花生连作障碍的效应及其作用机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以花生作为研究对象,在大田条件下,对不同连作年限花生的农艺性状和产量、光合特性、营养特性、干物质积累与分配和土壤中养分含量进行了全面详细的研究,并通过盆栽试验,运用传统平板培养和现代分子生物学技术,对花生根际、非根际微生物种群随连作茬次的动态变化进行了跟踪研究,同时对花生在不同连作年限下的土壤酶变化作了初步探讨,又系统的研究了花生在连作条件下防御酶系活性以及膜脂过氧化产物含量的变化规律,通过盆栽试验及生物测试,研究了花生植株、花生土壤水浸提液对其种子萌发和幼苗生长的化感效应,并采用HPLC技术,有针对性的检测了不同连作年限花生根际土壤中酚酸类物质的种类及含量,主要研究结果如下:
     1、随连作年限的增加,花生主茎高、叶绿素相对含量、净光合速率、气孔导度和胞间CO2浓度均呈现逐年下降趋势,连作4年的花生植株百果重和百仁重最低,连作3年花生产量最低。连作对叶绿素相对含量的影响在成熟期时最为明显,叶面积并未呈现出逐年降低趋势,而是在连作3年时达到最低值。
     随连作年限的增加,花针期时花生茎叶中P、K含量呈现逐年减少的变化趋势,N含量变化不规律。成熟期时果实中N、P、K含量均呈现先降低再升高的趋势。
     随连作年限的增加,花针期时,植株内的中量元素含量呈现一定的变化趋势,除Cu外,其它中量元素含量在各处理间并无显著差异。其中Ca、Fe变化规律一致,呈现逐年增加的趋势;Mg、Zn变化规律一致,呈现先上升后下降再上升的趋势;Mn含量呈现先下降再上升又下降的趋势;Cu含量呈现先下降后升高的趋势。结荚期时,植株内的中量元素含量也呈现一定的变化趋势,除Mg外,其它中量元素含量在各处理间并无显著差异。其中Ca、Mn、Cu变化规律一致,呈现先下降再上升又下降的趋势;Mg、Fe变化规律一致,呈现先下降后升高的趋势;Zn含量呈现逐年上升的趋势。成熟期时,植株内的中量元素含量也呈现一定的变化趋势,Fe、Cu、Zn含量在各处理间存在显著性差异。其中Ca、Fe的变化规律一致,呈现逐年下降的趋势;Zn、Mn变化规律一致,呈现逐年增加的趋势;Cu含量呈现先下降再上升又下降的变化趋势。
     结荚期时,Mo含量在各处理间存在着显著性差异,呈现出随连作年限的增加先降低后升高再降低的变化趋势,而B含量在各处理间不存在显著性差异。
     随连作年限的增加,花针期和结荚期时,花生叶片、茎、根、荚果和全株干物质积累均呈现先下降后升高的趋势;成熟期时呈现先升高后下降的趋势。同一连作年限下,叶片和茎的干物质积累随生育进程的推进而呈现先增加后减少的趋势,最高值出现在结荚期;荚果和全株的干物质积累呈现逐渐增加的趋势,最高值出现在成熟期;根的干物质积累变化无规律。
     花针期时,连作2年花生的根干重占全株干重的比例较正茬有所减少,茎、叶所占比例增加,根冠比减少;连作3年和连作4年花生的根干重占全株干重的比例较正茬有所增加,茎、叶所占比例减少,根冠比增加。结荚期和成熟期时,花生植株个体干物质在各器官中的分配并不随连作年限的增加而发生大的变化。花生植株个体的干物质在各器官中的分配会随生长中心的转移而变化。
     2、随连作年限的增加,花生土壤微生物区系出现显著变化,根际及非根际土壤中细菌、放线菌数量减少,真菌数量增加,变化均达到显著水平。根际土壤微生物数量和变化幅度明显高于非根际土壤。根际土壤中氨化细菌为优势细菌生理类群,反硝化细菌和好氧性自生固氮菌次之,硝化细菌最少。氨化细菌、硝化细菌和好氧性自生固氮菌的数量随连作年限的增加而逐年减少,反硝化细菌数量则升高,变化均达到显著水平。不同连作年限根际土壤中的细菌、放线菌和真菌数量随着花生生育进程的推进,基本上均呈现先增加后减少的趋势。DGGE结果显示,不同连作年限根际土壤中存在一些共有的细菌类群,也会出现或缺失个别细菌类群,正茬花生在苗期和结荚期时土壤中细菌群落结构相似性最高。
     3、随连作年限的增加,花生土壤中过氧化氢酶和碱性磷酸酶的活性在整个生育期内呈现下降趋势;脲酶和转化酶活性呈现先下降后增加再下降的趋势;酸性磷酸酶和中性磷酸酶活性呈现先增加后下降的趋势。不同连作年限土壤中过氧化氢酶活性随着花生生育进程的推进,呈现下降趋势;脲酶活性总体上呈增强趋势;转化酶活性呈先降低后升高的趋势;中性和碱性磷酸酶活性均呈现先升高后下降的趋势;正茬和连作2年两个处理的酸性磷酸酶活性呈现升高趋势,连作4年和连作6年两个处理呈现先升高再降低的趋势。
     4、0-20cm土层中全氮、碱解氮含量随连作年限的增加在花针期时呈现先增后降再增,结荚期时呈现先增后降的变化趋势;全钾、有效钾含量随连作年限的增加各自呈现独特的变化规律,在花针期和结荚期的每个土层中,全钾含量均呈现先降后增的变化趋势,有效钾则呈现先增后降的趋势;全磷含量随连作年限的增加在不同生育时期表现为不同的变化规律,花针期时每个土层均呈现先增后降的趋势,结荚期时呈现先降后增再降的趋势。有效磷含量则在不同土层中呈现不同的变化规律,0-20cm土层中,随连作年限的增加在花针期和结荚期时均呈现先增后降的趋势,20-40cm土层中,则呈现先降后增再降的趋势。
     0-20cm土层中有效Fe、Cu、Zn含量随连作年限的增加在花针期和结荚期时呈现相同的变化规律,为先降后增的趋势;有效Ca、Mg、Mn含量在花针期时呈现相同的变化规律,为先增后降再增的趋势。20-40cm土层中,各中量元素的含量均未表现出有规律的变化趋势。有效B含量随连作年限的增加在花针期时每个土层均呈现先增后降的趋势;结荚期时每个土层的变化规律不同,20-40cm土层中呈现先增后降,0-20cm土层中呈现先降后增的趋势。
     5、随连作年限的增加,花生叶片的过氧化氢酶活性在整个生育期内总体上呈现下降趋势;多酚氧化酶、过氧化物酶、超氧化物歧化酶活性和丙二醛含量在整个生育期内总体上呈现升高趋势;苯丙氨酸解氨酶活性在整个生育期内变化规律不一致,苗期和花针期时,连作3年的酶活性大于正茬花生,结荚期和成熟期时,连作3年的酶活性小于正茬花生。不同连作年限花生叶片过氧化氢酶和过氧化物酶活性随生育进程的推进呈现先升高后下降的趋势;超氧化物歧化酶活性总体上呈现先下降后小幅上升的趋势;正茬花生多酚氧化酶活性呈现先上升后下降趋势,连作3年花生呈现先上升后下降再上升的趋势;正茬花生苯丙氨酸解氨酶活性呈现上升趋势,连作3年花生呈现先缓慢上升后下降再上升的趋势;丙二醛含量总体上呈现上升趋势,但两个处理的变化趋势略有不同。正茬花生从苗期到花针期时表现为大幅度上升趋势,到结荚期时含量有所下降,进入成熟期后又有所上升并达到最高值。连作3年处理的含量则随生育进程的推进逐渐升高,成熟期达到最高值。
     6、不同浓度的花生根际土壤、茎、叶水浸液对其种子萌发和幼苗生长均存在一定的抑制作用,其作用强度随浸提液浓度的增大而增强。对种子萌发的抑制作用强度顺序为:茎>叶>土壤,对幼苗生长的抑制作用强度顺序为:茎、土壤>叶。不同浓度的花生根际土壤、茎、叶水浸液对花生种子萌发的抑制作用大于对其幼苗生长的抑制作用。
     从不同连作年限花生根际土壤中均检测到两种酚酸物质,即香草酸和香豆素,其含量均随连作年限增加而呈现累积的趋势。香草酸含量显著高于香豆素。连作6年后土壤中两种酚酸总含量达到0.314μg.g-1干土,高于连作4年及2年土壤中的含量,且显著高于正茬土壤。
In this paper, we choosed the peanut as the research object to comprehensively study the effect of different planting years on agronomic characters and yields, photosynthetic and nutrition characteristic, dry matter accumulation and distribution, soil nutrient content in field conditions. Effect of different planting years on the microbial populations of rhizosphere and bulk soil were tracking studied with the pot experiments, traditional flat training and modem molecular biology technology, meanwile, the effect of different planting years on the soil enzymes were explored for the first time. The change rule of defense enzyme activity and MDA content under continuous cropping were systematically researched. Allelopathic effects of peanut plant and soil extracts on the its seed germination, plants growth were studied with the pot experiments and biological testing. Phenolic acid contents in peanuts rhizosphere soil of different planting years were targetedly detected which using the HPLC. The major findings are as follows:
     1. The plant height, chlorophyll relative content, Pn, Gs and Ci had been declined with the increasing length of continuous cropping system. The pods and nuts weight reached lowest at planting four years, and the yields reached lowest at planting three years. Continuous cropping influenced on the chlorophyll relative content and this influence of most evident when at matrrity. Leaf area did not show trend to decrese, but reached lowest at planting three years.
     When blossom stage in peanut stem and leaf, the P, K content had been reduced chage trend with the increasing length of continuous cropping system, N content changes not rule. When maturing stage in fruit, the N, P, K content were significantly the trend which reduce first and rise again.
     The content of medium elements at blossom stage presented certain change trend with the increasing length of continuous cropping system. Except Cu, the others had no significant differences among four treatments. Among them, the change laws of Ca, Fe were consistent which the trend had been increased. The change laws of Mg, Zn were consistent which rise first then reduce and rise again. The content of medium elements at pot-setting stage presented certain change too. Except Mg, the others had no significant differences among four treatments. Among them, the change laws of Ca, Mn, Cu were consistent which reduce first then rise and reduce again. The change laws of Mg, Fe were consistent which reduce first and rise again. The content of medium elements at maturing stage presented certain change too. Fe, Cu, Zn content had significant differences among four treatments. Among them, the change laws of Ca, Fe were consistent which the trend had been decreased. The change laws of Zn, Mn were consistent which the trend had been increased.
     Mo content had significant differences among four treatments at pot-setting stage. The change trend was presented that reduce first then rise and reduce again with the increasing length of continuous cropping system.
     At blossom and pot-setting stage, the leaf, steam, root, legume and all organs of peanut dry matter accumulation presented the change trend which reduce first and rise again with the increasing length of continuous cropping system, but its presented the change trend which rise first and reduce again at maturing stage. Under the same continuous fixed number of year, the leaf and steam of peanut dry matter accumulation presented the change trend which rise first and reduce again along with the development of growth period, peak appeared in the pot-setting stage. The legume and all organs of peanut dry matter accumulation presented the change trend which increased, peak appeared in the maturing stage.
     The root proportion of planting two years decreased compared planting one year, but the proportion of steam and leaf increased, and root-shoot ratio decreased at blossom stage. The root proportion of planting three and four years increased compared planting one year, but the proportion of steam and leaf decreased, and root-shoot ratio increased. At pot-setting and maturing stage, the distribution of peanut dry matter in various organs did not change obviously with the increasing length of continuous cropping system, and it would change with the growth center transferring.
     2. The soil microflora of peanuts significantly changed, the bacteria and actinomycete quantities obviously decreased, the fungi quantities obviously increased with the increasing of the continuous cropping years. The microbial population and variation in rhizosphere soil were significantly higher than bulk soil. Ammonifying bacteria was the predominant population in rhizosphere soil, denitrifying bacteria and aerobic nitrogen-fixing bacteria less than it, and nitrifying bacteria was the leastest. The number of ammonifying bacteria, nitrifying bacteria and aerobic nitrogen-fixing bacteria presented the change trend which decreased with the increasing of the continuous cropping years, however, the number of denitrifying bacteria presented the change trend which increased. Under the same continuous fixed number of year, the bacteria, actinomycete and fungi quantities presented the change trend which rise first and reduce again along with the development of growth period. DGGE showed that there existed some common bacteria groups in soil among four treatments, and also could appear or lack individual bacteria groups. Soil bacteria community structure similarity was highest between the seeding stage and the pot-setting stage of planting one years.
     3. The soil catalase and alkaline phosphatase activity presented the change trend which decreased with the increasing of the continuous cropping years. The urease and invertase activity presented the change trend which reduce first then rise and reduce again. The acid and neutral phosphatase activity presented the change trend which rise first and reduce again. Under the same continuous fixed number of year, the soil catalase activity presented the change trend which decreased along with the development of growth period, and the urease activity presented the change trend which increased, the invertase activity presented the change trend which reduce first and rise again, the neutral and alkaline phosphatase activity presented the change trend which rise first and reduce again.
     4. At blossom stage the content of total and available N presented the change trend which rise first then reduce and rise again in 0-20cm with the increasing of the continuous cropping years, it presented the change trend which rise first and reduce again at pot-setting stage. At blossom and pot-setting stage, the content of total K presented the change trend which reduce first and rise again in two soil strata, the content of available K presented the change trend which rise first and reduce again. At blossom stage, the content of total P presented the change trend which rise first and reduce again in two soil strata. At pot-setting stage, it presented the change trend which reduce first then rise and reduce again. At blossom and pot-setting stage, the available P presented the change trend which rise first and reduce again in 0-20cm, and it presented the change trend which reduce first then rise and reduce again in 20-40cm.
     At blossom and pot-setting stage, the change laws of Fe, Cu, Zn were consistent and presented the change trend which reduce first and rise again in 0-20cm with the increasing of the continuous cropping years. The change laws of Ca, Mg, Mn were consistent and presented the change trend which rise first then reduce and rise again. At blossom stage, the content of B presented the change trend which rise first and reduce again at every soil strata with the increasing of the continuous cropping years, but the change rule were different in two soil strata at pot-setting stage. It presented the change trend which rise first and reduce again in 20-40cm, and presented the change trend which reduce first and rise again in 0-20cm.
     5. The CAT activity of peanut leaf presented the change trend which decreased, and PPO, POD, SOD activity and MDA content presented the change trend which increased with the increasing of the continuous cropping years. The PAL activity changed not regularly. Under the same continuous fixed number of year, the CAT and POD activity presented the change trend which rise first and reduce again along with the development of growth period, the SOD activity presented the change trend which reduce first and rise again. The PPO activity of planting one year presented the change trend which rise first and reduce again, and the PPO activity of planting three years presented the change trend which rise first then reduce and rise again. The PAL activity of planting one year presented the change trend which increased, and the PAL activity of planting three years presented the change trend which rise first then reduce and rise again. As a whole, the MDA content presented the change trend which increased, but there change trend was somewhat different in two treatments. The MDA content presented the change trend which greatly increased from seedling to blossom stage, and declined at pot-setting stage, increased and achieved peak at maturing stage in planting one year. It presented the change trend which gradually increased in planting three years along with the development of growth period, peak appeared in the maturing stage.
     6. Different concentrations of peanut soil, steam and leaf extracts could cause the inhibition of seed germination and seedling growth of peanut. Its inhibition intensity with the increase of extracts concentration enhanced. The order of inhibition of seeds germination was: steam>leaf>soil; the order of inhibition of seedling was:steam, soil>leaf. The inhibition of seeds germination was greater than of seedling.
     Two kinds of phenolic acids material were detected from all treatments which were vanillic acid and coumarin, and its content both presented accumulation of trend with the increasing of the continuous cropping years. The content of vanillic acid was significantly higer than the coumarin in soil. The total content of two kinds of phenolic acids material were 0.314μg.g-1dry soil in planting six years, which higher than the total content in planting two and four years, and significantly higer than its in planting one year.
引文
[1]艾天成等.2000.作物叶片叶绿素含量与SPAD值相关性研究.湖北农学院学报,20(1):6-8.
    [2]鲍淑兰.2000.超氧化物歧化酶与其抗衰老功能.曲阜师范大学学报,26(3):86-88;76.
    [3]曹爱东,秦庆红.2007.花生连作重茬减产原因及增产措施.现代农业科技,(21);137-138.
    [4]柴强等.2005.鹰咀豆根系分泌物的分离鉴定及典型分泌物苯甲醛的化感效应.草叶学报,14(1):106-111.
    [5]柴晓芳,郑伟,刘金和.2009.施用不同有机肥对大豆根际土壤微生物数量的影响.磷肥与复肥,24(1):86.
    [6]陈鸿飞等.2010.头季稻氮肥运筹对再生稻干物质积累、产量及氮素利用率的影响.中国生态农业学报,18(1):50-56.
    [7]陈慧等.2007.地黄连作对根际微生物区系及土壤酶活性的影响.应用生态学报,18(12):2755-2759.
    [8]陈立杰等.2007.连作和轮作对大豆胞囊线虫群体数量及土壤线虫群落结构的影响.植物保护学报,34(4):347-352.
    [9]陈淑芳等.2005.Nacl胁迫对番茄嫁接苗保护酶活性、渗透调节物质含量及光合特性的影响.园艺学报,32(4):609-613.
    [10]陈友根等.2009.不同连作年限土壤对甜瓜幼苗叶绿素含量和光合特性的影响.安徽农业科学,37(3):956-958.
    [11]陈志杰等.2008.温室土壤连作对黄瓜主要病害的影响.中国生态农业学报,16(1):71-74.
    [12]戴良香等.2004.花生光合特性和衰老生理的研究进展.花生学报,33(3):25-28.
    [13]丁海兵.2006.连作对烟草生长和不同粒径土壤酶活性的影响.重庆:西南大学.
    [14]董艳等.2009.种植年限和种植模式对设施土壤微生物区系和酶活性的影响.农业环境科学学报,28(3):527-532.
    [15]邓阳春.2010.长期连作对烤烟产量和土壤养分的影响.植物营养与肥料学报,16(4):840-845.
    [16]范君华等.2008.棉花连作对土壤养分、微生物及酶活性的影响.塔里木大学学报,20(3):72-76.
    [17]范庆锋,张玉龙,陈重.2009.保护地蔬菜栽培对土壤盐分积累及pH值的影响.水土保持学报,23(1):103-106.
    [18]樊堂群等.2007a.连作对花生光合作用和干物质积累的影响.花生学报,36(2):35-37.
    [19]樊堂群等.2009b.不同抗性花生感染网斑病菌的酶活性及丙二醛含量变化.花生学报,38(4):31-34.
    [20]封海胜等.1993a.花生连作对土壤及根际微生物区系的影响.山东农业科学,(1):13-15.
    [21]封海胜等.1994b.花生不同连作年限土壤酶活性的变化.花生科技,(3):5-9.
    [22]封海胜等.1995c.土壤微生物与连、轮作花生的相互效应研究.莱阳农学院学报,12(2):97-101.
    [23]封海胜等.1999d.花生连作土壤及根际主要微生物类群的变化及与产量的相关.花生科技,(增刊):277-283.
    [24]冯志红等.2005.连作栽培中自毒物质对黄瓜种子萌发和幼苗生长的影响.种子,24(6):41-44.
    [25]付慧兰等.2000.大豆连作土壤pH与土壤酶活性.大豆科学,16(2):156-161.
    [26]傅佳,李先恩,傅俊范.2009.重茬种植西洋参对其根区土壤微生物与土壤理化性质影响.微生物学杂志,29(2):63-66.
    [27]傅金民,苏芳,张庚灵.1995.花生群体光合速率发展动态和日变化.中国油料,17(3):17-21;28.
    [28]高峰等.2009.以自毒物质高效降解菌B3512为功能菌的土壤添加物防治草莓连作障碍的研究.河北农业科学,13(9):20-22.
    [29]高雪.2009.植物苯丙氨酸解氨酶研究进展.现代农业科技,(1):30-32.
    [30]顾美英等.2009.连作对新疆绿洲棉田土壤微生物数量及酶活性的影响.干旱地区农业研究,27(1):1-5;11.
    [31]郭利等.2009.烟草连作对烟田土壤微生物的影响.湖北农业科学,48(10):2443-2445.
    [32郭维明等.2000.冷季与暖季型草坪草他感作用潜势初探.江苏林业科技,27(supple):45-48.
    [33]郭兴,潘登奎,罗晓丽.2008.植物超氧化物歧化酶的研究及其在基因工程中的应用.山西农业科学,36(3):3-6.
    [34]韩丽梅等.2002.大豆地上部水浸液的化感作用及化感物质的鉴定.生态学报,22(9):1425-1432.
    [35]韩晓日等.2009.不同施肥处理对春玉米穗位叶光合指标的影响.沈阳农业大学学报,40(4):444-448.
    [36]郝慧荣等.2008.连作怀牛膝根际土壤微生物区系及酶活性的变化研究.中国生态农业学报,16(2):307-311.
    [37]郝永娟等.2009.生物土壤添加剂对连作黄瓜防御酶系及酚类物质含量的影响.植物病理学报,39(4):444-448.
    [38]贺丽娜等.2008.连作对设施黄瓜产量和品质及土壤酶活性的影响.西北农林科技大学学报(自然科学版)36(5):155-159.
    [39]侯永侠等.2006.辣椒秸秆腐解物化感作用的研究.应用生态学报,17(4):699-702.
    [40]侯玉慧等.2005.硅对盐胁迫下黄瓜幼苗细胞膜伤害及其保护酶活性的影响.中国农学通报,21(9):252-254.
    [41]胡飞,孔垂华.1997.胜红蓟化感作用研究Ⅰ.水溶物的化感作用及其化感物质分离鉴定.应用生态学报,8(3):304-408.
    [42]胡宇.2009.旱地马铃薯连作对土壤养分的影响.安徽农业科学,37(12):5436-5439,5610.
    [43]胡元森等.2004.黄瓜不同生育期根际微生物区系变化研究.中国农业科学,37(10):1521-1526.
    [44]胡元森.2005b.黄瓜连作障碍因子分析及其生物修复措施探讨.南京:南京农业大学.
    [45]黄闽敏.2006.天山云杉的自毒作用及其生理学机制研究.乌鲁木齐:新疆农业大学.
    [46]季尚宁等.1996.土壤灭菌对连作大豆生长发育的影响.东北农业大学学报,27(4):326-329.
    [47]姜慧芳,任小平.2004.干旱胁迫对花生叶片SOD活性和蛋白质的影响.作物学报,30(2):169-174.
    [48]姜琳琳等.2010.施肥对不同密度型高产玉米品种光合生理特性的影响.沈阳农业大学学 报,41(3):265-269.
    [49]鞠志国,朱广廉,曹宗巽.1988.莱阳茌梨果实褐变与PPO及酚类物质区域化分布的关系.植物生理学报,14(4):256-261.
    [50]阚光锋.2002.烟草品种对野火病的抗性鉴定与生化抗病机制研究.泰安:山东农业大学.
    [51]孔垂华,徐涛.2000.环境胁迫下植物的化感作用及其诱导机制.生态学报,20(5):849-854.
    [52]雷东锋,蒋大宗,王一理.2003.烟草中多酚氧化酶的生理生化特征及其活性控制的研究.西安交通大学学报,37(12):1316-1320.
    [53]李春格,李晓鸣,王敬国.2006.大豆连作对土体和根际微生物群落功能的影响.生态学报,26(4):1144-1150.
    [54]李凤等.2008.长期连作对棉田土壤酶活性的影响.中国棉花,(6):34.
    [55]李改玲.2009.地黄连作障碍的差异蛋白质组学研究.福州:福建农林大学.
    [56]李刚等.2004a大棚土壤盐分累积特征与调控措施研究.农业工程学报,20(3):44-47.
    [57]李刚等.2006b.连作条件下设施黄瓜根际微生物种群结构及数量消长.东北农业大学学报,37(4):444-448.
    [58]李会云,郭修武.2008.盐胁迫对葡萄砧木叶片保护酶活性和丙二醛含量的影响.果树学报,25(2):240-243.
    [59]李伶俐等.2007.不同熟性棉花品种叶片衰老特性研究.棉花学报,19(4):279-285.
    [60]李坤等.2009.葡萄连作对土壤细菌和真菌种群的影响.应用生态学报,20(12):3109-3114.
    [61]李敏夏等.2010.苹果叶片高光谱特性与叶绿素含量和SPAD值的关系.西北林学院学报,25(2):35-39.
    [62]李清华等.2008a.花生主要农艺性状协调关系的研究.花生学报,37(4):40-44.
    [63]李清华.2009b.不同生境下花生农艺产量性状的因子分析.花生学报,38(3):36-40.
    [64]李琼芳.2006.不同连作年限麦冬根际微生物区系动态研究.土壤通报,37(3):563-565.
    [65]李新,司龙亭.2007.黄瓜不同品种苗期感染枯萎病菌后几种酶活性的变化.华北农学报,22(增刊):9-11.
    [66]李正国等.2006.奉节脐橙果实苯丙氨酸解氨酶活性及其基因表达与果皮褐变的关系.植物生理与分子生物学学报,(32):381-386.
    [67]梁喜龙,郑殿峰,左豫虎.2006.病害逆境下寄主植物生理生化指标的研究现状与展望.安徽农业科学,34(15):3576-3578,3581.
    [68]林思祖等.1999.杉木自毒作用的研究.应用生态学报,10(6):661-664.
    [69]刘建国等.2008a.长期连作和秸秆还田对棉田土壤生物活性的影响.应用生态学报,19(5):1027-1032.
    [70]刘建国等.2009b.新疆绿洲棉花长期连作对土壤理化性状与土壤酶活性的影响.中国农业科学,42(2):725-733.
    [71]刘金波,许艳丽.2008a.我国连作大豆土壤微生物研究现状.中国油料作物学报,30(1):132-136.
    [72]刘金波等.2009b.长期连作对大豆根际真菌主要类群的影响.农业系统科学与综合研究,25(1): 105-108;113.
    [73]刘美昌等.2006.连作对花生生育的影响及其缓解措施研究.中国农学通报,22(9):144-148.
    [74]刘文利,马琳,黄岳.2006.连作番茄保护地土壤养分状况研究初报,湖北农业科学,45(6):746-748.
    [75]刘文龙,王凯荣,王铭伦.2009.花生对镉胁迫的生理响应及品种间差异.应用生态学报,20(2):451-459.
    [76]刘亚锋等.2006.黄瓜连作土壤微生物区系的影响Ⅰ——基于可培养微生物种群的数量分析.中国蔬菜,(7):4-7.
    [77]刘雅莉等.2000.百合花不同发育期生理变化与衰老关系的研究.西北农业大学学报,28(1):109-112.
    [78]刘瑜等.2010.长期棉花连作对北疆棉区土壤生物活性与酶学性状的影响.生态环境学报,19(7):1586-1592.
    [79]刘忠堂,于龙生.2000.重迎茬对大豆产量与品质影响的研究.大豆科学,19(3):229-237.
    [80]泷岛.1983.防治连作障碍的措施.日本土壤肥料学杂志,(2):170-178.
    [81]路磊,李忠佩,车玉萍.2006.不同施肥处理对黄泥土微生物生物量碳氮和酶活性的影响.土壤,38(3):309-314.
    [82]吕卫光等.2006a.生物有机肥对连作西瓜土壤酶活性和呼吸强度的影响.上海农业学报,22(3):39-42.
    [83]吕卫光等.2006b.黄瓜连作对土壤理化性状及生物活性的影响研究.中国生态农业学报,14(2):119-121.
    [84]马俊彦,杨汝德,敖利刚.2007.植物苯丙氨酸解氨酶的生物学研究进展.现代食品科技,23(7):71-74;97.
    [85]马万里.2004.土壤微生物多样性研究的新方法.土壤学报,41(1):103-107.
    [86]马啸等.2009.连作对作物生长发育及品质和产量影响的研究进展.河南农业科学,(10):25-29.
    [87]马旭俊,朱大海.2003.植物超氧化物歧化酶(SOD)的研究进展.遗传,25(2):225-231.
    [88]马云华,魏珉,王秀峰.2004a.日光温室连作黄瓜根区微生物区系及酶活性的变化.应用生态学报,15(6):1005-1008.
    [89]马云华等.2005b.黄瓜连作土壤酚酸类物质积累对土壤微生物和酶活性的影响.应用生态学报,16(11):2149-2153.
    [90]孟立君.2004.设施不同种植年限土壤酶活性及其与土壤肥力关系的研究.哈尔滨:东北农业大学.
    [91]苗淑杰,乔云发,韩晓增.2007.大豆连作障碍的研究进展,中国生态农业学报,15(3):203-206.
    [92]钱存柔,黄仪秀.2008.微生物学实验教程.北京:北京大学出版社.
    [93]邱莉萍等.2004.土壤酶活性与土壤肥力的关系研究.植物营养与肥料学报,10(3):277-280.
    [94]阮维斌等.2001.溴甲烷土壤灭菌对大豆苗期根系生长的影响.生态学报,21(5):759-764.
    [95]苏海燕等.2010.烤烟连作对重庆土壤养分状况的影响.河南农业科学,(12):59-62.
    [96]苏秋芹等.2005.花生新品种“台南13”的叶面积及干物质积累分配动态.杂粮作物,25(1):38-39.
    [97]孙冰玉等.2010.烤烟连作对耕层土壤理化性质和土壤脲酶的影响.安徽农业科学,38(4):1826-1827.
    [98]孙冰玉.2010.连作对烟田土壤酶活性、微生物种群数量及土壤理化性质的影响.哈尔滨:东北林业 大学.
    [99]孙富林.2007.地黄连作障碍主要因子关系分析.郑州:河南农业大学.
    [100]孙磊.2008.不同连作年限对大豆根际土壤养分的影响.中国农学通报,24(12):266-269.
    [101]孙淑荣等.2004.玉米连作对中部农区主要土壤微生物区系组成特征影响的研究.玉米科学,12(4):67-69.
    [102]孙秀山等.2001.连作花生田主要微生物类群与土壤酶活性变化及其交互作用.作物学报,27(5):815-819.
    [103]童淑媛等.2008.玉米不同叶位叶片SPAD值的变化及其与生物量的相关性.核农学报,22(6):869-874.
    [104]万书波等.2007.连作花生的生育特性研究.山东农业科学,2:32-36.
    [105]王才斌等.2007.连作对花生光合特性和活性氧代谢的影响.作物学报,33(8):1304-1309.
    [106]王厚麟等.2010.不同类群植物叶片SPAD值的比较.安徽农业科学,38(7):3408-3411.
    [107]王空军等.1999.我国不同年代玉米品种开花后叶片保护酶活性及膜脂过氧化作用的演进.作物学报,25(6):700-706.
    [108]王茂胜等.2008.不同连作年限的植烟土壤理化性质与微生物群落动态研究.安徽农业学,36(12):5033-5034.
    [109]王明道等.2008.怀地黄连作对土壤微生物区系的影响.河南农业大学学报,42(5):532-538.
    [110]王倩,李晓林.2003.甲酸和肉桂酸对西瓜幼苗生长及枯萎病发生的作用.中国农业大学学报,8(1):83-86.
    [111]王帅等.2008.氮肥不同追施肥方法对春玉米光合特性的影响.杂粮作物,28(3):169-171.
    [112]王义芹等.2008小麦叶面积及光合速率与产量关系的研究.华北农学报,23(增刊):10-15.
    [113]王志刚.2006.大棚韭菜连作障碍机理及养分调控研究.兰州:甘肃农业大学.
    [114]汪立刚等.2001.土壤灭菌对大豆的增产效果及其机理探讨.西北农业学报,10(1):67-71.
    [115]吴凤芝等.1996a.大棚黄瓜连作对根系活力及其根际土壤酶活性影响的研究.东北农业大学学报,27(3):255-258.
    [116]吴凤芝,王伟,栾非时.1999b.土壤灭菌对大棚连作黄瓜生长发育影响.北方园艺,(5):49-49.
    [117]吴凤芝,孟立君,王学征.2006c.设施蔬菜轮作和连作土壤酶活性的研究.植物营养与肥料学报,12(4):554-558.
    [118]吴凤芝,王学征.2007d.设施黄瓜连作和轮作中土壤微生物群落多样性的变化及其与产量品质的关系.中国农业科学,40(10):2274-2280.
    [119]吴甘霖.2008.镉对花生幼苗生长及生理生态特性的影响.生物学杂志,25(5):31-33;68.
    [120]吴正锋等.2006a.连作对花生幼苗生理特性及荚果产量的影响.花生学报,35(1):29-33.
    [121]吴正锋等.2008b.山东省不同生态区花生产量及产量性状稳定性分析.中国生态农业学报,16(6):1439-1443.
    [122]徐瑞富,王小龙.2003.花生连作田土壤微生物群落动态与土壤养分关系研究.花生学报, 32(3):19-24.
    [123]许传俊,李玲.2002.植物多酚氧化酶的研究进展.生命科学研究,6(1):45-48;55.
    [124]许艳丽等.1999.大豆连作对生长发育动态及产量的影响.中国农业科学,32(增刊):64-68.
    [125]严昶升.1985.土壤肥力研究方法.北京:农业出版社.
    [126]杨凤萍,梁荣奇.2007.小麦多酚氧化酶研究进展.中国农学通报,23(4):209-214.
    [127]杨广超等.2004.西瓜的自毒作用研究Ⅰ西瓜根、茎、叶的水和酒精浸提液对其种子发芽的影响.上海农业学报,20(3):82-85.
    [128]杨丽娟等.2000.菜田土壤酶活性与黄瓜产量之间的关系.植物营养与肥料学报,6(1):113-116.
    [129]杨建霞.2005.黄土高原日光温室黄瓜连作下土壤微生物及酶活性变化的研究.杨凌:西北农林科技大学.
    [130]杨期和等.2005.植物化感作用对种子萌发的影响.生态学杂志,24(12):1459-1465.
    [131]杨生伟.2007.保护地草莓连作土壤微生物区系及酶活性变化研究.兰州:甘肃农业大学.
    [132]杨万勤,王开运.2002.土壤酶研究动态与展望.应用与环境生物学报,8(5):564-570.
    [133]姚拓等.1998.秦岭落叶松林土壤真菌种群及其生态特征研究.生态学杂志,17(4):7-13.
    [134]喻景权,杜尧舜.2000.蔬菜设施栽培可持续发展中的连作障碍问题.沈阳农业大学学报,31(1):124-126.
    [135]袁莉,鲁为华,于磊.2007.紫花苜蓿生长前期各部位提取液对种子萌发的自毒作用.中国草地学报,29(5):111-114.
    [136]袁龙刚,张军林.2006.辣椒连作障碍的主要原因及其对策.中国农村小康科技,(2):32-33.
    [137]岳东霞等.2004.酵母胞壁多糖对黄瓜植株防御酶系活性的影响.华北农学报,19(1):37-39.
    [138]张波,肖曼,李红玉.2007.高光照引起烟草叶片衰老过程中过氧化氢的代谢与相关酶活性变化规律.安徽农业大学学报,34(4):477-480.
    [139]张海燕等.2010.新疆南疆不同连作年限棉田土壤微生物群落结构的变化.微生物学通报,37(5):689-695.
    [140]张吉立等.2010.不同重茬烤烟干物质的积累规律及其产值.西北农业学报,19(8):111-115.
    [141]张静文.2009.连作和轮作棉田土壤微生物多样性分析及PGPR菌株筛选.乌鲁木齐:新疆农业大学.
    [142]张昆.2009.光强对花生光合特性、产量和品质的影响及生长模型研究.泰安:山东农业大学.
    [143]张瑞福等.2003.土壤微生物总DNA的提取和纯化.微生物学报,43(2):276-282.
    [144]张淑珍等.2008.大豆疫霉根腐病菌毒素处理抗感不同大豆品种后苯丙氨酸解氨酶活性的变化.作物杂志,(1):49-51.
    [145]张新慧.2009.花生连作障碍机制及其生物修复措施研究.兰州:甘肃农业大学.
    [146]张咏梅,周国逸,吴宁.2004.土壤酶学的研究进展.热带亚热带植物学报,12(1):83-90.
    [147]赵春芳,刘浩,余龙江.2010.连作对麦冬根际土壤细菌群落的影响.37(4):487-491.
    [148]赵伶俐等.2005.植物多酚氧化酶及其活性特征的研究进展.西北林学院学报,20(3):156-159.
    [149]赵艳.2009.黄瓜植株机械损伤效应及防御酶应答的研究.呼和浩特:内蒙古农业大学.
    [150]甄文超等.2005.连作草莓土壤微生物区系动态研究.河北农业大学学报,28(3):70-72;87.
    [151]甄志高等.2004.花生连作对植株营养水平和光合生理指标的影响.陕西农业科学,1:21,31.
    [152]郑亚萍等.2003a.花生高产群体特征研究.花生学报,32(2):21-25.
    [153]郑亚萍等.2008b.花生连作障碍及其缓解措施研究进展中国油料作物学报,30(3):384-388.
    [154]钟霈霖,乔荣,王天文.2003.克服草莓连作障碍对策.耕作与栽培,(2):48.
    [155]中国科学院土壤研究所微生物室.1985.土壤微生物研究法.北京:科学出版社.
    [156]周凯,郭维明,徐迎春.2004a.菊科植物化感作用研究进展.生态学报,24(8):1780-1788.
    [157]周凯.2004b.菊花自毒作用的初步研究.南京:南京农业大学.
    [158]邹莉等.2005.连作对大豆根部土壤微生物的影响研究.微生物学杂志,25(2):27-30.
    [159]朱新萍等.2009.连作棉田土壤酶活性特征及其与土壤养分相关性研究.新疆农业大学学报,2009,32(4):13-16.
    [160]Aarion I, Martikainen P J.1994.Mineralization of carbon and nitrogen in acid forest soil treated with forest and slowrelease nutrients.Plant Soil,164:187-193.
    [161]Alfred M M, Eitan H.1979.Polyphenol oxidase in plants. Phytochemistry,18:193-215.
    [162]Amos Sommer, et al.1994.Import targeting and processing of a plant poyphenol oxidase. Plant Physiol,105:1301-1311.
    [163]Anderson J V, Morris C F.2001a.An improved whole seed assay for screening wheat germplasm for polyphenol oxidase activity. Crop Science,41:1697-1705.
    [164]Anderson J V, Morris C F.2003b.Purification and analysis of wheat grain polyphenol oxidase (PPO) protein. Cereal Chemistry,80:135-143.
    [165]Anderson J V,et al.2006c.Biochemical and genetic characterization of wheat (Triticum spp.) kernel polyphenol oxidases.Journal of Cereal Science,44(3):353-367.
    [166]Aro E M, McCaffery S, Anderson J M.1993.Photoinhibition and D1 protein degradation in peas acclimated to different growth irradiances. Plant physiology,103:835-843.
    [167]Austin R B.1984.Genetic constrains on photosynthesis and yieldin wheat. Advance Photosynthesis Res, (4):103-110.
    [168]Balom E L,et al.2004.Soil enzyme activities under longterm tillage and crop rotation systerms in subtropical agro-ecosystems.Brazilian Journal of Microbiology,35:300-306.
    [169]Bending G D, TurnerM K, Jones J E.2002.Interactions between crop residue and soil organic matter quality and the function aldi-versity of soil microbial communities.Soil Biology& Biochemistry,34: 1073-1082.
    [170]Braun P G.1995.Effects of Cylindrocarpon and pythium species on apple seedlings and potential role in apple replant disease.Canadianjournal of Plant Pathology-revue Canadienne Dephytopathologie, 17(4):336-341.
    [171]Breana L. Simmons, David D.2008.Coleman.Microbial community response to transition from conventional to conservation tillage in cotton fields. Applied soil ecology,40:518-528.
    [172]Bridge P, Spooner B.2001.Soil fungi:diversity and detection.Plant and Soil,232:147-154.
    [173]Carter C, Thornburg R W.2000.Tobacco nectarin I purification and characterizat ion as a germin-like, manganese superoxide dismutase implicated in the defense of floral reproductive tissues.J Biol Chem, 275(47):36726-36733.
    [174]Celine J et al.2007.Soil health through soil disease suppression:which strategy from descriptors to indicators. Soil Biology & Biochemistry,39(1):1-23.
    [175]Chamnongpol S, et al.1996.Transgenic tobacco with a reduced catalase activity develops necrotic lesions and induces pathogenesis-related expression under high light. Plant J,10:491-503.
    [176]Chaves N,Escudero J C.1997.Allelopathic effectof cisstus ladanifer on seed germination.Func Ecol,11:432-440.
    [177]Chon S et al.2000. Effects of light, growth media, and seedling orientation on bioassays of alfalfa autotoxicity. Agronomy Journal,92(4):715-720.
    [178]Culter R G, Roy A K.1984.Free radicals and aging in the molecular basis of aging. Academic Press:Orlando.263-354.
    [179]Demeke T,et al.2001.Wheat analytical polyphenol oxidase distribution and genetic mapping in three inbred line populations. J Crop Sci,41:1750-1757.
    [180]Dhindsa R A, Plumb-Dhindsa P, Thorpe T A.1981.Leaf senescence Correlated with increased permeability and lipid per-oxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot,126:93-101.
    [181]Duncan W G, McCloud D E.1978.Physiological aspects of peanut yield improvement. Crop Ssc.,17: 1015-1020.
    [182]Ellis R J,et al.2003.Cultivation-dependent and independent approaches for determining bacterial diversity in heavy-metal-contaminated soil. Appl Environ Microb,69(6):3223-3230.
    [183]Farquhar G D,Sharkey T D.1982.Stomatal conductance and photosynthesis. Ann Rev Plant Physiol, 33:317-345.
    [184]Fugen Dou,Alan L.Wright,Frank M.Hons.2006.Depth distribution of soil organic C and N after long-term soybean cropping inTexas. Soil and Tillage Research,2335-2341.
    [185]Garbeva P,van Veen J A,van Elsas J D.2004.Microbial diversity in soil:selection of microbial populations by plant and soil type and imp lications for disease supp ressiveness. Annual Review. Phytopathol,42:243-270.
    [186]Garland J L and Mills A L.1991.Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level-sole-carbon-source utilization.Appl. Environ. Microbiol,57,2351-2359.
    [187]Goth L.1991.A simple method for determination of serum catalase activity and revision of reference range. Clin Chim Acta,196:143-152.
    [188]Grayston,et al.1998.Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biology& Biochemistry.30:369-378.
    [189]Greenberg D C.1992.Differences in yield determining processes of groundnut(A. hypogaea L.)genotypes in varied drought environments. Ann Appl Biol,120:557-566.
    [190]Hamel C et al.2005.Negative feedback on a perennial crop.fusarium crown and root rot of asparagus is related to changes in soil microbial community structure. Plant and Soil,268(1):75-87.
    [191]Hartwing V A,Phillips D A.1991.Release and modification of modgeneinducing flavonoids from alfalfa seeds. Plant Physiology,(95):804-807.
    [192]Hatcher D W, Kruger J E.1993.Distribution of polyphenol oxidases in flour mill streams of Canadian common wheat classes milled to three extraction rates. Cereal Chem,70:51-55.
    [193]Inderjit.1996.Plant phenolics in allelopathy.Bot.Rev,62:186-202.
    [194]Jiang GM, et al.2003.Changes in the rate of photosynthesis accompanying the yield in wheat cultivars released in the past 50 years. J Plant Res,116:347-352.
    [195]Jimenez, Dubcovsky J.1999.Chromosome loction of genes affecting polyphenoloxidase activity in seeds of common and durum wheat.Plant breeding,118:395-398.
    [196]Jin Nakashima, et al.1997.Immunocytochemical localization of phenylalanine ammonia-lyase and cinnamyl alcohol dehydrogenase in differentiating tracheary elements derived from Zinnia mesophyll cells.Plant Cell Physiology,38(2):113-123.
    [197]Joshi Y C, et al.1998.Water relations in two cultivars of groundnut (A. hypogaea L) under soil water deficit.Trop Agric,65(2):182-184.
    [198]Jukanti A K.,et al.2006.Molecular and biochemical characterisation of polyphenol oxidases in developing kernels and senescing leaves of wheat (Triticum aestivum). Functional Plant Biology, 33:685-696.
    [199]Kar R K,Choudhuri M A.1987.Possible mechanisms of light-induced chlorophyll degradation in senescing leaves of Hydrilla verticillata. Plant Physiol,70:729-734.
    [200]Karthikeyanb et al.2007.Studies on rhizosphere microbial diversity of some commercially important medicinal plants. Colloids Surf. B:Biointerfaces, doi:10.1016/j.colsurfb,09.004.
    [201]Kruger J E, Hatcher D E, Depauw J E.1994.A whole seed assay for polyphenol oxidase in Canadian prairie spring wheat and its usefulness as a measure of noodle darening. Cereal chem,71:324-326.
    [202]Kuntal M.Hati,Anand Swarup,A.K.Dwicedi.2007.Changes in soil physical properties and organic carbon status at the topsoil horizonof a vertisol of central India after 28 years of continuous cropping, fertil- ization and manuring. Agriculture, Ecosystems and Environment,127-134.
    [203]Lastra O M Gomez, et al.1982.Catalase activity and isozyme pattern of the metalloenzyme system, superoxide desmutase, as a function of leaf development during growth of Pisum sativum L. plants. Physiol. Plant,55:209-213.
    [204]Lcuning R.1995.A critical appraisal of a combined stomatal photosynthesis model for C3 plant. Plant Cell Envi-ron, (18):339-355.
    [205]Liu J G,et al.2008.Allelopathic effects of cotton in continuous croppingAllelopathy Journal,21(2):299-306.
    [206]Malik C P, Parmil-Singh K S.1990.Modification of leaf photosynthesis by foliar application of aliphatic alcohols. J Agron Crop Sci,165(2/3):198-201.
    [207]Marianne Le Bail, Marie-Helene Jeuffroy, Christine Bouchard.2005.Is it possible to forecast the grain quality and yield of different varieties of winter wheat from Minolta SPAD meter measurements? European Journal of Agronomy,23(4):379-391.
    [208]Mazzola M.1998.Elucidation of the microbial complex having a causal role in the development of apple replant disease in Washington.Phy-topathology,88(9):930-938.
    [209]McCaig T N, Fenn D Y K, Knox R E.1999.Measuring polyphenol oxidase activity in a wheat breeding program. Can J Plant Sci,79:507-514.
    [210]Min M,Won S L,Thomas F B.2008. Design of a hyperspectral nitrogen sensing system for orange leaves. Comp-uters and Electronics in Agriculture,63:215-226.
    [211]Misa A L,Isoda A,NonjMA H.1995.Plant type and dry matter production in peanut cultivars Ⅱ.Varietal differen-tees in radiation interception.Jpn. J. Crop Sci.,1:73-77.
    [212]Moll R H,Jackson WA,Mikkelsen R L.1994.Recurrent selection for maize grain yield:dry matter and nitrogen accumulation and partitioning changes. Crop Sci,34:874-881.
    [213]Monika Belkot, Danuta Pieta.2004.Microbial communities in the rhizosphere soil of soybean cultivated after Tansy Phacelia, Winter Wheat, White Mustard, Rye, Agrimony and Soybean as previous corps. Jounal of Plant Protection Research,44(4):277-286.
    [214]Monreal C M,Bergstrom D W.2000.Soil enzymatic factors expressing the influence of land use,tillage system and texture on soil biochemical quality. Canadian Journal of Soil Science,80:419-428.
    [215]Morgan J A W, Bending G D, White P J.2005.Biological costs and benefits to plant-microbe interactions in the rhizosphere. Experi Botany,(56):417.
    [216]Muyzer G,Waal E C,Uitterlinden A G.1993.Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reactionamplified genes encoding for 16S RNA.Appl Environ Microbiol,59:695-700.
    [217]Nakashima J.1997.Immunocytochemical localization of phenylalanine ammonialyase and cinnamyl alcohol dehydrogenase in differentiating tracheary elements derived from Zinnia mesophyll cells.Plant Cell Physiology,38(2):113-123.
    [218]Overeen J C.Threlfall D R.1976.Biochemical aspect of plant parasite rela-tionships. NewYork: Academic Press,134.
    [219]Pallas J, Samish J.1974.Photosynthetic responses of peanut. Crop Sci.,14:478-482.
    [220]Park S W, et al.2002.Enzymatic specificity of three ribosome inactivating proteins against fungal ribosomes, and correlation with antifungal activity.Planta,216(2):227-234.
    [221]Partington J C, Smith C, Bolwell G.1999.Changes in location of polyphenol oxidase in potato (Solanum tuberrosum L.) tuber during cell death in response to impact injury:comparison with wound tissue. Planta,207:449-460.
    [222]Pauls K P, Thomp son J E.1984.Evidence for the aeeumulation of peroxidized lip id in membrane of senescing cotyledons.Plant Physiol,75:1152-1157.
    [223]Peter W. Thygesen, et al.1995.Polyphenol oxidase in potato(A multigene fam ily that exh ibits differential exp-ression patterns). Plant Physiol,109:525-531.
    [224]Piyada Thipyapong, et al.1997.Differential Expression and turnover of the tomato polyphenol oxidase gene family during vegetative and reproductive development. Plant Physiol,113:707-718.
    [225]P. Songsri, S, Jogloy, C.C. Holbrook.2009.Association of root, specific leaf area and SPAD chlorophyll meter reading to water use efficiency of peanut under different available soil water. Agricultural water management,96(5):790-798.
    [226]Putam A R, Tang C S.1986. The science of allelopathy. New York: Wiley Interscience, Inc,69-70.
    [227]Reboreda R, Cacador I.2008.Enzymatic activity in the rhizosphere of Spartina maritima:Potential contribution for phytoremediation of metals. Mar. Environ.Res.,65(1):77-84.
    [228]Reynolds M P et al.1994.Physiological and morphological traits associated with spring wheat yield under hot, irrigated conditions. Aust J Plant Physiol,21:717-730.
    [229]Ricardo J. Haro et al.2008. Seed yield determination of peanut crops under water deficit: soil strength effects on pod set, the source-sink ratio and radiation use efficiency. Field crops research,109:24-33.
    [230]Rice E L. Allelopathy.2nd Ed, Academic Orlando, F L.1984.
    [231]Richard J E,et al.2003.Cultivation-dependent and independent approaches for determining bacterial diversity in heavy-metal-contaminated soil.Applied and Environmental Microbiology,69(6):3223-3230.
    [232]Richardson A D, Duigan S P, Berlyn G P.2002.An evaluation of noninvasive methods to estimate foliar chlorophyll content. New Phyto.,153:185-194.
    [233]Robert P. Larkin.2003.Characterization of soil microbial communities under different potato cropping systems by microbial population dynamics, substrate utilization, and fatty acid profiles. Soil Biology & biochemistry.,35:1451-1466.
    [234]Saggar S,Yeates G W,Shepherd T G.2001.Cultivation effects on soil biological properties, microfauna and organic matter dynamics in Eutric Gleysol and Gleyic Luvisol soils in New Zealand. Soil Tillage Res,58 (1/2):55-68.
    [235]Samis K, Bowley S, McKersie.2002.Pyramiding Mn- superoxide dismutase transgenes to improve persistence and biomass production in alfalfa. J Expl Bot,53(372):1343-1350.
    [236]Schutter M E, Dick R P.2001.Shifts in substrate utilization potential and structure of soil microbial communities in response to carbon substrates. Soil Biol.Biochem,33(11):1481-1491.
    [237]ScottC Chapman, Hector JBarreto.1997.Using a chlorophyllmeter to estimate specific leaf nitrogen of tropical maize during vegetative growth. Agron Journal,89:557-662.
    [238]Sharkey T D,Badger M R.1982.Effects of water stress on photosynthetic electron transport, photophosphorylation and metabolite levels of Xanthium sturaium mesophyll cells. Planta 156:199-206.
    [239]Shiomiy et al.1999.Comparison of bacterial community struetures in the rhizoplane of tomato plants grown in soils suppressive and conducive towards bacterial wilt.Applied and Environmenial Mierobiology,65:3996-4001.
    [240]Sho kes F M, Berger R D, Smith D H.1987.Reliability of disease assessment procedures:a case study with lateleaf spot of peanut.Oleagineux,42(6):245-251.
    [241]Simmons S R,Jones R J.1985.Contribution of presilking assimilate to grain yield on maize.Crop Science,25:1004-1006.
    [242]Smeal D,Zhang H.1994.Chlorophyll meter evaluation for nitrogen management in corn. Commun. Soil Sci, Plant Anal,25(9210):1495-1503.
    [243]Imelda R.Soriano,Georges Reversat.2003.Management of Meloidogyne graminicola and yield of upland rice in South-Luzon,Philippines.Nematology,6:879-884.
    [244]Subramaniam R,et al.1993.Structure,inheritance,and expression of hybrid poplar(Populus trichocarpa x Populu Delloides)phenylalanine ammonia-lyase genes.Plant Physiology,(102):71-83.
    [245]Sun Y H, et al.1996.Theoretical foundations for high yield of groundnut in China. Achieving High Groundnut Yields. International Crops Research Institue for Semi-Arid Tropics,129-139.
    [246]Szajdak L.1994.Phenolic acids in brown soils under continuous cropping of rye and crop rotation. Polish J Soil Sci,27(2):113-121.
    [247]Tadahiko Mae.1997.Physiological nitrogen efficiency in rice: Nitrogen utilization photosynthesis and yield potential.Plant Soil,196:201-210.
    [248]Tobias D J,et al.1994.Seasonal changes of leaf chlorophyll content in the crowns of several broad-leaved tree species. J Jap Soc Reveget Technol,20(1):21-32.
    [249]Tracy S Hawkins, Emile S Gardiner, Greg S Comer.2009.Modeling the relationship between extractable chlorophyll and SPAD-502 readings for endangered plant species research. Journal for Nature Conservation,17(2):123-127.
    [250]Van Elsas J D, Garbeva P, Salles J.2002.Effects of agronomical measures on the microbial diversity of soils as related to the supp ression of soil-borne plant pathogens. Biodegradation,13:29-40.
    [251]Vendate Swarlu B, Prasad G V.1980.Pre-and-post-flowing photosynthesis contribution to grain yield in rice. Indian Plant Physical,23:300-308.
    [252]Verstraete W.1977.Soil microbial and biochemical characteristics in relation to soil management and fertility. Soil Biol. and Bioch.,9:253-258.
    [253]Victoria J Allison, et al.2005.Changes in soil microbial community structure in a tallgrass prairie chronose-quence. Soil Biology & Biochemistry, Biochemistry,69:1412-1421.
    [254]Virginia Aparicio, Jose Luis Costa.2007.Soil quality indicators under continuous cropping systems in the Argentinean Pampas. Soil & Tillage research,96:155-165.
    [255]Vlasta Catska et al.1982.Rhizosphere micro-organisms in relation to the apple replant problem.Plant and Soil,2:187-197.
    [256]Wardle D A, Nicholson K S, Rahman A.1993.Influence of plant age on allelopathic potential of nodding thistle(Carduus natus L.) against pasture grasses and legumes. Weed Research,33:69-78.
    [257]Warrag MOA.1995. Autotoxic potential of foliage on seed germination and early growth of mesquite(Prosopis juliflora). Journal of Arid Environmental,31(4):415-421.
    [258]G.Bruce Williamson,Donald Richardson.1988.Bioassays for alleopathy:Measuring treatment responses with indepent controls.1:181-187.
    [259]WrightG C,Hammer GL.1994.Distribution of nitrogen and radiationuse efficiency in peanut canopyes. Australian J.of Agri. Res:earch,45(3):565-574.
    [260]Wright P R.1999.Premature senescence of cotton-predominantly a potassium disorder caused by an imbalance of source and sink. Plant and soil,211:231-239.
    [261]Wan C B, et al.1996.Studies on light interception, photosynthesis, and respiration in high-yielding groundnut canopies. Achieving High Groundnut Yields. International Crops Research Institue for Semi-Arid Tropics,171-180.
    [262]Yamane A, Nishimura H, Mizutani J.1992.Allelopathy of yellow field cress:Identification and characterization of phytotoxic constituents. Journal of Chemical Ecology,18:683-691.
    [263]Yu JQ, Matsui Y.1994. Phytotoxic substances in root exudates of cucumber. Journal of Chemical Ecology,20:21-31.
    [264]Zak, J.C et al.1994. Functional diversity of microbial communities:a quantitative approach. Soil Biology & Biochemistry 26,1101-1108.
    [265]Zeller V,Bardgett R D,Tappeiner U.2001.Site and management effects on soil microbial properties of subalpine meadows:A study of land abandonment along a north-south gradient in the European Alps.Soil Biol Biochem,33:639-649.
    [266]Zibilske LM, Bradford JM.2003.Tillage effects on phosphorus mineralization and microbiol activity. Soil Sci.,168(10):677-685.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700