaurene diterpenoids from Isodon oresbius[J]. Phytochemistry,2004,65(8):1173-1177.
    [45]He F., Xiao W. L., Pu J. X., et al. Cytotoxic ent-kaurane diterpenoids from Isodon (?)lnuolata[J]. Phytochemistry,2009,70(11-12):1462-1466.
    [46]海广范,闫琰,刘巨源等.enmein、serrin B、nodosin和lasiodonin对HL60细胞株和LOVO细胞株的增殖抑制作用[J].新乡医学院学报,2008,25(6):564-566.
    [47]Satooka H., Isobe T..Nitoda T., et al. Melanogenesis inhibitors from Rabdosia japonica[J]. Phytomedicine,2012,19(11):1016-1023.
    [48]Fujita E., Nagao Y., Kohno T., et al. Antitumor activity of acylated oridonin [J]. Chem Pharm Bull (Tokyo),1981,29(11):3208-3213.
    [49]Nagao Y., Ito N.,Kohno T., et al. Antitumor activity of Rabdosia and Teucrium diterpenoids against P 388 lymphocytic leukemia in mice [J]. Chem Pharm Bull (Tokyo),1982, 30(2):727-729.
    [50]Fujita E., Nagao Y..Kaneko K., et al.The antitumor and antibacterial activity of the Isodon diterpenoids[J]. Chem Pharm Bull (Tokyo),1976,24(9):2118-2127.
    [51]张大永,汤溺,王可等.ent-贝壳杉烯类化合物的合成及其抗肿瘤活性[J].中国药科大学学报,2010(1):20-25.
    [52]Kelsen D. Chemotherapy of esophageal cancer[J]. Semin Oncol,1984,11(2):159-168.
    [53]Zhao Y., Huang S. X., Yang L. B., et al. Cytotoxic ent-kaurane diterpenoids from Isodon henryi[J]. Planta Med,2009,75(1):65-69.
    [54]Wang L., Li D.,Xu S., et al. The conversion of oridonin to spirolactone-type or enmein-type diterpenoid:synthesis and biological evaluation of ent-6,7-seco-oridonin derivatives as novel potential anticancer agents[J]. Eur J Med Chem,2012,52:242-250.
    [55]Aquila S., Weng Z. Y., Zeng Y. Q., et al. Inhibition of NF-kappaB activation and iNOS induction by ent-kaurane diterpenoids in LPS-stimulated RAW264.7 murine macrophages[J]. J Nat Prod,2009,72(7):1269-1272.
    [56]焦明庆,徐汉虹.显脉香茶菜的抑菌活性及活性成分[J].植物保护学报,2010(1):67-72.
    [57]Zhang Y., Liu J., Jia W., et al. Distinct immunosuppressive effect by Isodon serra extracts[J]. Int Immunopharmacol,2005,5(13-14):1957-1965.
    [58]张艳.溪黄草提取物的免疫活性筛选及其有效单体成分的免疫抑制机理研究.2005,华东理工大学.
    [59]Li J., Du J,Sun L., et al. Anti-inflammatory function of Nodosin via inhibition of IL-2[J]. Am J Chin Med,2010,38(1):127-142.
    [60]倪林.显脉香茶菜丙酮部位抗炎活性成分研究.2012,广州中医药大学.
    [61]王震宇,杜隽铭,丁晶等.溪黄草有效成分Nodosin保留灌注对供肝缺血期的保护作用[J].广东医学,2010,31(5):540-543.
    [62]杜隽铭,吴萍,孙丽娟等.溪黄草有效成分nodosin灌注对大鼠移植肝脏病理损伤的影响[J].器官移植,2011,2(1):9-13.
    [63]杜隽铭,孙丽娟,李济宇等.Nodosin灌注对离体SD大鼠肝脏组织血红素加氧酶-1表达的影响[J].华东理工大学学报:自然科学版,2009,35(3):373-377.
    [64]许琳,王震宇,王颖等.Nodosin预处理移植肝对移植早期原位细胞因子格局的影响[J].现代免疫学,2011,31(4):315-320.
    [65]杜英峰.冬凌草质量控制与二萜类成分药物代谢动力学研究.2011,河北医科大学.
    [66]吴艳萍,李立平,张颖等.细胞周期调控分子与肿瘤关系的研究进展[J].军医进修学院学报,2006,27(4):306-308.
    [67]Thompson C. B. Apoptosis in the pathogenesis and treatment of disease [J]. Science, 1995,267(5203):1456-1462.
    [68]Kiechle F. L., Zhang X. Apoptosis:biochemical aspects and clinical implications[J]. Clin Chim Acta,2002,326(1-2):27-45.
    [69]Hartwell L. H., Weinert T. A. Checkpoints:controls that ensure the order of cell cycle events[J]. Science,1989,246(4930):629-634.
    [70]Kastan M.B.,Bartek J. Cell-cycle checkpoints and cancer[J]. Nature,2004,432(7015):
    316-323.
    [71]Meier P., Vousden K. H. Lucifer's labyrinth--ten years of path finding in cell death[J]. Mol Cell,2007,28(5):746-754.
    [72]Chiantore M. V., Vannucchi S.,Mangino G., et al. Senescence and cell death pathways and their role in cancer therapeutic outcome[J]. Curr Med Chem,2009,16(3):287-300.
    [73]Ghobrial I.M., Witzig T.E.,Adjei A. A. Targeting apoptosis pathways in cancer therapy[J]. CA Cancer J Clin,2005,55(3):178-194.
    [74]Boatright K. M., Salvesen G. S. Mechanisms of caspase activation [J]. Curr Opin Cell Biol, 2003,15(6):725-731.
    [75]Koceva-Chyla A., Jedrzejczak M.,Skierski J., et al.Mechanisms of induction of apoptosis by anthraquinone anticancer drugs aclarubicin and mitoxantrone in comparison with doxorubicin:relation to drug cytotoxicity and caspase-3 activation[J]. Apoptosis, 2005,10(6):1497-1514.
    [76]张小鹰,吴风云,何金花等.靶向增殖细胞核抗原shRNA内构建及其对HepG2细胞增殖与凋亡的影响[J].生物化学与生物物理进展,2010,37(3):278-287.
    [77]Kuwana T., Newmeyer D. D.Bcl-2-family proteins and the role of mitochondria in apoptosis[J]. Curr Opin Cell Biol,2003,15(6):691-699.
    [78]Tsujimoto Y.Role of Bel-2 family proteins in apoptosis:apoptosomes or mitochondria?[J]. Genes Cells,1998,3(11):697-707.
    [79]Garber K. Beyond the Nobel Prize:cell cycle research offers new view of cancer[J]. J Natl Cancer Inst,2001,93(23):1766-1768.
    [80]Golubnitschaja O. Cell cycle checkpoints:the role and evaluation for early diagnosis of senescence, cardiovascular, cancer, and neurodegenerative diseases[J]. Amino Acids, 2007,32(3):359-371.
    [81]舒伟,马清钧,叶听.CyclinE-CDK2相关蛋白与细胞周期调控[J].生物技术通讯,2008,19(1)97-100.
    [82](?)Italien L., Tanudji M., Russell L., et al. Unmasking the redundancy between Cdkl and Cdk2 at G2 phase in human cancer cell lines[J]. Cell Cycle,2006,5(9):984-993.
    [83]Sherr C. J. G1 phase progression:cycling on cue[J]. Cell,1994,79(4):551-555.
    [84]Gartel A. L., Radhakrishnan S. K. Lost in transcription:p21 repression, mechanisms, and consequences[J]. Cancer Res,2005,65(10):3980-3985.
    [85]Brandts C. H., Bilanges B.,Hare G., et al. Phosphorylation-independent stabilization of p27kipl by the phosphoinositide 3-kinase pathway in glioblastoma cells[J]. J Biol Chem, 2005,280(3):2012-2019.
    [86]李波,阙祥勇,李新志.Cdc2激酶与肿瘤的相关性研究进展[J].广东医学,2012(04): 566-568.
    [87]Pomerening J. R., Sontag P.. D., Ferrell J. J. Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc2[J]. Nat Cell Biol,2003,5(4): 346-351.
    [88]邹向阳,李连宏.细胞周期调控与肿瘤[J].国际遗传学杂志,2006,29(1):70-73.
    [89]翟德忠,黄强,朱卿等.组织芯片/免疫组化检测|CDC2/CyclinBl在胶质瘤中的联合表达及意义[J].中国肿瘤临床,2007,34(11):604-607.
    [90]Chen H., Huang Q., Dong J., et al. Overexpression of CDC2/CyclinBl in gliomas, and CDC2 depletion inhibits proliferation of human glioma cells in vitro and in vivo[J]. BMC Cancer,2008,8:29.
    [91]Bartek J., Lukas J. Chkl and Chk2 kinases in checkpoint control and cancer [J]. Cancer Cell,2003,3(5):421-429.
    [92]Liu Q., Guntuku S.,Cui X.S., et al.Chkl is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint[J]. Genes Dev,2000,14(12): 1448-1459.
    [93]Snigdha S., Smith E. D., Prieto G. A., et al. Caspase-3 activation as a bifurcation point between plasticity and cell death[J]. Neurosci Bull,2012,28(1):14-24.
    [94]Karbowski M.Mitochondria on guard:role of mitochondrial fusion and fission in the regulation of apoptosis[J]. Adv Exp Med Biol,2010,687:131-142.
    [95]Kroemer G., Reed J. C. Mitochondrial control of cell death[J]. Nat Med,2000,6(5): 513-519.
    [96]Hengartner M.O. The biochemistry of apoptosis[J]. Nature,2000,407(6805):770-776.
    [97]Adams J. M., Cory S. The Bcl-2 apoptotic switch in cancer development and therapy[J]. Oncogene,2007,26(9):1324-1337.
    [98]Adams J. M., Cory S. Bcl-2-regulated apoptosis:mechanism and therapeutic potential [J]. Curr Opin Immunol,2007,19(5):488-496.
    [99]de Vries J. F., Wammes L.J.,Jedema I., et al. Involvement of caspase-8 in chemotherapy-induced apoptosis of patient derived leukemia cell lines independent of the death receptor pathway and downstream from mitochondria[J]. Apoptosis,2007,12(1): 181-193.
    [100]Chen G., Hitomi M.,Han J., et al. The p38 pathway provides negative feedback for Ras proliferative signal ing[J]. J Biol Chem,2000,275(50):38973-38980.
    [101]Galcheva-Gargova Z., Deri jard B., Wu I. H., et al. An osmosensing signal transduction pathway in mammalian cells[J]. Science,1994,265(5173):806-808.
    [102]Pruitt K., Pruitt W.M., Bilter G. K., et al. Raf-independent deregulation of p38 and JNK mitogen-activated protein kinases are critical for Ras transformation[J]. J Biol Chem, 2002,277(35):31808-31817.
    [103]Liao Y.,Hung M.C.Regulation of the activity of p38 mitogen-activated protein kinas by Akt in cancer and adenoviral protein E1A-mediated sensitization to apoptosis[J]. Mol Cell Biol,2003,23(19):6836-6848.
    [104]Rentsch M. L., Ossum C. G., Hoffmann E. K., et al. Roles of Na+/H+exchange in regulation of p38 mitogen-activated protein kinase activity and cell death after chemical anoxia in NIH3T3 fibroblasts[J]. Pflugers Arch,2007,454(4):649-662.
    [105]Fan Q.W., Cheng C..Knight Z.A., et al.EGFR signals to mTOR through PKC and independently of Akt in glioma[J]. Sci Signal,2009,2(55):a4.
    [106]Mehrian-Shai R., Chen C.D., Shi T., et al. Insulin growth factor-binding protein 2 is a candidate biomarker for PTEN status a nd PI3K/Akt pathway activation in glioblastoma and prostate cancer[J]. Proc Natl Acad Sci U S A,2007,104(13):5563-5568.
    [107]Park S., Zhao D., Hatanpaa K. J., et al. RIP1 activates PI3K-Akt via a dual mechanism involving NF-kappaB-mediated inhibition of the mTOR-S6K-IRS1 negative feedback loop and down-regulation of PTEN[J]. Cancer Res,2009,69(10):4107-4111.
    [108]Yap T. A., Yan L., Patnaik A., et al. First-in-man clinical trial of the oral pan-AKT inhibitor MK-2206 in patients with advanced solid tumors[J]. J Clin Oncol,2011,29(35): 4688-4695.
    [109]Chen J., Imanaka N.,Chen J., et al.Hypoxia potentiates Notch signaling in breast
    cancer leading to decreased E-cadherin expression and increased cell migration and invasion[J]. Br J Cancer,2010,102(2):351-360.
    [110]Cordo R. R., Garcia M. G..Alaniz L., et al.Hyaluronan oligosaccharides sensitize lymphoma resistant cell lines to vincristine by modulating P-glycoprotein activity and PI3K/Akt pathway [J]. Int J Cancer,2008,122(5):1012-1018.
    [111]Petroulakis E., Mamane Y.,Le Bacquer 0., et al.mTOR signaling:implications for cancer and anticancer therapy[J]. Br J Cancer,2007,96 Suppl:R11-R15.
    [112]Ahmad A., Biersack B., Li Y., et al. Targeted Regulation of PI3K/Akt/mTOR/NF-kappaB Signaling by Indole Compounds and t heir Derivatives:Mechanistic Details and Biological Implications for Cancer Therapy[J]. Anticancer Agents Med Chem,2012.
    [113]Meric-Bernstam F.,Gonzalez-Angulo A. M. Targeting the mTOR signaling network for cancer therapy[J]. J Clin Oncol,2009,27(13):2278-2287.
    [114]Pantuck A. J., Seligson D. B.,Klatte T., et al. Prognostic relevance of the mTOR pathway in renal cell carcinoma:implications for molecular patient selection for targeted therapy [J]. Cancer,2007,109(11):2257-2267.
    [115]Ren H., Yang B. F..Rainov N. G. Receptor tyrosine kinases as therapeutic targets in malignant glioma[J]. Rev Recent Clin Trials,2007,2(2):87-101.
    [116]Memmott R.M..Dennis P. A. Akt-dependent and-independent mechanisms of mTOR regulation in cancer[J]. Cell Signal,2009,21(5):656-664.
    [117]Eitel J.A., Bijangi-Vishehsaraei K.,Saadatzadeh M. R., et al. PTEN and p53 are required for hypoxia induced expression of maspin in glioblastoma cells[J]. Cell Cycle, 2009,8(6):896-901.
    [118]Martelli A.M., Evangelisti C., Chiarini F., et al. The emerging role of the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin signaling network in normal myelopoiesis and leukemogenesis[J]. Biochim Biophys Acta,2010,1803(9): 991-1002.
    [119]Martelli A.M., Evangelisti C., Chiarini F., et al. The phosphatidylinositol 3-kinase/Akt/mTOR signaling network as a therapeutic target in acute myelogenous leukemia patients[J]. Oncotarget,2010,1(2):89-103.
    [120]Kroemer G., Dallaporta B., Resche-Rigon M. The mitochondrial death/life regulator in apoptosis and necrosis[J]. Annu Rev Physiol,1998,60:619-642.
    [121]Behrens J..Lustig B. The Wnt connection to tumorigenesis[J]. Int J Dev Biol,2004, 48(5-6):477-487.
    [122]Cao Q., Lu X., Feng Y. J. Glycogen synthase kinase-3beta positively regulates the proliferation of human ovarian cancer cells[J]. Cell Res,2006,16(7):671-677.
    [123]Sun Q. Y., Lai L., Park K. W., et al.Dynamic events are differently mediated by microfilaments, microtubules, and mitogen-activated protein kinase during porcine oocyte maturation and fertilization in vitro[J]. Biol Reprod,2001,64(3):879-889.
    [124]Sun Q.Y., Lax Y., Rubinstein S., et al. Mitogen-activated protein kinase and cell cycle progression during mouse egg activation induced by various stimuli[J]. Z Naturforsch C,1999,54(3-4):285-294.
    [125]孙桂丽,王大鹏.蛋白激酶C在细胞及肿瘤细胞凋亡中的作用[J].中国组织工程研究与临床康复,2009,13(7):1360-1363.
    [126]Manning G., Whyte D. B., Martinez R., et al. The protein kinase complement of the human genome[J]. Science,2002,298(5600):1912-1934.
    [127]Vo N., Goodman R. H. CREB-binding protein and p300 in transcriptional regulation[J]. J Biol Chem,2001,276(17):13505-13508.
    [128]Aggarwal S., Kim S. W.,Ryu S. H., et al.Growth suppression of lung cancer cells by targeting cyclic AMP response element-binding protein[J]. Cancer Res,2008,68(4): 981-988.
    [129]Kinjo K., Sandoval S., Sakamoto K. M., et al. The role of CREB as a proto-oncogene in hematopoiesis[J]. Cell Cycle,2005,4(9):1134-1135.
    [130]Thurnher M. M.2007 World Health Organization classification of tumours of the central nervous system[J]. Cancer Imaging,2009,9 Spec No A:S1-S3.
    [131]Salhia B., Tran N. L., Symons M., et al. Molecular pathways triggering glioma cell invasion[J]. Expert Rev Mol Diagn,2006,6(4):613-626.
    [132]Nakada M., Nakada S., Demuth T., et al. Molecular targets of glioma invasion[J], Cell Mol Life Sci,2007,64(4):458-478.
    [133]Louis D. N., Ohgaki H.,Wiestler 0. D., et al.The 2007 WTO classification of tumours of the central nervous system[J]. Acta Neuropathol,2007,114(2):97-109.
    [134]Terakawa Y., Agnihotri S., Golbourn B., et al.The role of drebrin in glioma migration and invasion [J]. Exp Cell Res,2013,319(4):517-528.
    [135]Ridley A. J., Schwartz M. A.,Burridge K., et al.Cell migration:integrating signals from front to back[J]. Science,2003,302(5651):1704-1709.
    [136]Kirfel G., Rigort A., Borm B., et al.Cell migration:mechanisms of rear detachment and the formation of migration tracks[J]. Eur J Cell Biol,2004,83(11-12):717-724.
    [137]Demuth T., Berens M. E. Molecular mechanisms of glioma cell migration and invasion [J]. J Neurooncol,2004,70(2):217-228. [138] Onishi M., Ichikawa T., Kurozumi K., et al. Angiogenesis and invasion in glioma[J]. Brain Tumor Pathol,2011,28(1):13-24.
    [139]Hua H., Li M., Luo T., et al.Matrix metalloproteinases in tumorigenesis:an evolving paradigm[J]. Cell Mol Life Sci,2011,68(23):3853-3868.
    [140]Kim J. H., Lee Y. G., Yoo S., et al. Involvement of Src and the actin cytoskeleton in the antitumorigenic action of adenosine dialdehyde[J]. Biochem Pharmacol,2013,85(8): 1042-1056.
    [141]陈忠蛟,李鹏,杨明珍等.RNAi介导的I8P表达抑制对人乳腺癌MDA—MB-231细胞细胞骨架的爹响[J].重庆医学,2013,42(1):1-5.
    [142]Verhey K.J..Gaertig J.The tubulin code[J]. Cell Cycle,2007,6(17):2152-2160.
    [143j Verdier-Pinard P., Pasquier E., Xiao H., et al. Tubulin proteomics:towards breaking the code[J]. Anal Biochem,2009,384(2):197-206.
    [144]Jordan M. A., Wilson L. Microtubules as a target for anticancer drugs[J]. Nat Rev Cancer,2004,4 (4):253-265.
    [145]Hadfield J.A., Ducki S.,Hirst N., et al.Tubulin and microtubules as targets for anticancer drugs[J]. Prog Cell Cycle Res,2003,5:309-325.
    [146]PettitG. R., Singh S. B., Niven M. L., et al. Isolation, structure, and synthesis of combretastatins A-1 and B-1, potent new inhibitors of microtubule assembly, derived from Combretum caffrum[J]. J Nat Prod,1987,50(1):119-131.
    [147]Kessenbrock K., Plaks V., Werb Z. Matrix metalloproteinases:regulators of the tumor microenvironment[J]. Cell,2010,141(1):52-67.
    [148]Chambers A. F., Matrisian L. M. Changing views of the role of matrix metalloproteinases in metastasis[J]. J Natl Cancer Inst,1997,89(17):1260-1270.
    [149]Aston-Mourney K., Zraika S., Udayasankar J., et al.Matrix metalloproteinase-9 reduces islet amyloid formation by degrading islet amyloid polypeptide[J]. J Biol Chem, 2013,288(5):3553-3559.
    [150]Lenglet S., Mach F., Montecucco F. Matrix metalloproteinase-9:a deleterious link between hepatic ischemia-reperfusion and colorectal cancer[J]. World J Gastroenterol, 2012,18(48):7131-7133.
    [151]Rhee J. W., Lee K. W., Sohn W. J., et al. Regulation of matrix metalloproteinase-9 gene expression and cell migration by NF-kappa B in response to CpG-oligodeoxynucleotides in RAW 264.7 cells[J]. Mol Immunol,2007,44(6):1393-1400.
    [152]Shichi K., Fujita-Hamabe W., Harada S., et al. Involvement of matrix metalloproteinase-mediated proteolysis of neural cell adhesion molecule in the development of cerebral ischemic neuronal damage[J]. J Pharmacol Exp Ther,2011,338(2): 701-710.
    [153]Sabeh F., Shimizu-Hirota R., Weiss S. J. Protease-dependent versus-independent cancer cell invasion programs:three-dimensional amoeboid movement revisited[J]. J Cell Biol,2009,185(1):11-19.
    [154]Newby A. C. Matrix metalloproteinases regulate migration, proliferation, and death of vascular smooth muscle cells by degrading matrix and non-matrix substrates [J]. Cardiovasc Res,2006,69(3):614-624.
    [155]Mott J. D., Werb Z. Regulation of matrix biology by matrix metalloproteinases[J]. Curr Opin Cell Biol,2004,16(5):558-564.
    [156]Kerbel R. S. What is the optimal rodent model for anti-tumor drug testing?[J]. Cancer Metastasis Rev,1998,17(3):301-304.
    [157]吴细丕,钱林法,实验动物与肿瘤研究.2000,北京市:中国医药科技出版社.437.
    [158]Morreale V.M., Herman B.H., Der-Minassian V., et al.A brain-tumor model utilizing stereotactic implantation of a permanent cannula[J]. J Neurosurg,1993,78(6):959-965.
    [159]Peterson D. L., Sheridan P. J., Brown W. J. Animal models for brain tumors:historical perspectives and future directions[J]. J Neurosurg,1994,80(5):865-876.
    [160]McCann J. Animal models offer insights into human brain tumors [J]. J Natl Cancer Inst,2003,95(3):188.
    [161]Strobel P., Bauer A.,Puppe B., et al. Tumor recurrence and survival in patients treated for thymomas and thymic squamous cell carcinomas:a retrospective analysis[J]. J Clin Oncol,2004,22(8):1501-1509.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700