ATRP法制备含大垂饰基的螺旋聚甲基丙烯酸酯的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自然界中的高功能生物大分子,如蛋白质和DNA等具有高精确排列的立体结构,而螺旋结构是其中最常见的立体结构之一,并且螺旋结构常常在生命活动中扮演着重要的角色。本文综述了螺旋聚合物的研究历程以及螺旋聚合物的合成方法,开展了原子转移自由基聚合(ATRP)制备单手性螺旋过量聚合物的研究。主要研究内容有:
     1)改进了甲基丙烯酸1-苯基二苯并环庚醇酯(PDBSMA)的合成工艺,将其产率由文献报道的15 %提高到了80 %。该单体是研究螺旋聚合反应较为常用的单体之一。合成了系列含大取代基的不饱和酯类单体,并研究了其聚合反应。
     2)研究了以卤代烃为原子转移自由基聚合引发剂引发PDBSMA的聚合反应,讨论了引发剂结构对其引发效率的影响。研究结果表明:(a)引发剂位阻太大则不能引发含有大取代基的PDBSMA发生ATRP反应;(b)氯代烃的引发活性低于相应的溴代烃,论文所选用的几种氯代烃均不能引发PDBSMA发生ATRP反应;(c)苄位溴代烃的引发活性要高于α-位溴代酯的活性。前者作为引发剂时单体的转化率较高,并且得到的单手性螺旋过量聚合物的比旋光值也较高。
     3)以带大取代基的不饱和酯为单体,研究了手性引发剂及手性配体对原子转移自由基聚合过程的立体选择性的影响。研究结果表明,手性配体或手性引发剂均可对聚合过程产生手性诱导作用。PDBSMA可以在手性配体或手性引发剂的存在下,由ATRP的聚合方式得到单手性螺旋构象过量的聚合物,。
     4)发现了一种合成2-噁唑烷酮的新方法。本文在尝试合成一类含吖啶环的单体时,没有得到预期的产物,却意外的得到了2-噁唑烷酮的衍生物。该合成方法具有以下优点:(a)该方法合成条件温和,安全且无毒;(b)该反应环境污染小,原料利用率也很高,水是该反应唯一的副产物;(c)反应底物芳香胺价廉易得。一句话来概括该反应对环境友好,且具有较高的原子经济效率。论文对该方法进行了较深入的研究,制得了一系列2-噁唑烷酮类化合物。
The high functionalities of naturally occurring macromolecules, such as proteins and DNAs, arranged in a highly accurate stereostructures. In such stereostructures, the helix is often found among the most fundamental structures of the polymer chain and plays important roles in realizing biological activities. The status of helical polymer and the synthesis methods are reviewed in this dissertation. The synthesis of optically active helical polymer by the atom transformation radical polymerization (ATRP) is carried out. The main contents are listed below:
     1) The method for the synthesis of 1-phenyldibenzosuberyl methacrylate (PDBSMA) was improved, and the yield was increased from the reported 15 % to 80 % in this dissertation. PDBSMA is one of the more commonly used monomers in the study of helical polymmer. A series of methacrylate with bulky group were synthesized, and the polymerizations of these methacrylates were studied.
     2) The ATRP of PDBSMA initiated by several halohydrocarbon was studied. The effect of the structure of initiators was discussed. The results show that: (a) the ATRP of PDBSMA cannot be initiated if the steric hindrance initiators were used; (b) the activation of alkyl chloride is lower than the corresponding alkyl bromide. Chlorinated hydrocarbons used in this dissertation cannot initiated the ATRP of PDBSMA; (c) the initiating activation of benzyl bromide is higher than that of theα-bromo ester; Both the conversion of the monomer and the specific rotation of polymermer are higher when the former is used as the initiator.
     3) The stereochemistry of the polymer of methacrylate with bulky group obtained from atom transformation radical polymerization initiated by chiral initiators or controlled by chiral ligands was studied in this dissertation. The results indicated that chiral ligand or chiral initiators produced chiral induction on the polymerization processes. PDBSMA can form one-handed-helix-sense excess polymer by ATRP in the presence of chiral ligand or chiral initiators.
     4) A new method for synthesis of 2-oxazolidinone was discovered unexpected. It is not the expected product but the 2-oxazolidinone derivatives were found by accident when attempting to synthesize a class of monomers containing acridine ring. This synthetic method has several advantages: (a) the 2-oxazolidinones were obtained under mild conditions that are neither dangerous nor noxious; (b) this reaction was wasteless and pollution-free, water was the sole co-product; (c) the readily available arylamines was used as substrate. So, this reaction process was environmentally benign and high atom economic. The synthesis of 2-oxazolidinones was studed in this dissertation, and a series of 2-oxazolidinones compounds were obtained.
引文
[1] Saenger W. Principles of nucleic acid structure [M]. Springer-Verlag: New york,1984.
    [2] Tang H. Z, Fujiki M, Sato T. Thermodriven conformational transition of optically active poly[2,7-{9,9-bis[(S)-2-methyloctyl]}fluorene] in solution [J]. Macromolecules, 2002, 35: 6439-6443.
    [3] Maeda K. Okamoto Y. Synthesis and conformational characteristics of poly(pheny isocyanate)s bearing an optically active ester group [J]. Maeromoleeules, 1999, 32: 974-980.
    [4] Natta G, Pino P, Corradini P, Danusso F, Mantica E, Nazzanti G, Moraglio G, Crystalline high Polymers ofα-olefins [J]. J. Am. Chem. Soc., 1955, 77: 1708-1781.
    [5] Hanes C S. The action of amylases in relation to the structure of starch and its metabolism in the plant [J]. New Phytol. 1937, 36: 101-149.
    [6] Freudenberg K, Schaaf E, Dumpert G, Ploetz T. Neue ansichtenüber die st?rke [J]. Naturwissenschaften 1939, 27(51): 850-853.
    [7] Pauling L, Corey R B, Branson H R. The structure of proteins: two hydrogen- bonded helical configurations of the polypeptide chain [J]. Proc. Natl. Acad. Sci. U.S.A. 1951, 37(4): 205-211.
    [8] Watson, J D, Crick F H C. Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid [J]. Nature 1953, 171: 737-738.
    [9] Pino P, Lorenzi G P. Optically active vinyl polymers II the optical activity of isotactic and block Polymers of optically activeα-olefins in dilute hydrocarbon solution [J]. J. Am. Chem. Soc. 1960, 82: 4745-4749.
    [10] Okamoto Y, Suzuki K, Ohta K, Hatada K, Yuki H. Optically active poly(triphenylmethyl methacrylate) with one-handed helical conformation [J]. J. Am. Chem. Soc., 1979, 101: 4763-4765.
    [11] Millich F, Baker G K. Synthesis and racemization of optically active poly(-phenylethylisonitrile) [J]. Macromolecules, 1969, 2: 122-128.
    [12] Nolte R J M, van Beijnen A J M, Drenth W. Chirality in polyisocyanides [J]. J. Am. Chem. Soc. 1974, 96(18): 5932-5933.
    [13] Green M M, Gross R A, Schilling F C, Zero K, Crosby C. Macromolecular stereochemistry: effect of pendant group structure on the conformational properties of polyisocyanides [J]. Macromolecules 1988, 21(6): 1839-1846.
    [14] Green M M, Gross R A, Crosby C, Schilling F C. Macromolecular stereochemistry: the effect of pendant group structure on the axial dimension of polyisocyanates [J]. Macromolecules 1987, 20(5): 992-999.
    [15] Green M M, Gross R A, Cook R, Schilling F C. Direct evidence for cocrystallization in binary mixtures of ferroelectric copolymers [J]. Macromolecules 1987, 20(10): 2638-2640.
    [16] Kollmar C, Hoffmann R. Polyisocyanides: electronic or steric reasons for their presumed helical structure? [J]. J. Am. Chem. Soc. 1990, 112(23): 8230-8238.
    [17] Pini D, Inuliano A, Salvadori P. Organometallic nonlinear optical polymers. 2. Synthesis of main-chain organometallic polymers and a structural study of ferrocene NLO-phores [J]. Macromolecules 1992, 25(22): 6050-6054.
    [18] Clericuzio M, Alagone G, Ghio C, Salvadori P. Theoretical investigations on the structure of poly(iminomethylenes) with aliphatic side chains. Conformational studies and comparison with experimental spectroscopic data [J]. J. Am. Chem. Soc. 1997, 119(5): 1059-1071.
    [19] Goodman M, Chen S C. Optically active polyisocyanates [J]. Macromolecules, 1970, 3: 398-402.
    [20] Goodman M, Chen S C. Optically active polyisocyanates II [J]. Macromolecules, 1971, 4: 625-629.
    [21] Green M M, Andreola C, Munoz B, Reidy M P, Zero K. Macrornolecular stereochemistry: a cooperative deuterium isotope effect leading to a large optical rotation [J]. J. Am. Chem. Soc. 1988, 110: 4063-4068.
    [22] Ciardelli F, Lanzillo S, Pieroni O. Optically active polymers of l-alkynes [J] Macromolecules, 1974, 7: 174-179.
    [23] Moore J S, Gorman C B, Grubbs R H. Soluble, chiral polyacetylenes: syntheses and investigation of their solution conformation [J]. J. Am. Chem. Soc., 1991, 113: 1704-1709.
    [24] Yashima E, Huang S, Matsushima T, Okamoto Y. Synthesis and conformational study of optically active poly(phenylacetylene) derivatives bearing bulky substituent [J]. Macromolecules, 1995, 28: 4184-4190.
    [25] Yashima E, Matsushima T, Okamoto Y. Poly((4-carboxyphenyl)acetylene) as a probe for chirality assignment of amines by circular dichroism [J]. J. Am. Chem. Soc., 1995, 117: 11596-11561.
    [26] Simionescu C I, Percec V. Progress in polyacetylene chemistry [J]. Prog. Polym. Sci., 1982, 8: 133-139.
    [27] Corley L S, Vogl O. Optically active polychloral [J]. Polym. Bull., 1980, 3: 211-217.
    [28] Ute K, Hirose K, Kashimoto H, Hatada K, Vogl O. Helix-sense reversal of isotactic chloral oligomers in solution [J]. J. Am. Chem. Soc., 1991, 113: 6305-6311.
    [29] Fujiki M. Ideal exciton spectra in single- and double-screw-sense helical Polysilanes [J]. J. Am. Chem. Soc., 1994, 116: 6017-6023.
    [30] Frey H, Mooller M, Matyjaszewski K. Chiral poly(dipentylsilylene) copolymers [J]. Macromolecules, 1994, 27: 1814-1818.
    [31] Picard R W, Elfadel I M. Structure of aura and co-occurrence matrices for the gibbs texture model [J]. Organomet. Polym. 1992, 2: 5-6.
    [32] Lehn J-M, Rigault A, Siegel J, Harrowfield J, Chevrier B, Moras D. Spontaneous assembly of double-stranded helicates from oligobipyridine ligands and copper(I) cations: structure of an inorganic double helix [J]. Proc. Natl. Acad. Sci. U.S.A. 1987, 84(9): 2565-2569.
    [33] Hanan G. S, Lehn J.-M, Kyritsakas N, Fischre J. Molecular helicity: a general approach for helicity induction in a polyheterocyclic molecular strand [J]. J. Chem. Soc., Chem. Commun. 1995, (7): 765-766.
    [34] Nelson J C, Saven J G, Moore J S, Wolynes P G. Solvophobically driven folding of nonbiological oligomers [J]. Science 1997, 277: 1793-1796.
    [35] Giulio N, Piero P, Paolo C, Ferdinando D, Enrico M, Giorgio M, Giovanni M. Crystalline high polymers of olefins [J]. J. Am. Chem. Soc, 1955, 77(6): 1708-1710.
    [36] Pino P. Optically active addition polymers [J]. Adv. Polym. Sci. 1965, 4: 393-456.
    [37] Nakano T, Okamoto Y,Hatada K. Asymmetric polyrmerization of triphenylmethylmethacrylate leading to a one-handed helical polymer: mechanism of polymerization [J]. J. Am. Chem. Soc., 1992, 114: 1318-1329.
    [38] Okamoto Y, Suzuki K, Ohta K, Hatada K, Yuki H. Optically active poly (triphenylmethyl methacrylate) with one-handed helical conformation [J]. J. Am. Chem. Soc., 1979, 101: 4763-4765.
    [39] OkamotoY, Honda S, Okamoto I, Yuki H, Murata S, Noyori R, Takaya H. Novel packing material for optical resolution: (+)-poly(triphenylmethyl methacrylate) coated on macroporous silica gel [J]. J. Am. Chem. Soc.; 1981; 103(23): 6971-6973.
    [40] Zhang Z, Deng J, Zhao W, Wang J, Yang W. Sythesis of optically active poly(N- propargylsulfamides) with helical conformation. [J]. J. Polym. Sci. Part A: Polym. Chem. 2007, 45: 500-508.
    [41] Nakano T, Taniguchi K, Okamoto Y. Asymmetric polymerization of diphenyl- 3-pyridylmethyl methacrylate leading to optically active polymer with helical conformation and chiral recognition ability of the polymer [J]. Polym. J. 1997, 29(6): 540-546.
    [42] Ren C, Chen F, Xi F, Nakano T, Okamoto Y. Helix-sense-selective polymerization of phenyl[bis(2-pyridyl)]methyl methacrylate and chiral recognition ability of the polymer [J]. J. Polym. Sci, Part A: Polym. Chem. 1993, 31(11): 2721- 2728.
    [43] Nakano T, Matsuda A, Mori M, Okamoto Y. Asymmetric anionic polymerization of 1-phenyldibenzosuberyl and 1-(2-pyridyl)dibenzosuberyl methacrylates and chiral recognition ability of the obtained polymers [J]. Polym. J. 1996, 28(4): 330-336.
    [44] Nakano T, Satoh Y, Okamoto Y. Asymmetric Polymerization of 1-(3-pyridyl)di benzosuberyl methacrylate and chiral recognition by the obtained optically active polymer having single-handed helical conformation [J]. Polym. J. 1998, 30(8): 635- 639.
    [45] Wulff G. Main-chain chirality and optical activity in polymers consisting of C-C Chains [J]. Angew. Chem., Int. Ed. 1989, 28(1): 21-37.
    [46] Nakano T, Kinjo N, Hidaka Y, Okamoto Y. Helix-sense-selective and enantiomer-selective polymerization of a chiral methacrylate by anionic and free- radical mechanisms [J]. Polym. J. 1999, 31(5): 464-471.
    [47] Toda F, Mori K. Induced asymmetric polymerisation of optically active vinyl sulphoxide [J]. J. Chem. Soc., Chem. Commun. 1986, (14): 1059-1059.
    [48] Oriz L J, Khan I M. Synthesis of optically active helical poly(3-methyl-4-vinyl pyridine) [J]. Macromolecules, 1998, 31(17): 5927-5929.
    [49] Habaue S, Ajiro H, Okamoto Y. Anionic polymerization of o-substituted styrene derivatives: Control of reactivity and stereochemistry by aminomethyl group. J. Polym. Sci., Part A: Poly. Chem. 2000, 38(22): 4088-4094.
    [50] Vogl O, Miller H. C, Sharkey W. H. Monomer-cast chloral polymers [J]. Macromolecules, 1972, 5: 658-659.
    [51] Shah V. M, Stern S. A, Ludovice P. J. Estimation of the free volume in polymers by means of a Monte Carlo technique [J]. Macromolecules, 1989, 22: 4660-4662.
    [52] Vogl O, Corley L. S, Harris W. J, Jaycox G. D, Zhang J. Optical activity based on macromolecular asymmetry [J]. Makromol. Chem. 1985, 13(s): 1-12.
    [53] Zhang J, Jaycox G D, Vogl O. Haloaldehyde polymers XXXIII. Polymerization of chloral with chiral anionic initiators. Stereochemistry of initiation [J]. Polym. J. 1987, 19(5): 603-612.
    [54] Jaycox G. D, Vogl O. Haloaldehyde polymers, 41. Asymmetric polymerization of chloral with chiral lithium salts of sterols as initiators [J]. Makromol. Chem., Rapid Commun. 1990, 11(2): 61-66.
    [55] Ute K, Hirose K, Kashimoto H, Nakayama K, Hatada K, Vogl O. Helix-inversion equilibrium of isotactic chloral oligomers in solution [J]. Polym. J. 1993, 25(11): 1175-1186.
    [56] Ute K, Oka K, Okamoto Y, Hatada K, Xi F, Vogl O. Haloaldehyde polymers LIII. optical resolution of purely isotactic oligomers of chloral: optical activity of the chloral oligomers assuming one-handed helical conformation in solution [J]. Polym. J. 1991, 23(12): 1419-1424.
    [57] Qin M, Bartus J, Vogl O. Macromol. Symp. 1995, 98: 387.
    [58] Vogl O. Haloacetaldehyde polymers and macromolecular asymmetry [J]. J. Polym. Sci., Part A: Polym. Chem. 2000, 38(15): 2623-2624.
    [59] Sikorski P, Cooper S. J, Atkins E. D. T, Jaycox G. D, Vogl O. Helical conformations of isotactic polyacetaldehyde and other isotactic polytrihaloacetaldehydes [J]. J. Polym. Sci., Part A: Polym. Chem. 1988, 36(11): 1855-1860.
    [60] Ute K, Hirose K, Hatada K, Vogl O. Polym. Prepr. Jpn. 1992, 41: 1358.
    [61] Hatada K, Kitayama T, Shimizu S.-I, Yuki H, Harris W, Vogl O. High-performance liquid chromatography of aromatic compounds on polychloral [J]. J. Chromatogr. A 1982, 248(1): 63-68.
    [62] Hatada K, Shimizu S.-I, Yuki H, Harris W, Vogl O. Separation of isotactic polymers of R-(+)- and (S)-(-)-α-methylbenzyl methacrylates on optically active polychloral [J]. Polym. Bull. 1981, 4(3): 179-183.
    [63] Choi S-H, Yashima E, Okamoto Y. Asymmetric polymerization and oligomerization of 3-phenylpropanal with grignard reagent-(-)-sparteine complexes with termination by tishchenko reaction [J]. Macromolecules, 1996, 29(6): 1880-1885.
    [64] Abe A, Goodman M. Optical rotatory properties of polyaldehydes [J]. J. Polym. Sci., Part A: Polym Chem. 1963, 1(6): 2193-2205.
    [65] Goodman M, Clark K. J, Stake M. A, Abe A. Optical rotatory studies of poly(R)(-)-3.7-dimethyloctene-1 and its model compound [J]. Macromol. Chem. Phys. 1964, 72(1): 131-142.
    [66] Goodman M, Abe A, Fan Y.-L. Optically active polymers [J]. J. Polym. Sci.: Macromol. Rev. 1966, 1: 1-33.
    [67] Ito Y, Ohara T, Shima R, Suginome M. Highly screw-sense selective polymerization of l,2-diisocyano-3,6-di-p-tolylbenzene initiated by optically active binaphthylpalladium(II) complexes [J]. J. Am. Chem. Soc, 1996, 118: 9188-9189.
    [68] Takei F, Hayashi H, Onitsuka K, Kobayashi N, Takahashi S. Helical chiral polyisocyanides possessing porphyrin pendants: determination of helicity by exciton-coupled circular dichroism [J]. Angew Chem. Int. Ed., 2001, 40: 4092-4094.
    [69]Comelissen J. J. L. M, Graswinckel W. S, Rowan A. E, Sommerdijk N. A. J. M, Nolte R. J. M. Conformational analysis of dipeptide-derived polyisocyanides [J]. J. Polym. Sci. Part A: Polym. Chem, 2003, 41: 1725-1736.
    [70] Bur A, Fetters L. The chain structure, polymerization, and conformation of polyisocyanates [J]. Chem. Rev. 1976, 76(6): 727-746.
    [71] Shashoua V. E, Sweeny W, Tietz R. F. The homopolymerization of Monoisocyanates [J]. J. Am. Chem. Soc. 1960, 82(4): 866-873.
    [72] Green M. M, Park J.-W, Sato T, Teramoto A, Lifson S, Selinger R. L. B, Selinger J. V. The Macromolecular route to chiral amplification [J]. Angew. Chem., Int. Ed. 1999, 39: 3138-3154.
    [73] Ute K, Fukunishi Y, Jha S K, Cheon K-S, Munoz B, Hatada K, Green M M. Dynamic NMR determination of the barrier for interconversion of the left- and right-handed helical conformations in a polyisocyanate [J]. Macromolecules 1999, 32(4): 1304-1307.
    [74] Ute K, Asai T, Fukunishi Y, Hatada K. Stabilization of oligo(butyl isocyanate) by acetyl end-capping [J]. Polym. J. 1995, 27: 445-448.
    [75] Okamoto Y, Matsuda M, Nakano T, Yashima E. Asymmetric polymerization of isocyanates with optically active anionic initiators [J]. Polym. J. 1993, 25: 391-396.
    [76] Okamoto Y, Matsuda M, Nakano T, Yashima E. Asymmetric polymerization of aromatic isocyanates with optically active anionic initiators [J]. J. Polym. Sci., Part A: Polym. Chem. 1994, 32: 309-315.
    [77] Maeda K, Matsuda M, Nakano T, Okamoto Y. Chiroptical properties of oligomers of m-methylphenyl isocyanate bearing an optically active end-group [J]. Polym. J. 1995, 27: 141-146.
    [78] Maeda K, Okamoto Y. Helical structure of oligo- and poly(m-substituted phenyl isocyanate)s bearing an optically active end-group [J]. Polym. J. 1998, 30: 100-105.
    [79] Maeda K, Okamoto Y. Synthesis and conformation of optically active poly (aromatic isocyanate)s [J]. Kobunshi Ronbunshu 1997, 54(10): 608-620.
    [80] Kamer P C J, Nolte R J M, Drenth W. Screw sense selective polymerization of achiral isocyanides catalyzed by optically active nickel(II) complexes [J]. J. Am. Chem. Soc. 1988, 110(20): 6818-6825.
    [81] Deming T J, Novak B M. Enantioselective polymerizations of achiral isocyanides. Preparation of optically active helical polymers using chiral nickel catalysts [J]. J. Am. Chem. Soc. 1992, 114(20): 7926-7927.
    [82] Takei F, Yanai K, Onitsuka K, Takahashi S. Screw-sense-selective polymerization of isocyanides by dinuclearμ-ethynediyl complexes [J]. Angew. Chem., Int. Ed. 1996, 35: 1554-1556.
    [83] Takei F, Yanai K, Onitsuka K, Takahashi S. Screw-sense-selective polymerization of aryl isocyanides initiated by a Pd-Ptμ-ethynediyl dinuclear complex: a novel method for the synthesis of single-handed helical poly(isocyanide)s with the block copolymerization technique [J]. Chem.-Eur. J. 2000, 6(6): 983-993.
    [84] Takei F, Onitsuka K, Takahashi S. Nonproportional eEffects of optical purity of chiral aryl isocyanide monomers possessing (d) or (l)- menthoxycarbonyl groups on induction of screw-sense in poly(aryl isocyanide)s [J]. Polym. J. 1999, 31: 1029-1032.
    [85] Yamagishi A, Tanaka I, Taniguchi M, Takahashi M. Poly(isocyanide) as a chiral adsorbent in liquid column chromatography [J]. J. Chem. Soc., Chem. Commun. 1994, (9): 1113-1114.
    [86] Nakako H, Mayahara Y, Nomura R, Tabata M, Masuda T. Effect of chiral substituents on the helical conformation of poly(propiolic esters) [J]. Macromolecules 2000, 33(11): 3978-3982.
    [87] Nakako H, Nomura R, Tabata M, Masuda T. Synthesis and structure in solution of poly[(?)-menthyl propiolate] as a new class of helical polyacetylene [J]. Macromolecules 1999, 32(9): 2861-2864.
    [88] Kwak G, Masuda T. Synthesis, chiroptical properties, and high gas permeability ofpoly(phenylacetylene) with bulky chiral silyl groups [J]. Macromolecules 2000, 33(18): 6633-6635.
    [89] Aoki T, Kobayashi Y, Kaneko T, Oikawa E, Yamamura Y, Fujita Y, Teraguchi M, Nomura R, Masuda T. Synthesis and properties of polymers from disubstituted acetylenes with chiral pinanyl groups [J]. Macromolecules 1999, 32(1): 79-85.
    [90] Yashima E, Huang S, Okamoto Y. An optically active stereoregular polyphenyl- acetylene derivative as a novel chiral stationary phase for HPLC [J]. Chem. Commun. 1994: 1811-1812.
    [91] Yashima E, Matsushima T, Nimura T, Okamoto Y. Korea Polym. J. 1996, 4: 139.
    [92] Aoki T, Shinohara K.-I, Kaneko T, Oikawa E. Enantioselective permeation of various racemates through an optically active Poly{1-[dimethyl(10-pinanyl)silyl]-l- propyne} membrane [J]. Macromolecules 1996, 29: 4192-4198.
    [93] Yashima E, Matushima T, Okamoto Y. Chirality assignment of amines and amino alcohols based on circular dichroism induced by helix formation of a stereoregular poly((4-carboxyphenyl)acetylene) through acid-base complexation [J]. J. Am. Chem. Soc. 1997, 119(27): 6345-6359.
    [94] Saito M A, Maeda K, Onouchi H, Yashima E. Synthesis and macromolecular helicity induction of a stereoregular polyacetylene bearing a carboxy group with natural amino acids in water [J]. Macromolecules 2000, 33(13): 4616-4618.
    [95] Yashima E, Maeda K, Okamoto Y. Scientific serials [J]. Nature 1889, 39: 449-500.
    [96] Yashima E, Nimura T, Matushima T, Okamoto Y. Poly((4-dihydroxyborophenyl) acetylene) as a novel probe for chirality and structural assignments of various kinds of molecules including carbohydrates and steroids by circular dichroism [J]. J. Am. Chem. Soc. 1996, 118 (40): 9800-9801
    [97] Yashima E, Maeda Y, Okamoto Y. A stereoregular polyphenylacetylen derivative bearing an amino group as a probe for chirality assignments of acids by circular dichroism [J]. Chem. Lett. 1996,25(11): 955.
    [98] Bedworth P V, Tour J M. Synthesis of a chiral nonracemic segmented screwlike oligomer. An unusual form of molecular chirality [J]. Macromolecules 1994, 27(2): 622-624.
    [99] Hu Q-S, Zhang X-F, Pu L. The first optically active and sterically regular poly(1,1‘-bi-2-naphthol)s: precursors to a new generation of polymeric catalysts [J]. J. Org. Chem. 1996, 61(16): 5200-5201.
    [100] Hu Q S, Vitharana D, Liu G, Jain V, Pu L. Conjugated polymers with main chain chirality. 2. Synthesis of optically active polyarylenes [J]. Macromolecules 1996, 29(15): 5075-5082.
    [101] Bouman M M, Havinga E E, Jannsenn R A J, Meijer E W. Chiroptical properties of regioregular chiral polythiophenes [J]. Mol. Cryst. Liq. Cryst. 1994, 256: 439-448.
    [102] Langeveld-Voss B M W, Christiaans M P T, Jansenn R A J, Meijer E W. Inversion of optical activity of chiral polythiophene aggregates by a change of solvent [J]. Macromolecules 1998, 31(19): 6702-6704.
    [103] Miller R D, Michl polysilane high polymers [J]. J. Chem. Rev. 1989, 89(6): 1359-1410.
    [104] Fujiki M. Optically active polysilane homopolymer: spectroscopic evidence of double-screw-sense helical segmentation and reconstruction of a single-screw-sense helix by the“cut-and-paste”Technique [J]. J. Am. Chem. Soc. 1994, 116: 11976- 11981.
    [105] Fujiki M. Effect of main chain length in the exciton spectra of helical-rod polysilanes as amodel of a 5 ? wide quantum wire [J]. Appl. Phys. Lett. 1994, 65(25): 3251-3253.
    [106] Fujiki M. A correlation between global conformation of polysilane and UV absorption characteristics [J].J. Am. Chem. Soc. 1996, 118(31): 7424-7425.
    [107] Toyoda S, Fujiki M. Experimental evidence for helical conformation of poly(methylphenylsilylene) in solution [J]. Chem. Lett. 1999, 28(7): 699.
    [108] Nelson S G, Peelen T J, Wan Z. Catalytic asymmetric acyl halide-aldehyde cyclocondensations. A strategy for enantioselective catalyzed cross aldol reactions [J]. J. Am. Chem. Soc. 1999, 121(41): 9742-9743.
    [109] Nakashima H, Fujiki M, Koe J R. Helical poly(alkylalkoxyphenylsilane)s bearing enantiopure chiral groups on the phenyl rings [J]. Macromolecules 1999, 32: 7707-7709.
    [110] Fujiki M. Helix magic thermo-driven chiroptical switching and screw-sense inversion of flexible rod helical polysilylenes [J]. J. Am. Chem. Soc. 2000, 122(14): 3336-3343.
    [111] Obata K, Kabuto C, Kira M. Induction of helical chirality in linea oligosilanes by terminal chiral substituents [J]. J. Am. Chem. Soc. 1997, 119(46):11345-11346.
    [112] Appella D H, Christianson L A, Karle I L, Powell D R, Gellman S H. Synthesis and characterization of trans-2-aminocyclohexanecarboxylic acid oligomers: An unnatural helical secondary structure and implications forβ-peptide tertiary structure [J]. J. Am. Chem. Soc., 1999, 121: 6206-6212.
    [113] Prince R B, Saven J G, Wolynes P G, Moore J S. Cooperative conformational transitions in phenylene ethynylene oligomers: Chain-length dependence. [J]. J. Am. Chem. Soc., 1999, 121: 3114-3121.
    [114] Cuccia L A, Lehn J-M, Homo J C, Schmutz M. Encoded helical self- organization and self-assembly into helical fibers of an oligoheterocyclic pyridine- pyridazine molecular strand [J]. Angew. Chem., Int. Ed., 2000, 39: 233-237.
    [115] Okamoto Y, Nakano T. Asymmetric polymerization [J]. Chem. Rev. 1994, 94: 349-372.
    [116] Puts R D, Sogah D Y. The first report of cyclopolymerization of bis(oxazo1ines) to give optically active polymacrocycles [J]. Macromolecules 1996, 28: 390-392.
    [117] Okamoto Y, Suzuki K, Yuki H. Asymmetric polymerization of triphenylmethyl methacrylate by optically active anionic catalysts [J]. J. Polym. Sci., Polym. Chem. Ed. 1980, 18(10): 3043-3051.
    [118] Okamoto Y, Shohi H, Yuki H. Facile syntheses of (+)- and (?)-poly (triphenylmethyl methacrylate)s and their macromers (pages 601–607) [J]. J. Polym. Sci., Part C: Polym. Lett., 1983, 21(8): 601-607.
    [119] Nakano T, Hidaka Y, Okamoto Y. Asymmetric polymerization of 9-phenylfluoren-9-yl methacrylate leading to a polymer with main-chain configurational chirality. Synthesis of optically active poly(methyl methacrylate) [J]. Polym. J. 1998, 30: 596-600.
    [120] Pino P. Optically active addition polymers [J]. Adv. Polym. Sci. 1965, 4: 393-456.
    [121]曹靖.大基团取代的末端手性环氧化物的制备及其聚合物的合成. [博士学位论文]湖南:湘潭大学化学学院, 2007.
    [122] Nakano T, Mori M, Okamoto Y. Stereospecific radical polymerization of 1-phenyldibenzosuberyl methacrylate affording a highly isotactic polymer [J]. Macromolecules, 1993, 26(3): 867-868.
    [123] Nakano T, Shikisai Y, Okamoto Y. Helix-Sense-Selective Free Radical Polymerization of1-Phenyldibenzosuberyl Methacrylate [J]. Polym. J. 1996, 28(1): 51-56.
    [124] Nakano T, Kinjo N, Hidaka Y, Okamoto Y. Asymmetric anionic and free-radical polymerization of 10,10-dimethyl- and 10,10-dibutyl-9-phenyl- 9,10-dihydroanth- racen-9-yl methacrylate leading to single-handed helical polymers [J]. Polym. J. 2001, 33(3): 306-309.
    [125] Okamoto Y, Ueda K, Kinjo N, Nakano T. Polym. Prepr. 2000, 41 (1): 887-891.
    [126] NakanoT, Okamoto Y. Helix-sense-selective free-radical polymerization of 1-phenyl dibenzosuberyl methacrylate using a cobalt(II) complex [J]. Macromolecules, 1999, 32(7): 2391-2393.
    [127] Nagata T, Yorozu K, Yamda T, Mukaiyama T. Enantioselective reduction of ketones with sodium borohydride, catalyzed by optically active oxoaldiminato cobalt(II) complexes [J]. Angew. Chem., Int. Ed. Engl. 1995, 34(19): 2145-2147.
    [128] Nakano T, Kinjo N, Hidaka Y, Okamoto Y. Helix-sense-selective and enantiomer-selective polymerization of a chiral methacrylate by anionic and free-radical mechanisms [J]. Polym. J. 1999, 31(5): 464-471.
    [129] Yashima E, Okamoto Y, Hatada K. Asymmetric and enantiomer-selective polymerization of phenyl-2-pyridyl-o-tolylmethyl methacrylate [J]. Polym. J. 1987, 19(7), 897-904.
    [130] Yashima E, Okamoto Y, Hatada K. Enantiomer-selective polymerization of racemic phenyl-2-pyridyl-o-tolylmethyl methacrylate controlled by a rigid helix [J]. Macromolecules 1988, 21(3): 854-855.
    [131] Okamoto Y, Yashima E, Hatada K. Asymmetric polymerization of optically active phenyl-2-pyridyl-o-tolylmethyl methacrylate and remarkable conformational change of the polymer [J]. J. Polym. Sci., Part C: Polym. Lett. 1987, 25(7): 297-301.
    [132] Wu J, Nakano T, Okamoto Y. Asymmetric anionic polymerization of (2-fluorophenyl)(4-fluorophenyl)(2-pyridyl)methyl methacrylate leading to a helical polymer [J]. J. Polym. Sci., Part A: Polym. Chem. 1998, 36(12): 2013-2019.
    [133] Wu J, Nakano T, Okamoto Y. Polymerization of optically active 2-fluorophenyl-4-fluorophenyl-2-pyridylmethyl methacrylate with anionic and radical initiators: Stereospecificity and helix-sense selection [J]. J. Polym. Sci., Part A: Polym. Chem. 1999, 37(14): 2645-2648.
    [134] Nakano T, Okamoto Y, Sogah D. Y, Zheng S. Cyclopolymerization of optically active(-)-trans-4,5-bis((methacryloyloxy)diphenyl-methyl)-2,2-dimethyl-1,3-dioxacyclopentane through radical and anionic mechanisms gives highly isotactic polymers [J]. Macromolecules, 1995, 28(25): 8705-8706.
    [135] Wulff G, Gladow S, Kuhneweg B, Krieger S. Macromol. Symp. 1996, 101: 335.
    [136] Wulff G, Matuseek A, Hanf C, Gladow S, Lehmann C, Goddard R. Template-induced, stereoselective cyclizations in the cyclopolymerization of TADDOL-dimethacrylate [J]. Angew. Chem., Int. Ed. 2000, 39(13): 2275-2277.
    [137] Nakano T, Shikisai Y, Okamoto Y. Helix-sense-selective polymerization of 1-phenyldibenzosuberyl methacrylate by free radical mechanism [J]. Proc. Japan Acad. 1995, 71: 251-255.
    [1] Nakano T, Mod M, Okamoto Y, Stereospecific radical polymerization of 1-phenyldibensosuberyl methacrylate affording a highly isotactic polymer [J]. Macromolecules 1993, 26: 867-868.
    [2] Okamoto Y, Nakano T, Shikisai Y, Mori M. Sterospecific and asymmetric polymerization of 1-phenyldibenzosuberyl methacrylate with radical and anionic initiators [J]. Macromol. Symp. 1995, 89: 479-488.
    [3] Nakano T, Matsuda A, Mori M, Okamoto Y. Asymmetric anionic polymerization of 1-phenyldibenzosuberyl and 1-(2-pyridyl)dibenzosuberyl methacrylates and chiral recognition ability of the obtained polymer [J]. Polym. J. 1996, 28: 330-336.
    [4] Nakano Y, Shikisai Y, Okamoto Y, Helix-sense-selective polymerization of 1-phenyldibenzosuberyl methacrylate by free radical mechanism [J]. Proc. Jpn. Acad., Ser. B, 1995, 71: 251-255.
    [5] Nakano T, Shikisai Y, Okamoto Y. Helix-sense-selective free radical polymerization of 1-phenyldibenzosuberyl methacrylate [J]. Polym. J. 1996, 28(1): 51-56.
    [6] Nagata T, Yorozu K, Yamda T, Mukaiyama T. Enantioselective reduction of ketones with sodium borohydride, catalyzed by optically active oxoaldiminato cobalt(II) complexes [J]. Angew. Chem., Int. Ed. Engl. 1995, 34(19): 2145-2147.
    [7] NakanoT, Okamoto Y. Helix-sense-selective free-radical polymerization of 1-phenyl dibenzosuberyl methacrylate using a cobalt(II) complex [J]. Macromolecules, 1999, 32(7): 2391-2393.
    [8] Nakano T, Matsuda A, Mori M, Okamoto Y. Asymmetric anionic polymerization of 1-phenyldibenzosuberyl and 1-(2-pyridyl)dibenzosuberyl methacrylates and chiral recognition ability of the obtained polymers [J]. Polym. J. 1996, 28(4): 330-336.
    [9] Nakano T, Satoh Y, Okamoto Y. Asymmetric Polymerization of 1-(3-pyridyl)di benzosuberyl methacrylate and chiral recognition by the obtained optically active polymer having single-handed helical conformation [J]. Polym. J. 1998, 30(8): 635-639.
    [10] Nakano T, Kinjo N, Hidaka Y, Okamoto Y. Helix-sense-selective and enantiomer-selective polymerization of a chiral methacrylate by anionic and free- radical mechanisms [J]. Polym. J. 1999, 31(5): 464-471.
    [11] Nakano T, Hidaka Y, Okamoto Y. Asymmetric polymerization of 9-phenylfluoren -9-yl methacrylate leading to a polymer with main-chain configurational chirality. Synthesis of optically active poly(methyl methacrylate) [J]. Polym. J. 1998, 30, 596-600.
    [12] Nakano T, Tsunematsu K, Okamoto Y. Synthesis of single-handed helical poly(1-dibenzosuberyl methacrylate) via radical polymerization in the presence of an optically active cobalt(II) complex [J]. Chem. Lett. 2002, 31(1): 42-43.
    [13] Nakano T, Kinjo N, Hidaka Y, Okamoto Y. Asymmetric anionic and free-radicalpolymerization of 10,10-dimethyl- and 10,10-dibutyl-9-phenyl-9,10-dihydroanthracen -9-yl methacrylate leading to single-handed helical polymers [J]. Polym. J. 2001, 33, 306-309.
    [14] Basavaiah D, Reddy B S, Badsara S S. Recent contributions from the Baylis-Hillman reaction to organic chemistry [J]. Chem. Rev., 2010, 110(9): 5447- 5674.
    [15] Declerck V, Martinez J, Lamaty F. aza-Baylis-Hillman reaction [J]. Chem. Rev., 2009, 109(1): 1-48.
    [16] Basavaiah D, Rao A J, Satyanarayana T. Recent advances in the Baylis-Hillman reaction and applications [J]. Chem. Rev., 2003, 103(3): 811-892.
    [17] Yang N-F, Gong H, Tang W-J , Fan Q-H , Cai C-Q , Yang L-W. Phase selectively soluble dendritic derivative of 4-(N,N-dimethylamino)pyridine: an easily recyclable catalyst for Baylis-Hillman reactions [J]. J. Mol. Cat. A: Chem., 2005, 233: 55-59.
    [18] Gong H, Cai C-Q, Yang N-F, Yang L-W, Zhang J, Fan Q-H. Application of non-imidazolium-based ionic liquid in the Baylis-Hillman reactions: rate and yield promoted [J]. J. Mol. Cat. A: Chem., 2006, 249: 236-239.
    [19]刘建国,李平,李萍.甲基丙烯酰氯制备方法的改进[J].化学试剂, 2007, 29(11): 699-700.
    [1] Szwarc M. Living Polymers [J]. Nature, 1956, 178, 1168-1169.
    [2] Szwarc M, Levy M, Milkovich R. Polymerization initiated by electron transfer to monomer. A new method of formation of block polymers [J]. J. Am. Chem. Soc., 1956, 78(11): 2656-2657.
    [3] Buckley R P, Szwarc M. Methyl affinities of ethylene tetrafluoroethylene and tetrachloroethylene [J]. J. Am. Chem. Soc., 1956, 78(21): 5696-5697.
    [4] WebsterO W, HertlerW R, Sogah D Y, et al. Group-transfer polymerization-1-A new concept for addition polymerization with organosilicon initiators [J]. J. Am. Chem. Soc., 1983, 105 (17): 5706-5708.
    [5] Aida T, Inoue S. Living polymerization of epoxide catalyzed by the porphyrinchloro -diethylaluminum system structure of the living end [J]. Macromolecules, 1981, 14 (5): 1166-1169.
    [6] Miyamoto M, Sawamoto M, Higashimura T. L iving polymerization of isobutyl vinyl ether with hydrogen iodide/iodine initiating system [J]. Macromolecules, 1984, 17(3): 265-268.
    [7] Faust R, Kennedy J P. Living carbocationic polymerization I.V. Living polymerization of isobutylene [J]. J. Polym. Sci. Part A: Polym. Chem., 1987, 25(7): 1847-1869.
    [8] Fayt R, Forte R, Jacobs C, et a1. New initiator system for the living anionic polymerization of tert-alkyl acrylates [J]. Macromolecules, 1987, 20 (6): 1442-1444.
    [9] ReetzManfred T. New methods for the anionic polymerization of activated olefins [J]. Angew. Chem. Intern. Ed. Engl., 1988, 27(7): 994-998.
    [10] GeorgesM K, Veregin R P N, Gordon PM K, et al. Narrow molecularweight resins by a free-radical polymerization process [J]. Macromolecules, 1993, 26(11): 2987-2988.
    [11] Wang J S, Matyjaszewski K. Controlled "living" radical polymerization. Atom transfer radical polymerization in the presence of transition metal complexes [J]. J. Am. Chem. Soc., 1995, 117: 5614-5615.
    [12] Tsarevsky N V, Matyjaszewski K.“Green”atom transfer radical polymerization: from process design to preparation of well-defined environmentally friendly polymeric materials [J]. Chem. Rev. 2007, 107, 2270-2299.
    [13] Matyjaszewski K, Xia J. Atom transfer radical polymerization [J]. Chem. Rev. 2001, 101, 2921-2990.
    [14] Kamigaito M, Ando T, Sawamoto M. Metal-Catalyzed Living Radical Polymerization [J]. Chem. Rev. 2001, 101, 3689-3745.
    [15] Wang J S, Matyjaszewski K. Controlled/"living" radical polymerization. Halogen atom transfer radical polymerization promoted by a Cu(I)/Cu(II) redox process [J]. Macromolecules, 1995, 28(23): 7901-7910.
    [16] Kato M, Kamigaito M, Sawamoto M, Higashimura T. Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris-(triphenylphosphine) ruthenium(II)/methylaluminumbis(2,6-di-tert-butylphenoxide) initiating system: possibility of living radical polymerization [J]. Macromolecules, 1995, 28(5): 1721- 1723.
    [17] Ashford E J, Naldi V, O’Dell R, Billingham N C, Armes S P. First example of the atom transfer radical polymerisation of an acidic monomer: direct synthesis of methacrylic acid copolymers in aqueous media [J]. Chem. Commun., 1999, (14): 1285-1286.
    [18] Wang X S, Jackson R A, Armes S P. Facile synthesis of acidic copolymers via atom transfer radical polymerization in aqueous media at ambient temperature [J]. Macromolecules, 2000, 33(2): 255-257.
    [19] Liu S, Armes S P. The facile one-pot synthesis of shell cross-linked micelles in aqueous solution at high solids [J]. J. Am. Chem. Soc., 2001, 123(40): 9910-9911.
    [20] Liu S, Weaver J V M, Tang Y, Billingham N C, Armes S P. Synthesis of Shell Cross-Linked Micelles with pH-Responsive Cores Using ABC Triblock Copolymers [J]. Macromolecules, 2002, 35(16): 6121-6131.
    [21] Liu S, Armes S P. Synthesis and aqueous solution behavior of a pH-responsive schizophrenic diblock copolymer [J]. Langmuir, 2003, 19(10): 4432-4438.
    [22] Weaver J V M, Bannister I, Robinson K L, Bories-Azeau X, Armes S P. Stimulus-responsive water-soluble polymers based on 2-hydroxyethyl methacrylate [J]. Macromolecules, 2004, 37(7): 2395-2403.
    [23] Zhang W, Shi L, Gao L, An Y, Li G, Wu K, Liu Z. Comicellization of poly(ethylene glycol)-block-poly(acrylic acid) and poly(4-vinylpyridine) in ethanol [J]. Macromolecules, 2005, 38(3): 899-903.
    [24] Amin A. Amphiphilic star homo- and block copolymers of 2-(dimethylamino) ethyl-methacrylate via atom transfer radical polymerization [J]. J. Macromol. Sci. Part A: Pure Appl. Chem., 2007, 44(3): 329-335.
    [25] Matyjaszewski K, Patten T E, Xia J H. Controlled/“living”radical Polymerization. Kinetics of the homogeneous atom transfer radical polymerization of styrene [J]. J. Am. Chem. Soc., 1997, 119(4): 674-680.
    [26] Qiu J, Matyjaszewski K. Polymerization of substituted styrenes by atom transfer radical polymerization [J]. Macromolecules, 1997, 30(19): 5643-5648
    [27] Grimaud T, Matyjaszewski K. Controlled/“living”radical polymerization of methyl methacrylate by atom transfer radical polymerization [J]. Macromolecules, 1997, 30(7): 2216-2218.
    [28] Matyjaszewski K, Jo S M, Paik H J, Gaynor S G. Synthesis of well-defined polyacrylonitrile by atom transfer radical polymerization [J]. Macromolecules, 1997, 30(20): 6398-6400.
    [29] Teodorescu M, Matyjaszewski K. Atom transfer radical polymerization of (meth)acrylamides [J]. Macromolecules, 1999, 32(15): 4826-4831.
    [30] Coessens V, Pintauer T, Matyjaszewski K. Functional polymers by atom transfer radical polymerization [J]. Prog. Polym. Sci., 2001, 26(3): 337-377.
    [31] Tsarevsky N V, Matyjaszewski K. Reversible redox cleavage/coupling of polystyrene with disulfide or thiol groups prepared by atom transfer radical polymerization macromolecules, 2002,35(24): 9009-9014.
    [32] Marsh A, Khan A, Haddleton D M, Hannon M J. Atom transfer polymerization: use of uridine and adenosine derivatized monomers and initiators [J]. Macromolecules, 1999, 32(26): 8725-8731.
    [33] Patten T E, Novak B M. Organotitanium (IV)-catalyzed cyclopolymerizations of 1,2-diisocyanates and cyclocopolymerizations of monoisocyanates with 1,2-Diisocyanates [J]. Macromolecules, 1996, 29(18): 5882-5892.
    [34] Pietrasik J, Dong H C, Matyjaszewski K. Synthesis of high molecular weight poly(styrene-co-acrylonitrile) copolymers with controlled architecture [J]. Macromolecules, 2006, 39(19): 6384-6390.
    [35] Dong H C, Tang W, Matyjaszewski K. Well-defined high-molecular-weight polyacrylonitrile via activators regenerated by electron transfer ATRP [J]. Macromolecules, 2007, 40(9): 2974-2977.
    [36] Jakubowski W, Matyjaszewski K. Activators regenerated by electron transfer for atom-transfer radical polymerization of (meth)acrylates and related block copolymers [J]. Angew. Chem. Int. Ed., 2006, 45(27): 4482-4486.
    [37] Muhlebach A, Gaynor G S, Matyjaszewski K. Synthesis of amphiphilic block copolymers by atom transfer radical polymerization (ATRP) [J]. Macromolecules, 1998, 31(18): 6046-6052.
    [38] Beers K L, Gaynor S G, Matyjaszewski K. The Synthesis of densely grafted copolymers by atom transfer radical polymerization [J]. Macromolecules, 1998, 31(26): 9413-9415.
    [39] Kotani Y, Kato M, Kamigaito M, Sawamoto M. Living radical polymerization of alkylmethacrylateswith ruthenium complex and synthesis of their block copolymers1 [J]. Macromolecules, 1996, 29(22): 6979-6982.
    [40] Coca S, Matyjaszewski K. Block copolymers by transformation of "living" carbocationic into "living" radical polymerization [J]. Macromolecules, 1997, 30(9): 2808-2810.
    [41] Jankova K, Chen X, Kops J, Batsberg W. Synthesis of amphiphilic PS-b-PEG-b- PS by atom transfer radical polymerization [J]. Macromolecules, 1998, 31(2): 538- 541.
    [42] Gaynor S G, Matyjaszewski K. Step-Growth polymers as macroinitators for "living" radical polymerization: synthesis of aba block copolymers [J]. Macromolecules, 1997, 30(14): 4241-4243.
    [43] Greszta D, Matyjaszewski K. mechanism of controlled "living" radical polymerization of styrene in the presence of nitroxyl radicals kinetics and simulations [J]. Macromolecules, 1996, 29 (24): 7661-7670.
    [44] Greszta D, Matyjaszewski K. Comments on the paper "living radical polymerization: kinetic results" [J]. Macromolecules, 1996, 29(15): 5239-5240.
    [45] Kotani Y, Kamigaito M, Sawamoto M. Living random copolymerization of styrene and methyl methacrylate with a Ru(II) complex and synthesis of ABC-type "block-random" copolymers [J]. Macromolecules, 1998, 31(17): 5582-5587.
    [46] Chen G Q, Wu Z Q, Wu J R, Li Z-C, Li F-M. Synthesis of alternating copolymers of N-substituted maleimides with styrene via atom transfer radical polymerization [J].Macromolecules, 2000, 33(2): 232-234.
    [47] Ueda J, Matsuyama M, Sawamoto M. Multifunctional initiators for the ruthenium-mediated living radical polymerization of methyl methacrylate: di- and trifunctional dichloroacetates for synthesis of multiarmed polymers [J]. Macromolecules, 1998, 31(3): 557-562.
    [48] Ueda J, Kamigaito M, Sawamoto M. Calixarene-core multifunctional initiators for the ruthenium-mediated living radical polymerization of methacrylates [J]. Macromolecules, 1998, 31(20): 6762-6768.
    [49] Cloutet E, Fillaut J-L, Astruc D, Gnanou Y. Newly designed star-shaped polystyrene: synthesis and characterization [J]. Macromolecules, 1998, 31(20): 6748- 6755.
    [50] Heise A, Hedrick J L, Trolkas M, et al. Polym Prep, 1998, 39(2): 627
    [51] Zhang S, Luo N, Ying S. Synthesis of multi-arm star-branched polymers by atom transfer radical polymerization [J]. China Synthetic Rubber Industry, 1998, 21(5): 56- 56.
    [52] Matyjaszewski K, Beers K L, Kern A, Gaynor S. G. Hydrogels by atom transfer radical polymerization. I. Poly(N-vinylpyrrolidinone-g-styrene) via the macromonomer method (pages 823–830) J. Poly. Sci: Part A: Polym Chem, 1998, 36: 823-830.
    [53] Hawker C J, Karklay R B, Grubbs R B, et al. Polym. Prep., 1996, 37(2): 515.
    [54] Paik H-J, Gaynor S G, Matyjaszewski K. Synthesis and characterization of graft copolymers of poly(vinyl chloride) with styrene and (meth)acrylates by atom transfer radical polymerization [J]. Macromol. Rapid Commun., 1998, 19(1): 47-52.
    [55] Wang X, Luo N, Ying S. A new approach towards graft copolymers of rubber with binyl monomers atom transfer radical polymerization [J]. China Synthetic Rubber Industry, 1997, 20(2): 117-117.
    [56] Gaynor S G, Fdelman S Z, Matyjaszewski K. Synthesis of branched and hyperbranched polystyrenes [J]. Macromolecules, 1996, 29: 1079-1081.
    [57] Weimer M W, Frechet J M J, Gitsov I. Importance of active-site reactivity and reaction conditions in the preparation of hyperbranched polymers by self-condensing vinyl polymerization: Highly branched vs. linear poly[4-(chloromethyl)styrene] by metal-catalyzed“living”radical polymerization [J]. J. Polym. Sci. Part A: Polym Chem., 1998, 36(6): 955-970.
    [58] Matyjaszewski K, Gaynor S G, Kulfan A, Podwika M. Preparation of hyperbranched polyacrylates by atom transfer radical polymerization. 1. Acrylic AB* monomers in“living”radical polymerizations [J]. Macromolecules, 1997, 30(17): 5192-5194.
    [59] Matyjaszewski K, Gaynor S G, Muller A H E. Preparation of hyperbranched polyacrylates by atom transfer radical polymerization. 2. Kinetics and mechanism of chain growth for the self-condensing vinyl polymerization of 2-((2-bromopropionyl) oxy)ethyl acrylate [J]. Macromolecules, 1997, 30(23): 7034-7041.
    [60] Matyjaszewski K, Gaynor S G. Preparation of hyperbranched polyacrylates by atom transfer radical polymerization. 3. Effect of reaction conditions on the self-condensing vinyl polymerization of 2-((2-bromopropionyl)oxy)ethyl acrylate [J]. Macromolecules, 1997, 30(23): 7042-7049.
    [61] Zou Y, Yao Q, Dai L, Pan R. Synthesis and characterization of biphenyl- schiffbase sidechain liquid crystal polymethacrylate [J]. Polym. Mater. Sci. Eng. 1996, 12(4): 36-40.
    [62] Xia J, Zhang X, Matyjaszewski K. The effect of ligands on copper-mediated atom transfer radical polymerization [J]. ACS Symp. Ser. 2000, 760: 207-223.
    [63] Haddleton D M, Duncalf D J, Kukulj D, Heming A M, Shooter A J, ClarkA J. Atom transfer polymerisation of methyl methacrylate: use of chiral aryl/alkyl pyridylmethanimine ligands; with copper(I) bromide and as structurally characterised chiral copper(I) complexes [J]. J. Mater. Chem., 1998, 8(7): 1525-1532.
    [64] Yu B, Ruckenstein E. Controlled radical polymerization catalyzed by copper(I)- sparteine complexes [J]. J. Polym. Sci. Part A: Polym Chem., 1999, 37: 4191-4197.
    [65] Johnson R M, Ng C, Samson C C M, Fraser C L. Copper ATRP catalysts with quadridentate amine ligands: the effects ofsteric and electronic tuning on the polymerization of methyl methacrylate [J]. Macromolecules 2000, 33, 8618-8628.
    [66] Okamoto Y, Suzuki K, Ohta K, Hatada K, Yuki H. Optically active poly (triphenylmethyl methacrylate) with one-handed helical conformation [J]. J. Am. Chem. Soc. 1979, 101, 4763-4765.
    [67] Nakano T, Okamoto Y,Hatada K. Asymmetric polyrmerization of triphenylmethyl methacrylate leading to a one-handed helical polymer: mechanism of polymerization [J]. J. Am. Chem. Soc., 1992, 114: 1318-1329.
    [68] Nagata T, Yorozu K, Yamda T, Mukaiyama T. Enantioselective reduction of ketones with sodium borohydride, catalyzed by optically active oxoaldiminato cobalt(II) complexes [J]. Angew. Chem., Int. Ed. Engl. 1995, 34(19): 2145-2147.
    [69] Okamoto Y, Nakano T, Shikisai Y, Mori M. Sterospecific and asymmetric polymerization of 1-phenyldibenzosuberyl methacrylate with radical and anionic initiators [J]. Macromol. Symp. 1995, 89: 479-488.
    [70] Nakano T, Matsuda A, Mori M, Okamoto Y. Asymmetric anionic polymerization of 1-phenyldibenzosuberyl and 1-(2-pyridyl)dibenzosuberyl methacrylates and chiral recognition ability of the obtained polymer [J]. Polym. J. 1996, 28: 330-336.
    [71]. NakanoT, Okamoto Y. Helix-sense-selective free-radical polymerization of 1-phenyl dibenzosuberyl methacrylate using a cobalt(II) complex [J]. Macromolecules, 1999, 32(7): 2391-2393.
    [72] Nakano T, Mori M, Okamoto Y. Stereospecific radical polymerization of 1-phenyldibenzosuberyl methacrylate affording a highly isotactic polymer [J]. Macromolecules, 1993, 26(3): 867-868.
    [1] Shieh W-C, Dell S, Bach A, Repic O, Blacklock T J. Dual nucleophilic catalysis with DABCO for the N-methylation of indoles [J]. J. Org. Chem. 2003, 68: 1954-1957.
    [2] Laurila M L, Magnus N A, Staszak M A. Green N-methylation of electron deficient pyrroles with dimethylcarbonate [J]. Org. Proc. Res. & Development 2009, 13: 1199-1201.
    [3] Jiang X-L, Tiwari A, Thompson M, Chen Z-H, Cleary T P, Lee T B K. A practical method for N-methylation of indoles using dimethyl carbonate [J]. Organic Process Research & Development 2001, 5: 604-608.
    [4] Selva M, Tundo P, Perosa A. Mono-N-methylation of primary amines with alkyl methyl carbonates over Y faujasites. 2. Kinetics and selectivity [J]. J. Org. Chem. 2002, 67: 9238-9247.
    [5] Selva M, Tundo P, Perosa A. Reaction of functionalized anilines with dimethyl carbonate over NaY faujasite. 3. Chemoselectivity toward mono-N-methylation [J]. J. Org. Chem. 2003, 68: 7374-7378.
    [6] Selva M, Tundo P, Foccardi T. Mono-N-methylation of functionalized anilines with alkyl methyl carbonates over NaY faujasites. 4. kinetics and selectivity [J]. J. Org. Chem. 2005, 70, 2476-2485.
    [7] Santhapuram H K R, Datta A, Hutt O E, Georg G I. N-Methylation of the C3′amide of taxanes: synthesis of N-methyltaxol C and N-methylpaclitaxel [J]. J. Org. Chem. 2008, 73: 4705-4708.
    [8] Dyen M E, Swern D. 2-Oxazolidones [J]. Chem. Rev., 1967, 67: 197-246.
    [9] Ueberbacher B J, Griengl H, Weber H. Chemo-enzymatic synthesis of new ferrocenyl-oxazolidinones and their application as chiral auxiliaries [J]. Tetrahedron: Asymmetry, 2008, 19(7): 838-846.
    [10] Choy A, Colbry N, Huber C, Pamment M, Duine J V. Development of a synthesis for a long-term oxazolidinone antibacterial [J].Org. Process Res. Dev., 2008, 12: 884-887.
    [11] Komine T, Kojima A, Asahina Y, Saito T, Takano H, Shibue T, Fukuda Y. Synthesis and structure-activity relationship studies of highly potent novel oxazolidinone antibacterials [J]. J. Med. Chem., 2008, 51: 6558-6562.
    [12] Katz S J, Bergmeier S C. Convenient methods for the hydrolysis of oxazolidinones to vicinal aminoalcohols [J]. Tetrahedron Lett., 2002, 43(4): 557-559.
    [13] Fonquerna S, Moyano A, Pericàs M A, Riera A. A convenient preparation of N-(2-alkynoyl) derivatives of chiral oxazolidin-2-ones and bornane-10,2-sultam [J]. Tetrahedron: Asymmetry, 1997, 8(10): 1685-1691.
    [14] Lohray B B, Baskaran S, Rao B S, Reddy B Y, Rao I N. A short synthesis of oxazolidinone derivatives linezolid and eperezolid: A new class of antibacterials [J]. Tetrahedron Lett., 1999, 40(26): 4855-4856.
    [15] Ben-Ishai D. The reactions ofβ-hydroxyethylamides andβ-hydroxyethylcarba- mates with phosgene [J]. J. Am. Chem. Soc., 1956, 78, 4962-4965.
    [16] Li F W, Xia C G. Synthesis of 2-oxazolidinone catalyzed by palladium on charcoal: a novel and highly effective heterogeneous catalytic system for oxidative cyclocarbonylation ofβ-aminoalcohols and 2-aminophenol [J]. J. Catal., 2004, 227(2): 542-546.
    [17] Gabriele B, Mancuso R, Salerno G, Costa M. An improved procedure for the palladium-catalyzed oxidative carbonylation ofβ-amino alcohols to oxazolidin-2- ones [J]. J. Org. Chem., 2003, 68: 601-604.
    [18] Fu Y, Baba T, Ono Y, Carbonylation of o-phenylenediamine and o-aminophenol with dimethyl carbonate using lead compounds as catalysts [J]. J. Catal., 2001, 197(1): 91-97.
    [19] Baba T. Kobayashi A, Yamauchi T, Tanaka H, Aso S, Inomata M, Kawanami Y. Catalytic methoxycarbonylation of aromatic diamines with dimethyl carbonate to their dicarbamates using zinc acetate [J]. Catal. Lett., 2002, 82: 193-197.
    [20] Tingoli M, Testaferri L, Temperini A, Tiecco M J. Intramolecular nucleophilic deselenenylation reactions promoted by benzeneselenenyl triflate. Stereospecific synthesis of vicinal amino alcohol precursors [J]. J. Org. Chem., 1996, 61(20): 7085- 7091.
    [21] Bhanage B M, Fujita S I, Ikushima Y, Arai M. Non-catalytic clean synthesis route using urea to cyclic urea and cyclic urethane compounds [J]. Green Chem., 2004, 6(2): 78-80.
    [22] Bhanage B M, Fujita S I, Ikushima Y, Arai M. Synthesis of cyclic ureas and urethanes from alkylene diamines and amino alcohols with pressurized carbon dioxide in the absence of catalysts [J]. Green Chem., 2003, 5(3): 340-342.
    [23] Kantam M L, Pal U, Sreedhar B, Choudary B M. An efficient synthesis of organic carbonates using nanocrystalline magnesium oxide [J]. Adv. Synth. Catal., 2007, 349(10): 1671-1675.
    [24] Trieschmann H. G. Verfahren zur herstellung von cyclischen urethanen [P]. German Patent 917972, 1954.
    [25] Trieschmann H. G, Reuter L. Verfahren zur herstellung von cyclischen urethanen [P]. German Patent 883902, 1953.
    [26] Swintosky J V. 5-(3, 4-carbonyldioxyphenyl)-3-isopropyl-2-oxazolidone [P]. U. S. Patent 3131197, 1964.
    [27] Lunsford C D. Verfahren zur herstellung von 5-(o-Alkoxyphenoxymethyl)- oxazolidonen-(2) [P]. German Patent 1152417, 1963.
    [28] Paul R S. Reaction of aminopolyalcohols with phosgene and products resulting therefrom [P]. U. S. Patent 3120510, 1964.
    [29] Homeyer A H. 2-Oxazolidone compounds and method for preparing the same [P]. U. S. Patent 2399118, 1946.
    [30] Viard M J. Procédéde fabrication d'oxazolidones [P]. Frence Patent 1099905, 1955.
    [31] Dyer E, Scott H. The Preparation of Polymeric and Cyclic Urethans and Ureas from Ethylene Carbonate and Amines [J]. J. Am. Chem. Soc., 1957, 79(3): 672-675.
    [32] Burkett H, Nelson G, Wright W. Heterocyclic Compounds via 1,1,1-Trichloro-3- nitropropene and 1,1,1-Trichloro-3-aminopropanol-2 [J]. J. Am. Chem. Soc., 1958, 80(21): 5812-5814.
    [33] Gever G. Preparation of series of new 3-amino-2-oxazolidones [P]. U. S. Patent 2695300,1955.
    [34] Visser K. Procédéde fabrication de composés hétérocycliques [P]. Frence Patent 1328137, 1963.
    [35] Close W J. The conformation of the ephedrines [J]. J. Org. Chem., 1950, 15 (5): 1131-1134.
    [36] Close W J. Anticonvulsant drugs. IV. Some 2-oxazolidones [J]. J. Am. Chem. Soc., 1951, 73 (1): 95-98.
    [37] Pomot J L. Process for the preparation of aqueous solutions of 3-amino-2- oxazolidone hydrochloride [P]. Frence Patent 1346269, 1963.
    [38] Weickmann A. Verfahren zur herstellung heterocyclischer verbindungen [P]. German Patent 858402, 1952.
    [39] Gever G, O'Keefe C, Drake G, Ebetino F, Michels J, Hayes K. Chemotherapeutic nitrofurans. I. Some derivatives of 3-amino-2-oxazolidone [J]. J. Am. Chem. Soc., 1955, 77 (8): 2277-2281.
    [40] Lesher G Y, Surrey A R. A new method for the preparation of 3-substituted-2- oxazolidones [J]. J. Am. Chem. Soc., 1955, 77(3): 636-641.
    [41] Arnold H, Bekel H. Procédéde fabrication des n-chloroalkyloxazolidones [P]. Frence Patent 1345001, 1961.
    [42] Lunsford C D. Verfahren zur Herstellung von 5-(o-Alkoxyphenoxymethyl)- oxazolidonen [P]. German Patent 1157627, 1963.
    [43] Lunsford C D, Mays R P, Richman J A, Murphey R S. 5-Aryloxymethyl-2- oxazolidinones [J]. J. Am. Chem. Soc., 1960, 82(5): 1166-1171.
    [44] Pares J, Langer M. Noteàpropos de l'(o-méthoxyphénoxyméthyl)-5- oxazolidone-2 ou Méphénoxalone [J] 1960, 43(6): 1862-1864.
    [45] Testard J M A. Procédéde fabrication de la 2-oxazolidone [P]. Frence Patent 1104082, 1955.
    [46] Cummins R W. Reaction of cyanuric acid with epoxides [J]. J. Org. Chem., 1963, 28(1): 85-89.
    [47] Frazier T C, Little E D, Lloyd B. Isocyanurates. I. some condensation reactions of cyanuric acid [J]. J. Org. Chem., 1960, 25(11): 1944-1946.
    [48] Little E D, Poon B T. Production of 2-oxazolidones [P]. U. S. Patent 3108115, 1963.
    [49] Little E D, Donald P. Production of 5-vinyl-2-oxazolidone [P]. U. S. Patent 3157668, 1964.
    [50] Formaini R L, Little E D. Production of n-hydroxyalkyl substituted oxazolidones [P]. U. S. Patent 3194810, 1965.
    [51] Stanley D. Process for preparation of 2-oxazolidones [P]. U. S. Patent 2977371, 1961.
    [52] Oken A. Production of 2-oxazolidones [P]. U. S. Patent 2977370, 1961.
    [53] Speranza G P, Peppel W J. Preparation of substituted 2-oxazolidones from 1,2-epoxides and isocyanates [J]. J. Org. Chem., 1958, 23(12): 1922-1924.
    [54] Dixon S, Verbanc J J. Production of 2-oxazolidinones [P]. U. S. Patent 2977369, 1961.
    [55] Gulbin K, Hamann K. Verfahren zur herstellung von substituierten oxazolidonen [P]. German Patent 1068715, 1959.
    [56] Smith D A. Reaction of phenyl isocyanate with 2,3-epoxy propyl phenyl ether (phenylglycidyl ether) [J]. 1963, 197: 285-286.
    [57] Weiner M. Reaction of phenyl isocyanate with phenyl glycidyl ether [J]. J. Org. Chem., 1961, 26(3): 951-952.
    [58] Sandler S R, Berg F, Kitazawa G. Poly-2-oxazolidones [J]. J. Appl. Polym. Sci. 1965, 9: 1994-1996.
    [59] Iwakura Y, Izawa S. Glycidyl ether reactions with urethanes and ureas. A new synthetic method for 2-oxazolidones [J]. J. Org. Chem., 1964, 29(2): 379-382.
    [60] Shachat N, Bagnell J J. Reactions of propargyl alcohols and propargylamines with isocyanates [J]. J. Org. Chem., 1963, 28(4): 991-995.
    [61] Stoffel P J, Speziale A J. The cyclization of propynyl carbanilates to 2-oxazolidones [J]. J. Org. Chem., 1963, 28(10): 2814-2817.
    [62] Cameron M D. 4-alkylidene-2-oxazolidones and process [P]. U. S. Patent 2844590, 1958.
    [63] Stoffel P J, Dixon W D. The facile isomerization of 4-methylene-2- oxazolidinones to 4-methyl-4-oxazolin-2-ones [J]. J. Org. Chem., 1964, 29(4): 978- 979.
    [64] Sisido K, Hukuoka K, Tuda M, Nozaki H. Cyclization of N-Phenylcarbamates of Ethynylcarbinols [J]. J. Org. Chem., 1962, 27(7): 2663-2665.
    [65] Dimroth P, Pasedach H. Verfahren zur herstellung von 5-methylen-oxazolidonen [P]. German Patent 1164411, 1964.
    [66] Dimroth P, Pasedach H. Verfahren zur herstellung von 5,5-disubstituierten 4-methylen-oxazolidonen [P]. German Patent 1151507, 1963.
    [67] Trask J L,Tousignant W F. Process for making 2-oxazolidones [P]. U. S. Patent 2826587, 1958.
    [68] Katchalski E, Ishai D B. 2-oxazolidones: synthesis from N-carbalkoxy-β-halo alkylamines [J]. J. Org. Chem., 1950, 15(5): 1067-1073.
    [69] S. Hünig, W. Lücke, V. Meuer and W. Grassmann. Acylation of enamines with lactimsulfonic esters [J]. Angew. Chem. Intern. Ed. Engl. 1963, 2(4): 213-214.
    [70] Beachell H C, NgocSon C P. Thermal degradation of ethylene bis(N-phenyl carbamate) [J]. J. Polym. Sci. Part A. 1964, 2: 4773-4785.
    [71] Arend W, Trieschmann H.-G. Verfahren zur herstellung von N-vinyloxazolidon [P]. German Patent 972304, 1959.
    [72] Pierce J S. Alkyl amino-ethanol and propanols [J]. J. Am. Chem. Soc., 1928, 50(1): 241-244.
    [73] Newcomer J S, Smith K J. N-chloro chlorobenzamide [P]. U. S. Patent 2860166, 1958.
    [74] Steinemann W. Monoazo dyestuffs and their metal complex compounds [P]. U. S. Patent 2873267, 1959.
    [75] McKay A F, Braun R O. Cyclizations ofβ-chloroethyl substituted ammono- carbonic acids [J]. J. Org. Chem., 1951, 16(11): 1829-1834.
    [76] Sprinson D B. The synthesis of N-substituted choline carbamates and trimethyl-β-phenylaminoethylammonium chloride [J]. J. Am. Chem. Soc., 1941, 63(8): 2249- 2251.
    [77] Gross P H, Brendel K, Zimmerman H K.über eine neue Oxazolidon-Synthese und dieDarstellung von 2.6-Diamino-2.6-didesoxy-D-gulose [J] Angew. Chem. 1964, 76(9): 377-377.
    [78] Nicolaus B I R, Mariani L, Gallo G, Testa E. Reactions withα-substitutedβ-propiolactones. I. 4,4-disubstituted 2-oxazolidinones: research on compounds active on the central nervous system [J]. J. Org. Chem., 1961, 26(7): 2253-2255.
    [79] Bergmann E D, Sulzbacher M. A New Synthesis of 1-(m- and p-hydroxyphenyl) -2-methylaminoethanol (m- and p-sympathol) [J]. J. Org. Chem., 1951, 16(1): 84-89.
    [80] Baltzly R, Buck J S. Amines related to 2,5-dimethoxyphenethylamine [J]. J. Am. Chem. Soc., 1940, 62(1): 164-167.
    [81] Ide W S, Baltzly R. Amines related to 2,5-dimethoxyphenethylamine. IV. 2,5-diethoxy, 2-hydroxy-5-methoxy and 2-hydroxy-5-ethoxyphenylalkanolamines [J]. J. Am. Chem. Soc., 1948, 70(3): 1084-1087.
    [82] Burr J G. The addition of water to diphenylacetylene-1,2-C1141 [J]. J. Am. Chem. Soc., 1953, 75(8): 1990-1991.
    [83] Zimmerman H E, Traxler M D. The stereochemistry of the ivanov and reformatsky reactions [J]. J. Am. Chem. Soc., 1957, 79(8): 1920-1923.
    [84] Ardis A E, Baltzly R, Schoen W. Amines related to 2,5-dimethoxyphenethyl amine. III1 2-hydroxy and 2-methoxy-5-methylphenylakanolamines [J]. J. Am. Chem. Soc., 1946, 68(4): 591-595.
    [85] Easton N R, Cassady D R, Dillard R D. Reactions of acetylenes. I. t-ethynyl alcohol with isocyanates [J]. J. Org. Chem., 1962, 27(8): 2927-2928.
    [86] Hennion G F, O'Shea F X. Reactions ofα-ketols derived from tertiary acetylenic carbinols. III. The preparation of 4-methyl-4,5,5-trisubstituted-2-oxazolidinones [J]. J. Org. Chem., 1958, 23(5): 662-664.
    [87] Smolinsky G, Feuer B I. Nitrene insertion into a C-H bond at an asymmetric carbon atom with retention of optical activity. Thermally generated nitrenes [J]. J. Am. Chem. Soc., 1964, 86(15): 3085-3088.
    [88] Kreher R, Bockhorn G H. Die photochemische zersetzung von azidoameisensaure-alkylestern in aliphatischen alkoholen [J]. Angew. Chem. 1965, 76(15): 681-682.
    [89] Kreher R, Kühling D. Pyrolyse von azidomeisensaurealkylestern in der gasphase [J]. Angew. Chem. 1965, 77(1): 42-42.
    [90] Puttner R, Hafner K. Dehydrierungs-reaktionen mit acyl-nitrenen [J]. Tetraherron Lett. 1964, 5(42): 3119-3125.
    [91] Gever G. Series of new-3-amino-2-oxazolidones and the preparation thereof [P]. U. S. Patent 2652402, 1953.
    [92] Hechelhammer W, Coenen M. Verfahren zur herstellung von cyclischen urethanen [P]. German Patent 839037, 1952.
    [93] Poos G I, Carson J R, Rosenau J D, Roszkowski A P, Kelley N M, McGowin J. 2-Amino-5-aryl-2-oxazolines. Potent new anorectic agents [J]. J. Med. Chem., 1963, 6(3): 266-272.
    [94] Rosnati V, Misiti D. 2-Aryl-4-methyl-4-chlorocarbonyl-oxymethyl-2-oxazolines: Chemicalreactivity and infra-red spectra [J]. Tetrahedron, 1960, 9: 175-182
    [95] Ebetino F F, Gabriel G. Series of new n-(5-nitro-2-furfurylidene)-3-amino- 2-iminooxazolidines [P]. U. S. Patent 2759932, 1956.
    [96] Gulbins K, Hamann K. Umlagerungsreaktion zu oxazolidonen und imidazolidonen [J]. Angewandte Chemie 1961, 73(12): 434-434.
    [97] Tanimori S, Kirihata M. Novel palladium-catalyzed oxazolidone synthesis [J]. Tetrahedron Lett., 2000, 41(35): 6785-6788.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700