甲烷经溴氧化途径制备高碳烃催化性能及工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然气是当今世界公认的清洁能源,它在一次性能源消费中占有的比例越来越高,预计2050年天然气将有望取代石油成为第一能源。甲烷作为天然气的主要成分,其在天然气中的含量一般在80%以上。因此,研究天然气的转化利用实际上就是研究甲烷的转化利用。
     本研究工作提出了一种全新的由甲烷制备高附加值化学品的新工艺。在这个新工艺中,甲烷首先与HBr和02进行溴氧化反应(OBM)制备溴甲烷,然后把合成的溴甲烷转化为液体高碳烃和再生出HBr,释放出的HBr再返回溴氧化反应器以实现HBr的循环利用。本工艺与传统的高能耗合成气工艺相比,所采用的两步反应均为常压放热反应,并且不需要水作为原料。本工艺对生产的规模化依赖程度较低,生产装置可以建在淡水相对缺乏的地区或气藏量相对较小的油田伴生气和煤层气附近。
     本文详细研究了新工艺流程中两个反应所需催化剂的催化性能、工艺流程设计中不可回避的耐腐蚀材料选择和产物高碳烃中微量HBr的脱除等方面。为满足甲烷经溴氧化途径制备醋酸工艺中羰基化单元的原料组成需求,还进行了以CH3Br和CO为共同产物的甲烷溴氧化催化剂的研究。
     在甲烷溴氧化制备溴甲烷的催化剂研究中,首先根据OBM反应的特点,设计和选取了催化剂的活性组分、载体类型和制备方法。通过实验考查,最终筛选确认溶胶-凝胶法制备的Rh-SiO2催化剂(Rh/SiO2)具有最优的催化性能。在0.4Rh/SiO2-900-10催化剂上,甲烷的单程转化率达到了35.6%,溴代甲烷的选择性达到了90%,催化剂在连续反应650小时后甲烷转化率始终保持在35%以上。通过对催化剂制备方法、反应条件以及催化反应机理的研究发现,OBM反应产物分布与催化剂活性组分和反应条件有关,因此可以通过调整催化剂的活性组分及改变反应条件达到定向地控制反应产物的分布的目的。
     为了满足甲烷经溴氧化途径制备醋酸工艺的要求,我们还考察了同时以CH3Br和CO为目的产物的OBM反应。结果发现在具有相对高的比表面的催化剂(0.4Rh/SiO2-700-10,267.5m2/g)上,最高可以得到76.2%的甲烷单程转化率,而且CH3Br和CO的选择性均为42.2%。反应中生成的副产物CO2的选择性仅为5.5%。通过优化催化剂的制备方法改善了高比表面催化剂的热稳定性和催化活性。
     在溴甲烷转化制高碳烃的反应中,我们重点研究了不同硅铝比的2wt%MgO/HZSM-5催化剂对反应产物分布和催化活性的影响。结果发现硅铝比为360/1的催化剂具有较好的催化活性。在连续反应400小时后,溴甲烷的转化率仍然始终保持在99%以上,产物主要以C3-C8的烯烃为主。通过对催化剂进行的XRD、BET、NH3-TPD、TG/DSC和GC/MS表征发现,反应积碳类型与催化剂的酸性中心强度有关。催化剂失活的主要原因为在强酸中心上生成了大分子的多甲基取代芳烃,堵塞了催化剂孔道所致。我们还对溴甲烷转化制高碳烃的反应机理进行了初步的探讨。
     在耐腐蚀材料的试验中,选定了三种不同的腐蚀环境:反应环境、换热环境和储运环境。研究工作针对不同的腐蚀环境特点进行了耐腐蚀材料的挂片实验,筛选了一批适应于不同腐蚀环境的耐腐蚀材料,这些材料有可能用于反应器和系统流程部件的制造。
     我们还设计了一个脱除产物中微量HBr的技术单元,利用负载的二元金属氧化物吸收剂(MOx/SiO2)吸收HBr,可以将产物高碳烃中的HBr深度脱除至4.6×10-16mol/L以下,并且可以再生回收HBr。
Natural gas is considered as clean energy throughout the world. The proportion of natural gas in the world's primary energy consumption is increasing with the continuous increasing price and the uncertainty supply of petroleum. It is expected that natural gas will replace petroleum as the first energy in2050. Methane is the major component of natural gas with more than80%content. Hence, the chemistry of natural gas is actually the chemistry of methane.
     The investigation of the dissertation proposed an alternative process for methane utilization to prepare value-added chemicals via non-syngas route. In the process, methane was firstly converted to methyl bromide in the presence of HBr and O2, then the as-synthesized methyl bromide was converted to liquid hydrocarbon and released HBr, which could be recycled in the reaction. Compared with the commercialized energy-consuming syngas route, both of the reactions are exothermic reaction, and no H2O is needed as reactant (contrarily, H2O is produced as by-product). Plants could be constructed at districts with short of water, such as desert or ocean, and stranded reserves, such as associated gas or coal bed gas.
     The investigation was focued in the following aspects:1) the catalytic performances of both the oxidative bromination of methane and the condensation of methyl bromide,2) the corrosion-resistant materials testing under OBM condition, and3) the HBr removal from product hydrocarbons. The catalytic performance of OBM reaction with CH3Br and CO as target products was also investigated, which could be used in acetic acid synthesis.
     In the investigation of OBM reaction, the active component, support, and preparation method of the catalysts were explored. Rh/SiO2prepared by sol-gel method showed the best performance. A methane conversion of35.6%with methyl bromide selectivity of more than90%was obtained over0.4Rh/SiO2-900-10. A catalyst lifetime of more than650hours was achieved. By adjusting catalyst specific surface area or manipulating the reaction conditions, different product orientation could be achieved.
     In order to fit the feedstock demanding in acetic acid synthesis, the catalytic performance of OBM reaction with both CH3Br and CO as target products was also investigated. Over a0.4Rh/SiO2-700-10catalyst with relatively high specific surface area (267.5m2/g), high methane conversion of76.2%with CH3Br and CO equi-selectivity of42.2%was obtained. In this case, the selectivity of CO2was suppressed to5.5%. The thermal stability of catalyst was also improved by optimizing catalyst preparation method.
     In the higher hydrocarbons synthesis from methyl bromide, product distribution and catalyst deactivation were investigated on2wt%MgO/HZSM-5catalysts with different Si/Al ratios. Catalyst with a Si/Al ratio of360/1had the best performance and the longest lifetime. A methyl bromide conversion of99.0%was maintained within400h. The major products were the C3-C8olefins. The fresh and used catalysts were characterized by XRD, BET, NH3-TPD, TG/DSC, and GC/MS methods. The characterizations showed that the carbon deposition depended on the acid strength of catalyst. The investigation showed that multi-methyl substituted aromatics were primarily formed on strong acid sites, which were responsible for the deactivation of catalyst. The mechanism of methyl bromide to hydrocarbon was also discussed.
     In the corrosion-resistant material testing, three different reaction conditions were selected:1) the reaction condition,2) the heat-exchange condition, and3) the transportation condition. A series of corrosion-resistant materials were tested under the three conditions by flake hanging experiments.
     A system for the removing of HBr from hydrocarbons was also designed. In the system, a regeneratable HBr absorbent was used to clear out and recover HBr. The absorbent is MOx/SiO2, which could remove HBr from products to reach a HBr concentration below4.6×10-1mol/L
引文
[1]贺黎明,沈召军.甲烷的转化与利用.北京:化学工业出版社,2005,1-8
    [2]BP. Statistical Review of World Energy.bp.com/statisticalreview,2009
    [3]汪寿建.天然气综合利用技术.北京:化学工业出版社,2003
    [4]2008-2009中国天然气行业市场预测与产业咨询研究报告www.chinaccm.com,2007
    [5]2007-2010年中国天然气行业市场调查与发展预测报告www.chinaccm.com, 2007-10-22
    [6]范庆虎,李红艳,尹全森等.中国天然气消费市场与天然气综合利用.山西能源与节能,2009,53(2):31-35
    [7]徐文渊,蒋长安.天然气利用手册.北京:中国石化出版社,2006
    [8]Knox B E, Palmer H B. Bond Dissociation Energies in Small Hydrocarbon Molecules. Chem. Rev.1961,61:247
    [9]胡捷,贺德华.甲烷直接转化及制合成气研究新进展.天然气化工:C1化学与化工,2003,28(2):46-51
    [10]Sabatier P, Senderens J B, Compt. Rend. J. Soc. Chem. Ind.1902,134:514
    [11]Juan-Juan J, Roman-Martinez M C, Illlan-Gomez M J, Effect of potassium content in the activity of K-promoted Ni/Al2O3 catalysts for the dry reforming of methane. Appl. Catal. A:Gen.,2006,301(1):9-15
    [12]Frusteri F, Arena F, Potassium-enhanced stability of Ni/MgO catalysts in the dry-reforming of methane. Catal. Comm.,2001,2(2):49-56
    [13]Nara A, Suzuki K, Tamai M, et al. Development of synthetic gasoline production process. Mitsubishi Heavy Industries Ltd. Tech. Rev.,1987,24(1): 69-77
    [14]Zou Y, Rodrigues A E. The separation enhanced reaction process (SERP) in the production of hydrogen from methane steam reforming. Adsorption Science & Technology,2001,19(8):655-671
    [15]Hayashi H, Murata S, Tago T. Methane steam reforming over Ni/Al2O3 catalyst prepared using W/O microemulsion. Chem. Lett.,2001,30(1):34-35
    [16]Craciun R, Daniel W, Knozinger H. The effect of CeO2 structure on the activity of supported Pd catalysts used for steam reforming. Applied Catalysis A,2002, 230(1-2):153-168
    [17]吴且毅,韩续良.轻油绝热催化预热转化工艺探讨.天然气化工,1994,19(2):32-38
    [18]Liander H. Trans. Faraday Soc.,1929,25:462-472
    [19]路勇,沈师孔.甲烷催化部分氧化制合成气研究新进展.石油与天然气化,1997,26(1):6-13
    [20]严前古,李基涛.载体对甲烷催化部分氧化制合成气的影响.天然气化工C1化学与化工,1999,24(3):4-8
    [21]张玉红,许荃.溶胶一凝胶法制备甲烷部分氧化制合成气用催化剂.催化学报,1998,19(6):550-553
    [22]Hickman D A, Schmidt L D. Production of syngas by direct catalytic oxidation of methane. Science,1993,259:343-346
    [23]Kunimori K, Umeda S, Nakamura J, et al. Partial oxidation of methane to synthesis gas over Rhodium vanadate, RhVO4:Redispersion of Rh metal during the reaction. Bull. Chem. Soc. Jpn.,1992,65(9):2562-2564
    [24]Bhattacharga A K, Breach J A, Chand S, et al. Selective oxidation of methane to carbon monoxide on supposed palladium catalyst. Appl. Catal. A:Gen.,1992, 80(1):L1-L5
    [25]Vernon P D F, GreenM L H, Cheetham A K, et al. Partial oxidation of methane to synthesis gas. Catal. Lett.,1990,6(2):181-186.
    [26]Prettre M, Biclmer C, Perrin M. The catalytic oxidation of methane to carbon monoxide and hydrogen. Trans. Faraday Soc.,1946,42:335b-339
    [27]Vermeiren W J M, Blomsma E. Jacobs P A. Catalytic and thermodynamic approach of the oxyreforming reaction of methane. Catal. Today,1992,13 (2-3): 427-436
    [28]Takehira K, Hayakawa T, Harihara H, et al. Partial oxidation of methane to synthesis gas over (Ca, Sr) (Ti, Ni) oxides. Catal. Today,1995,24(3):237-242
    [29]Guo C L, Zhang J L, Li W, et al. Partial oxidation of methane to syngas over BaTi1-xNixO3 catalysts. Catal. Today,2004,98(4):583-587
    [30]Claridge J B, York A P E, Brungs A J, et al. New catalysts for the conversion of methane to synthesis gas:Molybdenum and Tungsten Carbide. J. Catal,1998, 180(1):85-100
    [31]Xiao T C, Wang H T, York A P E, et al. Effect of sulfur on the performance of molybdenum carbide catalysts for the partial oxidation of methane to synthesis gas. Catal. Lett.,2002,83(3-4):241-246
    [32]Zhu Q L, Zhang B, Zhao J, et al. The effect of secondary metal on MO2C/Al2O3 catalyst for the partial oxidation of methane to syngas. J. Mol. Catal. A:Chem. 2004.213(2):199-205
    [33]Fischer Y F, Tropsch H. Conversion of methane into hrdrogen and carbon monoxide. Brennstoff-Chemie,1928,9:39-46
    [34]魏俊梅.纳米氧化物负载Ni催化剂上CO2重整CH4制合成气的研究:[清华大学博士学位论文].北京:清华大学化学系,2001
    [35]Wang R, Liu X B, Chen Y X, et al. Efect of metal support interaction on coking resistance of Rh-based catalysts in CH4/CO2 reforming. Chin. J. Catal.,2007, 28(10):865-869
    [36]Gheno S M, Damyanova S, Riguetto B A, et al. CO2 reforming of CH4 over Ru/zeolite catalysts modified with Ti. J. Mol. Catal. A:Chem.,2003,198(1-2): 263-275
    [37]Bhat R N, Sachtler W M H. Potential of zeolite supported rhodium catalysts for the CO2 reforming of CH4. Appl. Catal. A:Gen.,1997,150(12):279-296
    [38]Tokunaga O, Ogasawara S. Reduction of carbon dioxide with methane over nickel catalyst. Catal. Lett.,1999,39(1):69-74
    [39]徐恒仪,孙希贤,范业梅等.甲烷、二氧化碳转化制合成气的研究:Ⅰ.催化剂及其催化性能.石油化工,1992,21(3):147-153
    [40]Jeong H, Kim K I, Song I K, et al. Effect of promoters in the methane reforming with carbon dioxide to synthesis gas over Ni/HY catalysts. J. Mol. Catal. A: Gen.,2006,246(1-2):43-38
    [41]Song C S. Tri-reforming:A new process for reducing CO2 emission. Chemical Innovation,2001,31(1):21-26
    [42]Tennison S R, Jennings J R. Catalytic Ammonia Synthesis. New York:Plenum Press,1991,303
    [43]刘化章,徐如玉,蒋祖荣.氧化亚铁基氨合成催化剂及制备方法.中国专利.861085280,1994-09-14
    [44]Liu H Z, Xu R Y, Jiang Z R, Fe1-xO-based catalyst for ammonia synthesis. US. Patent 5846507,1998-12-8
    [45]沈佩芝,雷玉萍.甲醇市场状况及科技开发进展.化工进展,2003,22(1):94-97
    [46]Kubbeler H K, Erpenbach H, Gehrmann K, et al. Process for the production of acetic anhydride. EP. Patent.0026280,1981-04-08
    [47]候昭胤,费金华,郑小明.二甲醚的应用和生产工艺.石油化工,1999,28(1):59-62
    [48]亢茂青,任兆鑫.二甲醚的制备及应用.合成化学,1994,2(4):320-323
    [49]Slaugh L H. Catalyst for the preparation of dimethyl ether. US. Patent 4375424, 1983-03-01
    [50]葛庆杰,黄友梅,张天莉.合成气直接制取二甲醚的双功能催化剂.天然气化工,1996,47(13):3769-3772
    [51]Fischer Y F, Tropsch H. Brennstoff-Chemie,1923,4:276
    [52]Anderson R B. The Fischer-Tropsch synthesis. Orlando:Academic Press Inc. 1984
    [53]Meisel S, McCullough J P, Lechthaler C H, et al. Chemtech.1976,6:86-89
    [54]Chang C D, Silvestri A J. The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts. J. Catal.,1977,47:249-259
    [55]Chang C D. The New Zealand gas-to-gasoline plant:An engineering tour de force. Catal. Today,1992,13(1):103-111
    [56]Stocker M. Methanol-to-hydrocarbons:catalytic materials and their behavior. Micropor. Mesopor. Mater.,1999,29(1-2):3-48
    [57]钱伯章.甲醇制汽油路线及其应用.化工设计通讯,2009,35(4):31-36
    [58]Cosyns J, Chodorge J, Commereuc D. Maximize propylene production. Hydrocarbon Processing,1998,1:28-29
    [59]Howden M G, Botha J J C, Scurrell M S. Chem. Ind.1992,46:391
    [60]Mcintosh R J, Seddon D. The properties of magnesium and zinc oxide treated ZSM-5 catalysts for onversion of methanol into olefin-rich products. Appl.Catal.,1983,6(3):307-314
    [61]Inui T, Matsuda H, Nagata H, et al. Highly selective synthesis of light olefins from methanol on a novel Fe-silicate. J. Catal.,1986,98(2):491-501
    [62]Wu X C, Anthony R G. Effect of feed composition on methanol conversion to light olefins over SAPO-34. Appl. Catal. A:Gen.,2001,218 (1-2):241-250
    [63]Chen D, Rebo H P, Holmen A, et al. Methanol conversion to light olefins over SAPO-34:kinetic modeling of coke formation. Micropor. Mesopor. Mater., 2000,35-36:121-135
    [64]Wu X C, Abraha M G, Anthony R G. Methanol conversion on SAPO-34: reaction condition for fixed-bed reactor. Appl. Catal. A:Gen.,2004,260(1): 63-69
    [65]Dent L S, Smith J V. Crystal structure of chabazite, a molecular sieve. Nature, 1958,181:1794-1796
    [66]Inui T, Morinaga N, Takegami Y. Rapid synthesis of zeolite catalysts for methanol to olefin conversion by the precursor heating method. Appl. Catal. 1983,8(2):187-197
    [67]Santiesteban J G, Chang C D, Vartuli J C. Catalytic conversion of methanol to linear olefins using ZSM-35 catalyst. Zeolites,1997,18(2):234-234(1)
    [68]Cormerais F X, Chem Y S, Guisnet M, et al. Acid strength of the catalytic sites responsible for the conversion of dimethyl ether into hydrocarbons in Y zeolites. J. Chem. Res. S.,1981:290-291
    [69]Marchi A J, Froment G F. Catalytic conversion of methanol into light alkenes on mordenite-like zeolites. Appl. Catal. A:Gen.,1993,94(1):91-106
    [70]Mikkelsen O, Kolboe S. The conversion of methanol to hydrocarbons over zeolite H-beta. Micropor. Mesopor. Mater.,1999,29(1-2):173-184
    [71]Sodesawa T. Methanol conversion to lower hydrocarbons over proton exchanged NaY zeolite catalysts. React. Kinet. Catal. Lett.,1986,32(2): 251-255
    [72]Chang C D. Mechanism of hydrocarbon formation from methane. Methane Conversion.1988:127-143
    [73]Olah G A, Doggweiler H, Tabor T C. Onium ylide chemistry.1. Bifunctional acid-base-catalyzed conversion of heterosubstituted methanes into ethylene and derived hydrocarbons. The onium ylide mechanism of the C1→C2 conversion. J. Am. Chem. Soc.,1984,106(7):2143-2149
    [74]Sayed M B, Kydd R A, Cooney R P. A Fourier-transform infrared spectral study of H-ZSM-5 surface sites and reactivity sequences in methanol conversion. J. Catal.,1984,88(1):137-149
    [75]Mole T. Conversion of methanol to ethylene over ZSM-5 zeolite:A reexamination of the oxonium-ylide hypothesis, using 13carbon-and deuterium-labeled feeds. J. Catal.,1983,84(2):423-434
    [76]Hunter R, Hutchings G J. LiAl(OPr')4 as a model compound for the conjugate base of the zeolite catalyst H-ZSM-5 and its reaction with various methylating agents. J. Chem. Soc., Chem. comm.,1985:886-887
    [77]Dass D V, Martin R W, Quinn G W. A re-examination of evidence for carbine (CH2) as an intermediate in the conversion of methanol to gasoline. The effect of added propane. Methane Conversion.1988:177-181
    [78]Olah G A, Prakash G K S, Olah J A. Remarks on the mechanism of ethylene formation from methyl alcohol. J. Chem. Soc., Chem. Commun.,1986:9-10
    [79]Novakova J, Kubelkova L, Dolejsek Z. Primary reaction steps in the methanol-to-olefin transformation on zeolites. J.Catal.,1987,108(1):208-213
    [80]Ono Y, Mori T. Mechanism of methanol conversion into hydrocarbons over ZSM-5 zeolite. J. Chem. Soc., Faraday Trans.1981,77(1):2209-2221
    [81]Olah G A, Klopman G, Schlosberg R H. Super acids. III. Protonation of alkanes and intermediacy of alkanonium ions, pentacoordinated carbon cations of CH5+ type. Hydrogen exchange, protolytic cleavage, hydrogen abstraction; polycondensation of methane, ethane,2,2-dimethylpropane and 2,2,3,3-tetramethylbutane in FSO3H-SbF5. J. Am. Chem. Soc.,1969,91(12): 3261-3268
    [82]Smith R D, Futrell J H. Evidence for complex formation in the reactions of CH+3 and CD+3 with CH3OH, CD3OD, and C2H5OH. Chem. Phys. Lett.,1976, 41(1):64-67
    [83]Chang C D, Hellring S D, Pearson J A. On the existence and role of free radicals in methanol conversion to hydrocarbons over HZSM-5:I. Inhibition by NO J. Catal.,1989,115(1):282-285
    [84]Hutchings G J. Studies on the Mechanism of Formation of the Initial Carbon Carbon Bond in the Methanol Conversion Reaction over Zeolite Catalyst H-ZSM-5:A Comparison of NO and NH3 as Catalyst Poisons. Stud. Surf. Sci. Catal.,1991,61:405-412
    [85]Kolboe S. Methanol Conversion to Hydrocarbons over Protonated Zeolites:ii Search for evidence for role of free radicals. Stud. Surf. Sci. Catal.,1991,61: 413-419
    [86]张大治,氯甲烷在分子筛催化剂上催化转化反应的研究,[中科院博士学位论文].大连:大连化学物理研究所,2006
    [87]Dahl I M, Kolboe S. On the reaction mechanism for propene formation in the MTO reaction over SAPO-34. Catal Lett,1993,20(3-4):329-336
    [88]Dahl I M, Kolboe S. On the Reaction Mechanism for hydrocarbon formation from methanol over SAPO-34:I. Isotopic labeling studies of the Co-reaction of ethene and methanol. J. Catal.,1994,149(2):458-464
    [89]Haw J F, Nicholas J B, Heneghan C S, et al. Roles for cyclopentenyl cations in the synthesis of hydrocarbons from methanol on zeolite catalyst HZSM-5. J. Am. Chem. Soc.,2000,122(19):4763-4775
    [90]Goguen P W, Xu T, Haw J F, et al. Pulse-quench catalytic reactor studies reveal a carbon-pool mechanism in methanol-to-gasoline chemistry on zeolite HZSM-5. J. Am. Chem. Soc.,1998,120(11):2650-2651
    [91]Sassi A, Wildman M A, Haw J F, et al. Methylbenzene chemistry on zeolite HBeta:multiple insights into methanol-to-olefin catalysis. J. Phys. Chem. B, 2002,106(9):2294-2303
    [92]Song W, Haw J F, Heneghan C S, et al. Methylbenzenes are the organic reaction centers for methanol-to-olefin catalysis on HSAPO-34. J. Am. Chem. Soc., 2000,122(43):10726-10727
    [93]Song W, Fu H, Haw J F. Selective synthesis of methylnaphthalenes in HSAPO-34 cages and their function as reaction centers in methanol-to-olefin catalysis. J Phys Chem B,2001,105(51):12839-12843
    [94]Seiler M, Schenk U, Hunger M. Conversion of methanol to hydrocarbons on zeolite HZSM-5 investigated by in situ MAS NMR spectroscopy under flow conditions and on-line gas chromatography. Catal Lett,1999,62(2-4):139-145
    [95]Hunger M, Seiler M, Buchholz A. In situ MAS NMR spectroscopic investigation of the conversion of methanol to olefins on silicoaluminophosphates SAPO-34 and SAPO-18 under continuous flow conditions. Catal. Lett.,2001,74(1-2):61-68
    [96]Wang W, Buchholz A, Hunger M, et al. Evidence for an initiation of the methanol-to-olefin process by reactive surface methoxy groups on acidic zeolite catalysts. J. Am. Chem. Soc.,2003,125(49):15260-15267
    [97]Wang W, Hunger M. Ace. Reactivity of surface alkoxy species on acidic zeolite catalysts. Chem. Res.,2008,41 (8):895-904
    [98]Cui Z M, Liu Q, Song W G, et al. The role of methoxy groups in methanol to olefin conversion. J. Phys. Chem. C,2008,112(7):2685-2688
    [99]Haw J F, Song W G, Nicholas J B, et al. The mechanism of methanol to hydrocarbon catalysis. Acc. Chem.Res.,2003,36(5):317-326
    [100]Song W G, Marcus D M, Haw J F, et al. An oft-studied reaction that may never have been:Direct catalytic conversion of methanol or dimethyl ether to hydrocarbons on the solid acids HZSM-5 or HSAPO-34. J. Am. Chem. Soc., 2002,124(15):3844-3845
    [101]Bjorgen M, Svelle S, Olsbye U, et al. Conversion of methanol to hydrocarbons over zeolite H-ZSM-5:On the origin of the olefinic species. J. Catal.,2007, 249(2):195-207
    [102]Butter S A, Jurewicz A T, Kaeding W W. Conversion of alcohols, mercaptans, sulfides, halides and/or amines. US. Patent,3894107,1975-07-08
    [103]Dumas J B, Procedes de l'analyse organique. Ann Chim Phys,1840,73 (2):94
    [104]Degirmenci V, Uner D, Yilmaz A. Methane to higher hydrocarbons via halogenation. Catal Today,2005(1-4),106:252-255
    [105]Zhou X P, Yilmaz A, Ford P C, et al. An integrated process for partial oxidation of alkanes. Chem. Comm.,2003,2294-2295
    [106]Zhou X P, Lorkovic I M, Grosso P, et al. Integrated process for synthesizing alcohols and ethers from alkanes. US. Patent,6462243.2002-10-08
    [107]Zhou X P, Lorkovic I M, Grosso P, et al. Integrated process for synthesizing alcohols and ethers from alkanes. US. Patent,6472572.2002-10-29
    [108]Zhou X P, Lorkovic I M, Sherman J H. Integrated process for synthesizing alcohols, ethers, and olefins from alkanes. US. Patent,6486368.2002-11-26
    [109]Lorkovic I M, Stucky G D, Ford P C, et al. C1 coupling via bromine activation and tandem catalytic condensation and neutralization over CaO/zeolite composites. Chem. Comm.,2004:566-567
    [110]Yilmaz A, Zhou X P, Stucky G D, et al. Bromine mediated partial oxidation of ethane over nanostructured zirconia supported metal oxide/bromide. Micropor. Mesopor. Mater.,2005,79(1-3):205-214
    [111]Lorkovic I M, Yilmaz A, Ford P C, et al. A novel integrated process for the functionalization of methane and ethane:bromine as mediator. Catal Today, 2004,98(1-2):317-322
    [112]Miller J, Kling M. Conversion methane to methanol. US. Patent,5243098. 1993-09-07
    [113]Miller J, Kling M. Conversion of alkanes to alkanols and glycols. US. Patent, 5334777.1994-08-02
    [114]Olah G A, Gupta B, Trivedi N J. Selective monohalogenation of methane over supported acidic or platinum metal catalysts and hydrolysis of methyl halides over y-alumina-supported metal oxide/hydroxide catalysts. A feasible path for the oxidative conversion of methane into methyl alcohol/dimethyl ether. J. Am. Chem. Soc.,1985,107(24):7097-7105
    [115]Taylor C E, Noceti R P. Conversion of methane to gasoline-range hydrocarbons. Proceeding 9th International Congress on Catalysis. Calgary. Chem. Institute of Canada,1988,2:990-997
    [116]Taylor C E, Noceti R P, Schehl R R. Direct conversion of methane to liquid hydrocarbons through chlorocarbon intermediates. Stud. Surf. Sci. Catal.,1988, 36:483-489
    [117]Degirmenci V, Yilmaz A, Uner D. Selective methane bromination over sulfated zirconia in SBA-15 catalysts. Catalysis Today,2009,142(1-2):30-33
    [118]Deacon H. Improvement in Manufacture of Chlorine. US. Patent,165802, 1875-07-20
    [119]Bromhead J, Font-Freide J J, Westlake D J. Process for the production of methyl or ethyl mono-chloride or bromide. EP. Patent,0117731.1984-09-05
    [120]Pieters W J M, Carlson E J C, Conner W C Jr. Pyrogenic silica or titania or alpha-alumina cuprous chloride catalyst of hydrogen chloride/oxygen reaction. US. Patent,4123389.1978-10-31
    [121]Conner W C Jr, Pieters W J M, Gates W, Wilkalis J E. The oxyhydrochlorination of methane on fumed silica-based Cu, K, La catalysts:Ⅱ. Gas phase stoichiometry. Appl Catal,1984,11(1):49-58
    [122]Conner W C Jr, Pieters W J M, Signorelli A J. The oxyhydrochlorination of methane on fumed silica-based Cu, K, La catalysts:Ⅲ. Bulk & surface analysis. Appl. Catal.,1984,11(1):59-71
    [123]Noceti R P, Taylor C E. Process for converting light alkanes to higher hydrocarbons. US. Patent,4769504.1988-09-06
    [124]Taylor C E, Noceti R P. Catalysts and method. US. Patent,5019652. 1991-05-28
    [125]Podkolzin S G, Stangland E E, Lercher J A, et al. Methyl Chloride Production from Methane over Lanthanum-Based Catalysts. J. Am. Chem. Soc.,2007, 129(9):2569-2576
    [126]Schweizer A E, Jones M E, Hickman D A. Oxidative halogenation of C1 hydrocarbons to halogenated C1 hydrocarbons and integrated processes related thereto. US Patent 6 452 058.2002-09-17
    [127]Wang K X, Xu H F, Zhou X P, et al. Acetic acid synthesis from methane by non-synthesis gas process. J. Mol. Catal. A:Chem.,2005,225(1):65-69
    [128]Xu H F, Wang K X, Zhou X P, et al. Dimethyl ether synthesis from methane by non syngas process. Catal. Lett.,2005,100(1-2):53-57
    [129]Wang K X, Xu H F, Zhou X P, et al. The synthesis of acetic acid from methane via oxidative bromination, carbonylation, and hydrolysis. Appl. Catal. A:Gen., 2006,304:168-177
    [130]王宽新,徐含飞,周小平等.从甲烷经非合成气过程制备醋酸、甲醇和二甲醚的新流程.中国专利,1640864.2005-07-20
    [131]王宽新,徐含飞,周小平等.从甲烷合成乙酰溴、醋酸、醋酸酯的新流程.中国专利,1724503.2006-01-25
    [132]Brophy J H, Font-Freide J J H M, Tomkinson J D. Process for the production of hydrocarbons from hetero-substituted alkanes. WO. Patent,8502608. 1985-06-20
    [133]Taylor C E. Conversion of substituted methanes over ZSM-catalysts. Stud. Surf. Sci. Catal.,2000,130:3633-3638
    [134]Lersch P, Bandermann F. Conversion of chloromethane over metal-exchanged ZSM-5 to higher hydrocarbons. Appl.Catal.,1991,75(1):133-152
    [135]Sun Y, Campbell S M, Tau L M, et al. The Catalytic Conversion of methyl chloride to ethylene and propylene over phosphorus-modified Mg-ZSM-5 Zeolites. J.Catal.,1993,143(1):32-44
    [136]Jaumain D, Su B L. Direct catalytic conversion of chloromethane to higher hydrocarbons over various protonic and cationic zeolite catalysts as studied by in-situ FTIR and catalytic testing. Stud. Surf. Sci. Catal.,2000,130:1607-1612
    [137]Jaumain D, Su B L. Direct catalytic conversion of chloromethane to higher hydrocarbons over a series of ZSM-5 zeolites exchanged with alkali cations. J. Mol. Catal. A:Chem.,2003,197(1-2):263-273
    [138]Svelle S, Aravinthan S, Olsbye U. The methyl halide to hydrocarbon reaction over H-SAPO-34. J. Catal.,2006,241(2):243-254
    [139]Wei Y, Zhang D, He Y, Xu L, Yang Y, Su B L, Liu Z. Catalytic performance of chloromethane transformation for light olefins production over SAPO-34 with different Si content. Catal Lett,2007,114(1-2):30-35
    [140]Wei Y, Zhang D, Su B L, et al. New route for light olefins production from chloromethane over HSAPO-34 molecular sieve. Catal Today,2005,106(1-4): 84-89
    [141]Wei Y, He Y, Su B L, et al. Study of Mn incorporation into SAPO framework: Synthesis, characterization and catalysis in chloromethane conversion to light olefins. Micropor. Mesopor. Mater.,2006,90(1-3):188-197
    [142]Wei Y, Zhang D, Su B L, et al. Highly efficient catalytic conversion of chloromethane to light olefins over HSAPO-34 as studied by catalytic testing and in situ FTIR. J. Catal.,2006,238(1):46-57
    [143]Murray D K, Howard T, Haw J M, et al. Methyl halide reactions on multifunctional metal-exchanged zeolite catalysts. J. Am. Chem. Soc.,1994, 116(14):6354-6360
    [144]Murray D K, Chang J W, Haw J M. Conversion of methyl halides to hydrocarbons on basic zeolites:a discovery by in situ NMR. J. Am. Chem. Soc., 1993,115(11):4732-4741
    [145]Svelle S, Kolboe S, Swang 0, et al. A theoretical investigation of the methylation of methylbenzenes and alkenes by halomethanes over acidiczeolites. J. Phys. Chem. B,2003,107(22):5251-5260
    [146]井强山.甲烷催化转化制合成气研究.郑州:郑州大学出版社,2008
    [147]Lin R H, Ding Y J, Lu Y, et al. Oxidative bromination of methane on silica-supported non-noble metal oxide catalysts. Appl. Catal. A:Gen.,2009, 353(1):87-92
    [148]Lin R H, Ding Y J, Zhang T, et al. Efficient and stable silica-supported iron phosphate catalysts for oxidative bromination of methane. J. Catal.,2010,272(): 65-73
    [149]Wei Y, Zhang D, Liu Z, et al. Direct observation of induction period of MTO process with consecutive pulse reaction system. Catal. Comm.,2007,8(12): 2248-2252
    [150]Wei Y, Zhang D, Liu Z, et al. Ultra-short contact time conversion of chloromethane to olefins over pre-coked SAPO-34:direct insight into the primary conversion with coke depositionw, Chem. Commun.,2009,5999-6001
    [151]Svelle S, Joensen F, Bjφrgen M, et al. Conversion of methanol into hydrocarbons over zeolite H-ZSM-5:ethene formation is mechanistically separated from the formation of higher alkenes, J. Am. Chem. Soc.,2006, 128(46):14770-14771
    [152]Kokotailo G T, Lawton S L, Meier W M, et al. Structure of synthetic zeolite ZSM-5, Nature,1978,272(5652):437-438
    [153]Li Y G, Xie W H, Yong S, The acidity and catalytic behavior of Mg-ZSM-5 prepared via a solid-state reaction. Appl. Catal. A:Gen.,1997,150(2):231-242
    [154]D'Alessandro D M, Smit B, Long J R, Carbon Dioxide Capture:Prospects for New Materials, Angew. Chem. Int. Ed.,2010,49(35):6058-6082
    [155]田贯三,于畅,李兴泉.燃气爆炸极限计算方法的研究.煤气与热力,2006,26(3):29-33
    [156]张增亮,李革梅.可燃气体的爆炸极限和最大允许氧含量的测定及影响因素研究.湘潭师范学院学报(自然科学版),2006,28(3):67-70

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700