用户名: 密码: 验证码:
多金属氧酸盐基的复合材料修饰电极、电化学及电催化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文从所需要材料的功能特性出发,采用分子设计原理,有目的地的选择有机官能团制备了多金属氧酸盐基的复合材料,探讨了将这些复合材料用做修饰剂制备稳定性好的溶胶-凝胶薄膜修饰电极以及高稳定的、表面可更新的本体修饰碳糊电极和石墨有机硅复合电极的可行性,并研究了它们的电化学和电催化性能。主要研究结果如下:
     1.设计并通过室温固相反应制备了无机·有机杂化的多金属氧酸盐纳米粒子,通过溶胶-凝胶技术首次将这种纳米粒子修饰到蜡浸石墨电极的表面,并系统研究了这种纳米粒子修饰电极(P_2Mo_(18)-WIGE)的电化学行为。该修饰电极可以催化氯酸根、亚硝酸根和过氧化氢的还原。其主要优点是长期稳定性好,这主要归因于杂化纳米粒子的不溶性。
     2.以钼磷酸为例设计合成了其十六烷基吡啶的杂化物(C_(21)H_(38)N)_3PMo_(12)O_(40)·H_2O,并首次将这种杂化物用做本体修饰剂通过直接溶剂混合法制备了表面可更新的化学修饰碳糊电极;通过电化学方法表征了该修饰电极。该修饰电极对亚硝酸根、溴酸根和过氧化氢的还原表现出很好的电催化活性。该修饰电极的主要优点有两个:(1)当电极表面被污染时可以通过挤出一点碳糊很方便地更新,这对实际应用来说十分重要,而且制备简单、价格便宜;(2)稳定性好,这主要归因于这种杂化物的不溶性、C_(21)H_(38)N~+对糊液的亲和力以及PMo_(12)在石墨上的强吸附。
     3.探讨了以无机-有机杂化的多金属氧酸盐纳米粒子为本体修饰剂通过研磨混合法制备了表面可更新的化学修饰碳糊电极的可行性。该修饰电极在酸性水溶液中的电化学行为通过循环伏安和方波伏安进行了表征。结果表明该修饰电极对亚硝酸根、溴酸根和过氧化氢的还原有很好的电催化活性。该修饰电极的优点是表面可更新且长期稳定性好。
    
    4.铝磷酸化学掺杂的聚毗咯被首次用做本体修饰剂制备了化学修饰
     的碳糊电极。该修饰电极充分利用了多金属氧酸盐掺杂的聚合物的
     优点和碳糊电极表面可更新的特性,对过氧化氢的还原表现出很
     高的电催化活性,因此可被用做过氧化氢测定的电化学传感器,一
     旦表面受到污染可以很方便的更新。
    5.设计合成了含有三c*。联毗陡广和多金属氧酸盐的电活性复合物
     RllPMO12和 RuSZMO18,并首次将它们用做双功能电催化剂通过直
     接混合法制备了本体修饰的碳糊电极限 (PE似及通过溶胶
     -凝胶技术制备了本体修饰的石墨有机硅复合电极(RIJSZMO;。-
     GOSE),并通过循环伏安研究了它们的电化学行为。这两种不同方
     法制备的双功能化学修饰电极不仅对过氧化氢和澳酸根的还原表
     现出良好的电催化活性,这主要归因于多金属氧酸盐的功能,而且
     对亚砷酸根的氧化也表现出很好的电催化活性,这主要是三口,2’-
     联毗陡广的功能。该修饰电极也同样具有表面可更新且长期稳定
     性好的优点。
    6.以Lindquis-型多金属氧酸软Mo。O;/-做非配位的阴离子模版构筑
     了一系列新的、三维的、澜系-芳香单竣酸二聚物的超分于网络:
     [Ln。(DNBA)4(DM)s][Mo0O10](Ln—La,Ce 2和 Eu 3,DNBA—3上
     二硝基苯甲酸,DMF一二甲基甲酚胺X 并通过元素分析、红外和 X-
     射线单晶衍射进行了表征,井研究了它们的电化学性质。
1. Inorganic-organic hybrid polyoxometalates nanoparticles have been designed and prepared by solid-state reaction at room temperature and immobilized on the surface of wax impregnated graphite electrode (WIGE) by the sol-gel technique for the first time. The electrochemical behavior of the nanoparticles modified WIGE (P2Mo18-WIGE) has been studied in detail, including pH-dependence, solvent effect and stability. The electrocatalytic behavior of the P2Mo18-WIGE toward the reduction of chlorate, nitrite and hydrogen peroxide in 1 M H2SO4 aqueous solution is reported. Experimental results show that the P2Mo18-WIGE not only maintains the electrochemical activity and electrocatalytic properties of the H6P2Mo18O62, but also shows remarkable stability due to insolubility of the hybrid POM nanoparticles, which is important for practical application.
    2. PMo12-based inorganic-organic hybrid material (C21H38N)3-PMo12O40-H2O was designed, synthesized and firstly used as a bulk-modifier to fabricate a renewable three-dimensional chemically modified carbon paste electrode (CPE) by direct mixing. Electrochemical method was used to characterize the modified CPE. The hybrid material bulk-modified CPE (HM-CPE) not only displays good electrocatalytic activity toward the reduction of nitrite, bromate and hydrogen peroxide, but also exhibits a remarkable advantage of renewability in the event of surface fouling, as well as simple preparation and inexpensive material. Another remarkable advantage of the HM-CPE is its excellent stability due to insolubility of the inorganic-organic hybrid material, the affinity of the C21H38N+ toward the paste and the adsorption of PMo12 on graphite, which is important for practical application.
    
    
    
    3. Inorganic-organic hybrid polyoxometalates nanoparticles was firstly used as a bulk-modifier to fabricate a three-dimensional chemically modified carbon paste electrode (CPE) by direct mixing. The electrochemical behavior of the solid nanoparticles dispersed in the CPE in acidic aqueous solution is characterized by cyclic and square-wave voltammetry. The hybrid 18-molybdodiphosphate nanoparticles bulk-modified CPE (MNP-CPE) displays a high electrocatalytic activity towards the reduction of nitrite, bromate and hydrogen peroxide. The remarkable advantages of the MNP-CPE over the traditional polyoxometalates-modified electrodes are their excellent reproducibility of surface-renewal and high stability owing to the insolubility of the hybrid 18-molybdodiphosphate nanoparticles.
    4. Keggin-type phosphomolybdate (PMo12)-doped polypyrrole (PPy) prepared by chemical syntheses was firstly used as a bulk-modifier to fabricate a chemically modified carbon paste electrode (CPE) by direct mixing. Both the advantage of polyoxometalates (POMs)-doped polymer and surface-renewal property of the CPE are fully utilized. The PMou-PPy bulk-modified CPE also showed high electrocatalytic activity toward the reduction of hydrogen peroxide. A hydrodynamic voltammetric experiment was performed to characterize the electrode as an amperometric sensor for the determination of hydrogen peroxide. The sensor can be renewed easily in a repeatable manner by pushing a little carbon paste out.
    5. The electroactive composites containing tris(2,2'-bipyridine) ruthenium(II) and polyoxometalates RuPMo12 and RuS2Mo18 were synthesized and firstly used as a bifimctional electrocatalysts to fabricate a chemically bulk-modified carbon paste electrode (RuPMon-CPE) by direct mixing and graphite organosilicate composite electrode (RuS2Mo18-GOSE) by sol-gel process. The electrochemical behavior of the RuPMo12-CPE and RuS2Mo18-GOSE was studied by cyclic
    
    
    
    voltammetry. The RuPMo12-CPE and RuS2Mo18-GOSE present good electrocatalytic activity not only toward the reduction of hydrogen peroxide and bromate, which is attributed to the function of polyoxometalates, but also toward the oxidation of arsenite, which is
引文
1.王恩波,胡长文,许林著,多酸化学导论,北京:化学工业出版社,1998,1.
    2.M.T.Pope著,王恩波等译,杂多和同多余属氧酸船,长春:吉林大学出版社,1991.
    3. C. L. Hill (Guest Editor), Chem. Rev., 1999, 98(1), 1-390.
    4. D. E. Katsoulis, A survey of applications of polyoxometalates, Chem.Rev., 1998, 98, 359.
    5. V. Soghomonian, Q. Chen, R. C. Haushalter, J. Zubieta, C. J. O'Connor,An inorganic double helix: hydrothermal synthesis, structure, and magnetism of chiral (Me_2NH_2) K_4[V_10O_10(H_2O)_2(OH)_4(PO_4)_7]·4H_2O,Science, 1993, 259, 1596-1599.
    6. Z. Shi, S. Feng, S. Gao, L. Zhang, G. Yang, J. Hua, Inorganic-organic hybrid materials constructed from [(VO2)(HPO4)] helical chains and [M(4,4-bpy)_2]~(2+) (M=Co, Ni) fragments, Angew. Chem. Int. Ed. Engl.,2000, 39(13), 22325.
    7. D. Zhang, D. Liao, M. Shao, Y. Tang, X-ray crystal structure of the unusual clathrate compound: [Mo_(36)O_(110)(NO)_4(H_2O)_(14)] 52H_2O, J. Chem.Soc., Chem. Commun., 1986, 835.
    8. A. M(?)ller, E. Krickemeyer, J. Meyer et al,[Mo_(154)(NO)O_(420)(OH)_(28)(H_2O)_(70)]~(25±5)-: A water-soluble big wheel with more than 700 atoms and relative molecular mass of about 24000,Angew. Chem. Int. Ed. Engl., 1994, 34, 2122.
    9. M. H(?)lscher, U. Englert, B. Zibrowius, W. F. H(?)lderrich,(H_3N(CH_2)_6NH_3)[W_(18)P_2O_(62)]·3H_2O, Angew. Chem., Int. Ed. Engl., 1994,33, 2491.
    10. P. Gouzerh and A. Proust, Main-group element, organic and organometallic derivatives of polyoxometalates, Chem. Rev., 1998, 98,
    
    
    11.J. Q. Xu, R. Z. Wang and G. Y. Yang et al. Metal-oxo cluster-supported transition metal complexes hydrothermal synthesis and characterization of [{M(phen)_2}_2(Mo_8O_(26))] (M = Ni or Co), Chem. Comm., 1999, 815.
    12.J. R. D. Debord, R. C. Haushalter, L. M. Meyer, D. J. Rose, P. J. Zapf, J.Zubiet, New solid from old cluster: synthesis and structures of [Cu(en)_2]_2[Mo_8O_(26)], [Cu(enMe)_]3 [V_(15)O_(36)Cl]·2.5H_2O and Cs_(0.5)[Ni(en)_2]_3[V_(18)O_(42)Cl]·2en·6H_2O, Inorg. Chim. Acta, 1997, 256,165.
    13.Y. Zhang, P. J. Zapf, L. M. Meyer, R. C. Haushalter and J. Jubieta,.Polyoxoanion coordination chemistry: synthesis and characterization of the heterometallic, hexanuclear clusters[{Zn(bipy)_2}_2V_4O_(12)],[{Zn(phen)_2}_2V_4O_(12)]·H_2O and [{Ni(bipy)_2}2Mo_4O_(14)], Inorg. Chem.1997, 36, 2159.
    14.P. J. Zapf, J. C. J. Warren, R. C. Haushalter and J. Zubieta, One- and two-dimentional organiccomposite solid constructed from molybdenum oxide clusters and chains linked through {M(2,2-bpy)}2-fragments(M = Co,Ni, Cu), Chem. Commun., 1997, 1543.
    15.D. Hagraman, C. Zubieta, D. J. Rose, J. Zubieta and R. C. Haushalter,Composite soluds constructed from one-dimensional coordination polymer matrices and date clusters within [{Cu(4,4-bipy)}_4Mo_8O_(26)] and [{Ni(H_2O)_2(4,4-bipy)_2}_2Mo_8O_(26)] and one-dimensional oxide chains in [{Cu(4,4-bipy)}_4Mo_(15)O_(47)]·8H_2O, Angew. Chem. Int. Ed. Engl. 1997,36, 873.
    16.M. I. Khan, E. Yohannes and R. J. Doedens,[M_3V_(18)O_(42)(H_2O)_(12)(XO_4)]·24H_2O (M = Fe, Co; X = V, S): metal oxide based framework materials composed of polyoxovanadate clusters,Angew. Chem. Int. Ed. Engl. 1999, 38, 1292.
    17.M. I. Khan, E. Yohannes and D. Powell, Synthesis and characterization of a new mixed-metal oxide framework material composed of vanadium oxide clusters: X-ray crystal structure of (N_2H_5)_2[Zn_3V~(Ⅳ)_(12)V~(Ⅴ)
    
    _6O_(42)(SO_4)(H_2O)_(12)]·24H_2O, Chem. Commun., 1999, 23.
    18. M. I. Khan, E. Yohannes and D. Powell, Vanadium oxide cluster as building blocks for the synthesis of metal oxide surfaces and framework, materials: synthesis and X-ray crystal structure of [H_6Mn_3V~Ⅳ(15)V~Ⅴ_4O_(46)(H_2)_(12)]·30H_2O, Inorg. Chem., 1999, 38, 212.
    19. Y. Xu, J. Xu, K. Zhang, Y. Zhang and X. You, Keggin unit supported transition metal complexes: hydrothermal synthesis and characterization of [Ni(2,2-bipy)_3]1.5[PW_(12)O_(40)Ni(2,2-bipy)_2(H_2O)]·0.5H_O and [Co(1,10-phen)_3]_1.5[PMo_(12)O_(40)Co(1,10-phen)_2(H_2O)]·0.5H_2O, Chem. Commun., 2000, 153
    20. E. Coronado, C. J. G(?)mez-Garc(?)a, Polyoxometalate-based molecular materials, Chem. Rev. 1998, 98, 273-296.
    21. L. Ouahab, M. bencharif, D. Grandjean, Structure of 3,3',4,4'-tetramethyl-2,2',5,5'-tetrathiafulvalenium tetracyanonickelate (Ⅱ): (TMTTF)_2[Ni(CN)_4], Acta Cryst. 1998, C44(9), 1514.
    22. L.Ouahab, M. bencharif, A. Mhanni, D. Pelloquin, et al., Preparation, x-ray crystal structure, ET band calculations and physical properties of [(TTF)_6(H)(Et_4N)]XM_(12)O_(40) (M = W, Mo; X = P, Si), Chem. Mater., 1992, 4, 466.
    23. C. Bellitto, G. Staulo, R. Pecile, (BEDT-TTF)_8[SiW_(12)O_(40)] and (BEDT-TTF)_8[PMo_(12)O_(40)]: two new examples of 1D organic antiferromagnetic systems, Mol. Cryst. Liq. Cryst., Sci. Technol.,1993, 234, 155.
    24. P. Le Maguer(?)s, L. Ouahab and S. Golhen, D. Grandjean, O. Pena, J. C. Jegaden, C. J. Gomez-Garecia and P. Delha(?)s. And paramagnetic Keggin polyoxometalate salts containing 1-D and 3-D networks: Preparation, crystal structures and magnetic [Fe(C_sMe_5)_2]_4(POM)(sol)_n (POM = [SiMo_(12)O_(40)]~(4-), [SiW_(12)O_(40)]~(4-), [HFeW_(12)O_(40)]~(4-); solv = H_2O, C_3H_7ON, CH_3CN). Inorg. Chem. 1994, 33, 5180.
    25. C. M. Prosser-McCartha, M. Kadkhodayan, M. M. Williamson, D. A.
    
    Bouchard and C. L. Hill, Phtochemistry, spectroscopy and X-ray structure of an intermolecular charge-transfer complex between an organic substrate and a polyoxometallate, α-H_3PMo_(12)O_(40)·6(tetramethylurea), J. Chem. Soc. Commun., 1986,1747.
    26. C. L. Hill, D. A. Bouchard, M. Kadkhodayan, M. M.Williamson, J. A. Schmidt and E. F. Hilinski, Catalytic photochemical oxidation of organic substrates by polyoxometalates. Picosecond spectroscopy, photochenistry and structural properties of Charge-transfer complexes between heteropolytungstic acids and dipolar organic compound, J. Am. Chem. Soc. 1988, 110, 5471.
    27. M. Attanasio, V. Bonamico, P. Fares, Imperatori and L. Suber. Weak charge-transfer polyoxoanion salts: the reaction of Quinolin-8-ol(Hquin) with phosphotungstic acid and the crystal and molecular structure of [H_2quin]_3[PW_(12)O_(40)]·4EtOH·2H_2O. J. Chem. Soc. Dalton. 1990, 3221-3227.
    28. J. Niu, X. You and C. Duan. A novel optical complex between an organic substrate and a polyoxometalate. Crystal and molecular structure of α -H_4SiWi_(12)O_(40).·4HMPA·.2H_2O (HMPA = Hexamethylphosphoramide), Inorg. Chem., 1996, 35, 4211.
    29. Y. Zhou, E. Wang, J. Peng, J. Liu, C. Hu, D. Huang, synthesis and the third —order optical nonlinearities of two novel charge-transfer complexes of a heterpoly blue type (C_9H_7NO_4)_4H_7PMo_(12)O_(40)·3H_2O (C_9H_7NO_4 = Quinolin-8-ol) and (phen)_3H_7PMo_(12)O_(40)·CH_3CN·H_2O (phen = 1,10-phenanthroline), Polyhedron, 1999, 18, 1419.
    30. Y. Zhou, J. Peng, E. B. Wang, A novel optical charge-transfer complex between an organic substrate and a polyoxometalate a -H_6P_2W_(18)O_(62)·6phen·10H_2O,.Tran. Met. Chem.,1998, 23, 125.
    31. C. Crans, M. M. Mahroog-Tahir, O. P. anderson and M. M. Miller, X-ray structure of (NH_4)_6(Gly-Gly)_2V_(10)O_(28)·4H_2O, Inorg. Chem. 1994,
    
    33, 5580
    32. L. Hill, R. F. Schinazi, European Patent, No: 0360619, 1990.
    33. P.Gomez-Romero, M.Lira-Cantu, Hybid organic-inorganic electrodes: the molecular material formed between polypyrrole and phosphomolybdate anion, Adv. Mater. 1997, 9, 144.
    34. M. Clemente-Le(?)n, C. Mingotaud, B. Agricole, C. J. G6mez-Garcia, E. Coronado, P. Delha(?)s, Application of the Langmuir-Blodgett technigue to polyoxometalates: Towards new magnetic films, Angew. Chem. Int. Ed. Eng., 1997, 36, 1114.
    35. M. Clemente-Le(?)n, B. Agricole, C. Mingotaud, C. J. G6mez-Garcia, Towards new organic superlattices Keggin polyoxometalates in Langmuir-Blodgett films, Langmuir, 1997, 13, 2340.
    36. I. H. Tagawa, S. Mizuki, Y. Lvov, T. Kunitake, Formation process of ultrathin multilayer films of molybdenum oxide by altemate adsorption of octamolybdate and linear polycations, Langmuir, 1998, 14, 87.
    37. F. Caruso, D. G. Kurth, D. Volkmer, M. J. Koop, A. M(?)ller, Ultrathin molybdenum polyoxometalate-polyelectrolyte multilayers films. Langmuir, 1998, 14, 3462.
    38. D. G. Kurth, D. Volkmer, M. Ruttorf, B. Richter, A. M(?)ller, Ultrathin composite films incorporating the nanoporous isopolyoxomolybdate "Keplerate" (NH_4)_(42)[Mo_(132)O_(372)(CH_3COO)_(30)(H_2O)_(72)], Chem. Mater., 2000, 12, 2829.
    39. I. Moriguchi, J. H. Fendler, Characterization and electrochromic properties of ultrathin films self-assembled from poly(diallyldimethyl-ammonium) chloride and sodium decatungstate, Chem. Mater., 1998, 10, 2205.
    40. S. Liu, Dirk G. Kurth, A thin-film electrochromic device based on a polyoxometalate cluster, Adv. Mater., 2002, 14, 225.
    41. T. Yamase, Photo- and Electrochromism of Polyoxometalates and Related Materials, Chem. Rev., 1998, 98, 307.
    
    
    42. X. You, B. Shan, X. Zhang, S. Zheng, Z. Bai, J. Yang, Absorption spectra of an electrochromic window based on molybdovanadophosphoric acid, Prussian blue and a solid polymer electrolyte, J. Appl. Electrochem., 1997, 27, 1297-1299.
    43. J. T. Rhule, C. L. Hill, and Deborah A. Judd, Polyoxometalates in Medicine, 1998, 98, 327 and reference therein.
    44. I. V. Kozhevnikov, Catalysis by Heteropoly Acids and Multicomponent Polyoxometalates in Liquid-Phase Reactions, Chem. Rev., 1998, 98, 171 and reference therein.
    45. M. Sadakane and E. Steckhan, Electrochemical Properties of Polyoxometalates as Electrocatalysts, Chem. Rev., 1998, 98, 219-237
    46. Southampton Electrochemistry Group. InstrumentalMethods in Electrochemistry, Ellis Horwood Series in Physical Chemistry; Kemp, T. J. Ellis Horwood Limited: Chichester, 1985; Chapter 7.
    47. S. Torii, Electroorganic Synthesis: Methods and Applications; Kodansha: Tokyo, 1985; Chapter 11.
    48. J. Simonet. In Organic Electrochemistry, 3rd ed.; Lund, H., Baizer, M. M., Eds.; Marcel Dekker Inc.: New York, 1991; Chapter 29.
    49. G. M. Jr. Varga, E. Papaconstantinou, M. T. Pope, Heteropoly blues. Ⅳ. Spectroscopic and magnetic properties of some reduced polytungstates, Inorg. Chem. 1970, 9, 662.
    50. H. So, M. T. Pope, Origin of some charge-transfer spectra: oxo compounds of vanadium, molybdenium, tungsten and niobium including heteropoly anions and heteropoly blues, Inorg. Chem. 1972, 11, 1441.
    51. R. Prados, M. T. Pope, Low-temperature electron spin resonance spectra of heteropoly blues derived from some 1:12 and 2:18 molybdates and tungstates, Inorg. Chem. 1976, 15, 2547.
    52. C. Sanchez, J. Livage, J. P. Launay; M. Foumier, Y. Jeanin, Electron delocalization in mixed-valence molybdenum polyanions, J. Am. Chem.
    
    Soc. 1982, 104, 3194.
    53. J. N. Barrows, G. B. Jameson, M. T. Pope, Structure of a heteropoly blue. The four-electron reduced 12-molybdophosphate anion, J. Am. Chem. Soc. 1985, 107, 1771.
    54. A. M(?)ller, E. Krickemeyer, M. Penk, V. Witteneben, J. D(?)ring, [H_6As_(10)Mo_(24)O_(90)]~(8-), a heteropolyanion comprising two linked spherical fragments and reduced Keggin anions as its regradation products, Angew. Chem., Int. Ed. Engl. 1990, 29, 88.
    55. E. Cadot, M. Foumier, A. Teze, G. Herve, Electrochemical properties and ESR characterization of mixed valence α-[-[XMo_(3-x)VxW_9O_(40)]~(n-)heteropolyanions with X=P~v and Si~Ⅳ, x=1, 2 or 3, Inorg. Chem. 1996, 35,282-288.
    56. R. B. King, Chemical applications of topology and group theory. 25. Electron delocalization in early-transition-metal heteropoly- and isopolyoxometalates, Inorg. Chem. 1991,30, 4437-4440.
    57. C. L. Hill, C. M. P rosser-McCartha, Homogeneous catalysis by transition metal oxygen anion clusters, Coord. Chem. Rev. 1995, 143, 407-455.
    58. A J. J ltenau, M. T. Pope, R. A. Prados, H. So, Models for heteropoly blues: degrees of valence trapping in vanadium (Ⅳ)- and molybdenum (Ⅴ)-substituted Keggin anions, Inorg. Chem. 1975, 14, 417.
    59. F. Ortega, M. T. Pope, Polyoxotungstate anions containing high-valent rhenium. 1. Keggin anion derivatives Inorg. Chem. 1984, 23, 3292-3297.
    60. F. Orte'ga, M. T. Pope, H. T. Jr. Evans, Tungstorhenate Heteropolyanions. 2. Synthesis and Characterization of Enneatungstorhenates(Ⅴ), -(Ⅵ), and -(Ⅶ)(?) Inorg. Chem. 1997, 36, 2166-2169.
    61. L. C. W. Baker, J. J. Figgis, New fundamental type of inorganic complex: hybrid between heteropoly and conventional coordination
    
    complexes. Possibilities for geometrical isomerisms in 11-, 12-, 17-,and 18-heteropoly derivatives, d. Am. Chem. Soc. 1970, 92, 3794-3797.
    62. A. M(?)ller, L. Dloczik, E. Diemann, M. T. Pope, A cyclic voltammetric study of mangano(Ⅱ)undecatungstosilicate: an illustrative example of the reduction, protonation and disproportionation pathways of transition metal substituted heteropolytungstates in aqueous solution, Inorg. Chim. Acta 1997, 257, 231-239.
    63. T. McCormac, B. Fabre, G. Bidan, Part I. A comparative electrochemical study of transition metal substituted Dawson type heteropolyanions, J. Electroanal. Chem. 1997, 425, 49-54.
    64. B. Keita, L. Nadjo, New aspects of the electrochemistry of heteropolyacids: Part Ⅱ. Coupled electron and proton transfers in the reduction of silicoungstic species, d. Electroanal. Chem. 1987, 217, 287-304.
    65. B. Keita, L. Nadjo, New aspects of the electrochemistry of heteropolyacids, part Ⅳ: acidity dependent cyclic voltammetric behavior of phosphotungstic and silicotungstic heteropolyanions in water and N, N-dimethylformamide, d. Electroanal. Chem. 1987, 227, 77.
    66. B. Keita, L. Nadjo, J. P. Haeussler, Distribution of oxometalates on polymer-covered electrodes: Compared catalytic activity of these new polymers and the corresponding oxometalates in solution, J. Electroanal. Chem. 1988, 243, 481-491.
    67. Dong, S.; Xi, X.; Tian, M. Study of the electrocatalytic reduction of nitrite with silicotungstic heteropolyanion, J. Electroanal. Chem. 1995, 385, 227.
    68. K. Unoura; A. Iwashita; E. I tabashi; N. Tanaka, Catalytic effects of chlorate ions on the electrode reaction processes of 12-molybdophosphate and 12-molybdosilicate, Bull. Chem. Soc. Jpn. 1984, 57, 597
    
    
    69. B. Keita, A. Belhouari; L. Nadjo, R. Contant, Electrocatalysis by polyoxometalate | polymer systems: reduction of nitrite and nitric oxide, d. Electroanal. Chem. 1995, 381,243-250.
    70. X. Xi, S. Dong, Electrocatalytic reduction of nitrite using Dawson-type tungstodiphosphate anions in aqueous solutions, adsorbed on a glassy carbon electrode and doped in polypyrrole film, J. Mol. Catal. A.: Chemical, 1996, 114, 257-265.
    71. J. E. Toth, F. C. Anson, Electrochemical properties of iron(Ⅲ)-substituted heteropolytungstate anions, J. Electroanal. Chem. 1988, 256, 361-370.
    72. J. E. Toth, F. C. Anson, Electrocatalytic reduction of nitrite and nitric oxide to ammonia with iron-substituted polyoxotungstate, J. Am. Chem. Soc. 1989, 111, 2444.
    73. J. E. Toth, J. D. Melton, D. Cabelli, B. H. J. Bielski, F. C. Anson, Electrochemistry and redox chemistry of H_2Ofe~ⅢSiW_(11)O_(39)~(5-) in the presence of H_2O_2, Inorg. Chem. 1990, 29, 1952.
    74. Dong, S.; Liu, M. Electrochemical and electrocatalytic properties of iron(Ⅲ)-substituted Dawson-type tungstophosphate anion, J. Electroanal. Chem. 1994, 372, 95.
    75. Toth, J. E.; Melton, J. D.; Cabelli, D.; Bielski, B. H. J.; Anson, F. C. Electrochemistry and redox chemistry of aquaferrotungstosilicate, H_2OFeⅢSiW110395- in the presence of hydrogen peroxide and hydroxyl, Inorg. Chem. 1990, 29, 1952-1957.
    76. Rong, C.; Pope, M. T. Lacunary polyoxometalate anions are π-acceptor ligands. Characterization of some tungstoruthenate (Ⅱ, Ⅲ, Ⅳ, Ⅴ) heteropolyanions and their atom-transfer reactivity, J. Am. Chem. Soc, 1992, 114, 2932.
    77. X. Xi; G. Wang; B. Liu; S. Dong, Electrochemical behavior of Bis(2: 17-arsenotungstate) lanthanates and their electrocatalytic reduction for nitrite, Electrochim. Acta, 1995, 40, 1025-1029.
    
    
    78. L. Cheng; X. Zhang; X. Xi; B. Liu; S. Dong, Electrochemical behavior of the molybdotungstate heteropoly complex with neodymium, K_(10)H_3[Nd(SiMo_7W_4 O_(39)_2]·xH_2O in aqueous solution, J. Electroanal. Chem. 1996, 407, 97-103.
    79. M. T. Pope; A. MUller, Chemic der polyoxometallate: Aktuelle variationen uber altes thema mit interdisziplinaren bezugen, Angew. Chem. 1991, 103, 56.
    80. M. T. Pope; A. M(?)ller, Polyoxometalate chemistry: an old field with new dimensions in several disciplines, Angew. Chem., Int. Ed. Engl. 1991, 30, 34.
    81. T. J. Meyer, Redox pathways, J. Electrochem. Soc. 1984, 131, 7, 221C.
    82. C. Rong; M. T. Pope, Lacunary polyoxometalate anions are π-acceptor ligands. Characterization of some tungstoruthenate(Ⅱ,Ⅲ,Ⅳ, Ⅴ) heteropolyanions and their atom-transfer reactivity, J. Am. Chem. Soc. 1992, 114, 2932-2938.
    83. G. Bidan; E. M. Genies; M. Lapkowski, One-step electrochemical immobilization of Keggin-type heteropolyanions in poly(3-methylthiophene) film at electrocatalytic properties, Synth. Met. 1989, 31,327.
    84. Neumann, R.; Abu-Gnim, C. Albene oxidation catalyzed by a ruthenium-substituted heteropolyanion SiRuW_(11)O_(39): the mechanism of the periodate mediated oxidative cleavage, J. Am. Chem. Soc. 1990, 112, 6025.
    85. D. E. Katsoulis; M. T. Pope, Heteropolyanions in non-polar solvents. Metalloporphyrin-like oxidation of chromium (Ⅲ) to chromium (Ⅴ) by iodosylbenzene, J. Chem. Soc., Chem. Commun. 1986, 1186.
    86. Khenkin, A. M.; Hill, C. L. Oxo transfer from high-valent totally inorganic oxometallporphyrin analogs, [X~(n+)W_(11)O_(39)Cr~ⅤO]~((9-n)-), X~(n+)=P~(5+), Si~(4+)) to hydrocarbons, J. Am. Chem. Soc. 1993, 115, 8178.
    87. Zhang, X.; Pope, M. T.; Chance, M. R.; Jameson, G. B. High-valent
    
    manganese in polyoxotungstates--1. Manganese(Ⅳ) Keggin derivatives, Polyhedron 1995, 14, 1381-1392.
    88. X. Zhang; C. J. O'Connor; G. B. Jameson; M. T. Pope, High-valent manganese in polyoxotungstates. 3. dimanganese complexes of Kiggin anions, Inorg. Chem. 1996, 35, 30.
    89. Zhang, X.; Jameson, G. B.; O'Connor, C. J.; Pope, M. T. High-valent manganese in polyoxotungstates--Ⅱ. Oxidation of the tetramanganese heteropolyanion [Mn_4(H_2O)_2(PW_9O_(34))_2]~(10-), Polyhedron 1996, 15, 917-922.
    90. K. Essaadi; B. Keita; L. Nadjo; R. Contant, Oxidation of NADH by oxometalates, J. Electroanal. Chem. 1994, 367, 275-278.
    91. Keita, B.;Essaadi, K.; Nadjo, L.; Contant, R.; Justum, Y. Oxidation kinetics of NADH by heteropolyanions, J. Electroanal. Chem. 1996, 404, 271.
    92.董绍俊,车广礼,谢远武,化学修饰电极,1996出版。
    93. R. F. Lane, A. T. Hubbard, Electrochemistry of chemisorbed molecules. I. Reactants connected to electrodes through olefinic substituents, J. Phys. Chem., 1973, 77, 1401-1410.
    94. B. F. Watkins, J. R. Behling, E. Kariv, L. L. Miller, Chiral electrode, J. Am. Chem. Soc., 1975, 97, 3549-3550.
    95. P. R. Moses, L. Weir, R. W. Murray, Chemically modified tin oxide electrode, Anal. Chem., 1975, 47, 1882-1886.
    96. J. L. Liu, L. Cheng, B. F. Liu, S. J. Dong, Covalent Modification of a Glassy Carbon Surface by 4-Aminobenzoic Acid and Its Application in Fabrication of a Polyoxometalates-Consisting Monolayer and Multilayer Films, Langmuir, 2000, 16, 7471-7476.
    97. J. R. Lanhard, R. W. Murray, Chemically modified electrodes Part Ⅶ. Covalent bonding of a reversible electrode reactant to Pt electrodes using an organosilane reagent, J. Electroanal. Chem., 1977, 78, 195-201.
    
    
    98. D. F. Untereker, J. C. Lennox, L. Weir, P. R. Moses, R. W. Murray, Chemically modified electrodes: Part Ⅳ. Evidence for formation of monolayers of bonded organosilane reagents, J. Electroanal. Chem., 1977, 81,309-318.
    99. A. P. Brown, F. C. Anson, Electron transfer kinetics with both reactant and product attached to the electrode surface, J. Electroanal. Chem., 1978, 92, 133-145.
    100. A.P. Brown, C. Koval, F. C. Anson, Illustrative electrochemical behavior of reactants irreversibly adsorbed on graphite electrode surfaces, J. Electroanal. Chem., 1976, 72, 379-387.
    101. H.J. White, M. P. Soriaga, A. T. Hubbard, Reaction mechanism of the benzoquinone/hydroquinone couple at platinum electrodes in aqueous solutions: Retardation and enhancement of electrode kinetics by single chemisorbed layers, J. Electroanal. Chem., 1985, 185, 331-338.
    102. H.J. White, M. P. Soriaga, A. T. Hubbard, Influence of oriented-chemisorbed monolayers on the electrode kinetics of unadsorbed nonionic redox couples, J. Phys. Chem., 1985, 89, 3227-3232.
    103. M.P. Soriaga, A. J. L. Stickney, A. T. Hubbard, Electrochemical oxidation of aromatic compounds adsorbed on platinum electrodes: The influence of molecular orientation, J. Electroanal. Chem., 1983, 144, 207-215.
    104. W.J. Lorenz, H. D. Hermann, N. Wuthrich, F. Hilbert, The formation of momolayer metal films on electrodes, J. Electrochem. Soc., 1974, 121, 1167.
    105. H. Daifuku, I. Yoshimura, I.Hirata, K. Aoki, K. Tokuda, H. Matsuda, Analysis of current-potential curves for mediated electron-transfer reactions at rotating disk electrodes: Electrocatalysis by polypyfidine osmium and ruthenium complexes confined to tin
    
    oxide electrodes as a Langmuir-Blodgett monomolecular layer, J. Electroanal. Chem., 1986, 199, 47-68.
    106. M. Fujihira, S. Poosittisak, Electrocatalysis by electrodeposited Pt from PtCl_6~(2-) confined in a Langmuir-Blodgett film on a glassy carbon electrode, J. Electroanal. Chem., 1986, 199, 481-484.
    107. M. Fujihira, S. Poosittisak, Precise control of amount of electrodeposited Pt by using the Langmuir-Blodgett film and its application to electrocatalysis of molecular oxygen reduction, Chem. Lett., 1986, 251-252.
    108. T. Miyasaka, T. Watanabe, A. Fujishima, K. Honda, Light energy conversion with chlorophyll monolayer electrodes. In vitro electrochemical simulation of photosynthetic primary processes, J. Am. Chem. Soc., 1987, 100, 6657-6665.
    109. T. Miyasaka, T. Watanabe, A. Fujishima, K. Honda, Highly efficient quantum conversion at chlorophyll α-lecithin mixed momolayer coated electrode, Nature, 1979, 277, 638.
    110. M.D. Porter, T. B. Bright, D. L. Allara, C. E. D. Chidsey, Spontaneously organized molecular assemblies. 4. Structural characterization of n-alkyl thiol monolayers on gold by optical ellipsometry, infrared spectroscopy, and electrochemistry, J. Am. Chem. Soc., 1987, 109, 3559-3568.
    111. C.E.D. Chidsey, D. N. Loiacono, Chemical functionality in self-assembled monolayers: structural and electrochemical properties, Langmuir, 1990, 6, 682-691.
    112. R.G. Nuzzo, L. H. Dubois, D. L. Allara, Fundamental studies of microscopic wetting on organic surfaces. 1. Formation and structural characterization of a self-consistent series of polyfunctional organic monolayers, J. Am. Chem. Soc., 1990,112, 558-569.
    113. C.D. Bain, J. Evall, G. M. Whitesides, Formation of monolayers by the coadsorption of thiols on gold: variation in the head group, tail
    
    group, and solvent, J. Am. Chem. Soc., 1989,111, 7155-7164.
    114. D.L. Allara, R. G. Nuzzo, Spontaneously organized molecular assemblies. 1. Formation, dynamics, and physical properties of n-alkanoic acids adsorbed from solution on an oxidized aluminum surface, Langmuir, 1985, 1, 45-52.
    115. J.J. Hickman, C. Zou, D. Ofer, P. D. Harvey, M. S. Wrighton, P. E. Laibinis, C. D. Bain, G. M. Whitesides, Combining spontaneous molecular assembly with microfabrication to pattern surfaces: selective binding of isonitriles to platinum microwires and characterization by electrochemistry and surface spectroscopy, J. Am. Chem. Soc., 1989, 111, 7271-7272.
    116. L.L. Miller, M. R.Van de Mark, Electrode surface modification via polymer adsorption, J. Am. Chem. Soc., 1978, 100, 639-640.
    117. A.H. Schroeder, F. B. Kaufman, The influence of polymer morphology on polymer film electrochemistry, J. Electroanal. Chem., 1980, 113, 209-224.
    118. N. Oyama, K. Shigehara, F. C. Anson, Evaluation of rate constants for redox self-exchange reaction from electrochemical measurements with rotating-disk electrodes coated with polyelectrolytes, Inorg. Chem., 20, 518(1981).
    119. A.H. Schroeder, F. B. Kaufman, V. Patel, E. M. Engler, Comparative behavior of electrodes coated with thin films of structurally related electroactive polymers, J. Electroanal. Chem., 1980, 113, 193-208.
    120. E B. Kaufman, A. H. Schroeder, E. M. Engler, S. R. Kramer, J. Q. Chambers, Ion and electron transport in stable, electroactive tetrathiafulvalene polymer coated electrodes, J. Am. Chem. Soc., 1980, 102, 483-488.
    121. A.F. Diaz, K. K. Kanazawa, G. P. Gardini, Electrochemical polymerization of pyrrole, J. Chem. Soc. Chem. Commun., 1979, 635.
    
    
    122. G. Tourillon, F. Gamier, New electrochemically generated organic conducting polymers, J. Electroanal. Chem., 1982, 135, 173-178.
    123. A.F. Diaz, J. A. Logan, Electroactive polyaniline films, J. Electroanal. Chem., 1980,111, 111-114.
    124. R. Ravichandran, R. P. Baldwin, Chemically modified carbon paste electrodes, J. Electroanal. Chem., 1981, 126, 293-300.
    125. K. Kalcher, Chemically modified carbon paste electrode in voltammetric analysis, Electroanalysis, 2, 419(1990).
    126. A.M. Couper, D. Pletcher, F. C. Walsh, Electrode materials for electrosynthesis, Chem. Rev., 1990, 90, 837-865.
    127. R.W. Murray, "Electroanalytical Chemistry" (A. J. Bard, ed.), Marcel Dekker, New York, 13, 192(1984).
    128. C.P. Andrieux, J. M. Dmnas-Bouchiat, J. M. Saveat, Catalysis of electrochemical reactions at redox polymer electrodes: Kinetic model for stationary voltammetric techniques, J. Electroanal. Chem., 1982, 131, 1-35.
    129. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, 1972,238, 37-38.
    130. M. Majda, L. R. Faulkner, A luminescence probe for measurements of electron-exchange rates in polymer films on electrodes, J. Electroanal. Chem., 1982, 137, 149-156.
    131. H.D. Abruna, R. Denisevich, M. Umana, T. J. Meyor, R. W. Murray, Rectifying interface using two-layer films of electrochemically polymerized vinylpyridine and vinylbipyridine complexes of Ruthenium and Iron on electrode, J. Am. Chem. Soc., 1981, 103, 1.
    132. C.R. Leidner, R. W. Murray, Estimation of the rate of electron transfers between two contacting polymer surfaces, J. Am. Chem. Soc., 1985, 107, 551-557.
    133. D.K. Smith, G. A. Lane, M. S. Wrighton, PH dependence of the electrochemical behavior of surfaces modified with a polymer derived
    
    from a monomer consisting of two viologen subunits linked by a quinone: evidence for rectification by synthetic molecular materials, J. Am. Chem. Soc., 1986, 108, 3522-3525.
    134. H.S. White, G. P. Kittlesen, M. S. Wrighton, Chemical derivatization of an array of three gold microelectrodes with polypyrrole: fabrication of a molecule-based transistor, J. Am. Chem. Soc., 1984, 106, 5375-5377.
    135. A.R. Hillman, E. F. Mallen, Electroactive bilayers employing conducting polymers: Part Ⅲ. Kinetic vs. diffusional control of outer layer switching rate, J. Electroanal. Chem., 1991, 309, 159-171.
    136. T.F. Ofero, J. Rodriguez, E. Angulo, C. Santamaria, Artificial muscles from bilayer structures, Synth. Met., 1993, 55~57, 3713.
    137. T. Shimidzu, A. Ohtani, K. Honda, Charge-controllable poly pyrrole/poly electrolyte composite membranes: Part Ⅲ. Electrochemical deionization system constructed by anion-exchangeable and cation-exchangeable polypyrrole electrodes, J. Electroanal. Chem., 1988, 251,323-337.
    138. L.L. Miller, A. N. K. Lau, E. K. Miller, Electrically stimulated release of neurotransmitters from a surface. An analog of the presynaptic terminal, J. Am. Chem. Soc., 1982,104, 5242-5244.
    139. B. Keita, L. Nadjo, Electrocatalysis by electrodeposited heteropolyanions and isopolyanions, J. Electroanal. Chem., 1987, 227, 265-270.
    140. B. Keita, L. Nadjo, J. P. Haeussler, Activation of electrode surfaces: semiquantitative characterization of electrode surfaces modified with heteropolyanions, J. Electroanal. Chem., 1987, 230, 85-97.
    141. B. Keita, L. Nadjo, Surface modifications with heteropoly and isopoly oxometalates: Part Ⅲ. Electrode modification procedures, the necessity of proton interference during the electrodeposition of the h.e.r.
    
    catalysts, J. Electroanal. Chem., 1988, 247, 157-172.
    142. B. Keita, L. Nadjo, Scanning tunnelling microscope monitoring of the surface morphology of the basal plane of highly oriented pyrolytic graphite during the cyclic voltammetry of isopoly and heteropolyanions, J. Electroanal. Chem., 1993, 354, 295-304.
    143. O. Savadogo, C. Allard, The hydrogen evolution reaction in an acid medium on nickel electrodeposited with SiW_(12)O_(40)~(4-) or SiMo_(12)O_(40)~(4_) from electrolytes of various anionic compositions. J. Appl. Electrochem. 1991, 21, 73.
    144. S.J. Dong, B. X. Wang, Electrochemical study of isopoly- and heteropolyoxometallates film modified microelectrodes-I. Pretreatment and modification of the MO_8O_26~(4-) modified carbon fiber microelectrode, Electrochim. Acta, 1992, 37, 11-16.
    145. B.X. Wang, S. J. Dong, Electrochemical study of isopoly- and heteropoly-oxometallate film modified microelectrodes—Part 2. Electrochemical behaviour of isopolymolybdic acid monolayer modified carbon fibre microelectrodes, Electrochim. Acta, 1992, 37, 1859-1864.
    146. B.X. Wang, S. J. Dong, Electrochemical study of isopoly and heteropoly oxometallate film modified microelectrodes: Part 5. Preparation and electrochemical behaviour of a 2:18-molybdodiphosphate anion monolayer modified electrode, J. Electroanal. Chem., 1992, 328, 245-257.
    147. S.J. Dong, G. Jin, 1:12 phosphomolybdic anion modified glassy carbon electrode, J. Chem. Soc., Chem. Commun., 1987, 1871.
    148. C. Rong, F. C. Anson, Spontaneous adsorption of heteropolytungstates and heteropolymolybdates on the surfaces of solid electrodes and the electrocatalytic activity of the adsorbed anions, Inorg. Chim. Acta, 1996, 242, 11-16.
    149. C. Rong, F. C. Anson, Unusually Strong Adsorption of Highly
    
    Charged Heteropolytungstate Anions on Mercury Electrode Surfaces, Anal. Chem., 1994, 66, 3124-3130.
    150. X.D. Xi, S. J. Dong, Preparation of modified electrode with molybdophosphate anion and its electrocatalysis for bromate reduction, Electrochim. Acta, 1995, 40, 2785.
    151. B.X. Wang, S. J. Dong, Electrochemical study of isopoly- and heteropoly-oxometallates film modified microelectrodes--Ⅵ. Preparation and redox properties of 12-molybdophosphoric acid and 12-molybdosilicic acid modified carbon fiber microelectrodes, Electrochim. Acta, 1996, 41,895-902.
    152. Keita, B., Nadjo, L.; Belanger, D.; Wilde, C. P.; Hilaire, M. Electrochemical quartz crystal microbalance: evidence for the adsorption of heteropoly and isopoly anions on gold electrodes, J. Electroanal. Chem. 1995, 384, 155-169.
    153. B. Keita, A. Belhouari, L. Nadjo, R. Contant, Electrocatalysis by polyoxometalate/polymer system: reduction of nitrite and nitric oxide, J. Electroanal. Chem., 381,243(1995).
    154. G. Bidan, E. M. Genies, M. Lapkowski, Eur. Pat. Appl. EP 323, 351;
    155. G. Bidan, M. Lapkowski, J. P. Travers, Hybridization of various conducting polymers with heteropolyanions: conductivity, electrochemical and electrocatalytic properties, Synth. Met., 1989, 28,C113.
    156. M. Lapkowski, G. Bidan, M. Foumier, Synthesis of polypyrrole and polythiophene in aqueous solution on Keggin-type structure heteropolyanions, Synth. Met., 41-43,407(1991).
    157. G. Bidan, E. M. Genies, M. Lapkowski, Modification of polyaniline films with heteropolyanions: electrocatalytic reduction of hydrogen and protons, J. Chem. Soc., Chem. Commun., 533(1988).
    158. B. Wang, F. Song, S. Dong, The preparation of electrodes
    
    modified with isopolymolybdic acid + polyaniline film and its catalytic effects on chlorate ions, J. Electroanal. Chem., 1993, 353,43-55.
    159. B. Keita, D. Bouaziz L. Nadjo, Strategies for entrapping oxometalates in polymeric matrices: Example of polyaniline as the matrix, J. Electroanal. Chem., 1988, 255,307-313.
    160. B. Wang, S. Dong, Electrochemical study of isopoly- and heteropoly-oxometallates film modified microelectrodes—part 3. Further study of electrode process of isopolymolybdic anion doped in polyaniline film, Electrochim. Acta, 1993, 38,1029-1035.
    161. K. Koziel, M. Lapkowski, Influence of the doping anion concentration on the mechanism of redox reactions of polyaniline, Synth. Met. 55-57, 1005(1993).
    162. M. Hasik, A. Pron, J. Pozniczek, A. Bielanski, et al, Physicochemical and catalytic properties of polyaniline protonated with 12-molybdophosphoric acid, J. Chem. Soc. Faraday Trans. 90, 2099(1994).
    163. B. Keita, A. Mahmoud, L. Nadjo, EQCM monitoring of charge transport process in polyaniline films doped with 12-silicomolybdic heteropolyanion, J. Electroanal. Chem., 386, 245(1995).
    164. M. Lapkowski, W. Turek, M. Barth, S. Lefrant, Changes in catalytic properties of substituted and unsubstituted heteropolyacids in conductive polymer matrix, Synth. Met. 1995, 69, 127-128.
    165. X. Xi, S. Dong, Electrocatalytic reduction of nitrite using Dawson-type tungstodiphosphate anions in aqueous solutions, adsorbed on a glassy carbon electrode and doped in polypyrrole film, J. Mol. Catal. A.: Chemical, 1996, 114, 257-265.
    166. K.K. Shiu, F. C. Anson, Attempts to immobilize catalytically active heteropolytungstates on the surfaces of electrodes, J. Electroanal. Chem., 1991, 309, 115-129.
    167. G. Bidan, E. M. Genies, M. Lapkowski, Polypyrrole and
    
    poly(N-methylpyrrole) films doped with Keggin-type heteropolyanions: preparation and properties, J. Electroanal. Chem., 1988, 251,297-306.
    168. T. Shimidzu, A. Ohtani, M. Aiba, K. Honda, Electrochromism of a conducting polypyrrole-phosphotungstate composite electrode, J. Chem. Soc. Faraday Trans. 1988, 84, 3941.
    169. B. Keita, D. Bouaziz, L. Nadjo, A. Derondier, Surface functionalization with oxometallates entrapped in polymeric matrices: Part 2. Substituted pyrrole-based ion-exchange polymers, J. Electroanal. Chem., 1990, 279, 187-203.
    170. G. Bidan, E. M. Genies, M. Lapkowski, Synth. Met., 31, 327(1989).
    171. B. Fabre, G. Bidan, D. Fichou, J. Chim. Phys., 89, 1053(1992).
    172. M. Zagorska, I. Kulsezewicz-Bajer, E. Lukomska-Gordzisz, A. Pron, I. Glowacki, J. Ulanski, S. Lefrant, Modification of polyacetylene and polyalkylthiophene by doping with heteropolyanions, Synth. Met., 37, 99(1990).
    173. K.K. Kasem, F. A. Schultz, Electrochemistry of polyoxometalates immobilized in ion exchange polymer films, Can. J. Chem., 73, 858(1995.
    174. B. Keita, L. Nadjo, Surface modifications with heteropoly and isopoly oxometalates: Part I. Qualitative aspects of the activation of electrode surfaces towards the hydrogen evolution reaction, J. Electroanal. Chem., 1988, 243, 87-103.
    175. K. Nomiya, H. Murasaki, M. Miwa, Catalysis by heteropolyacids—Ⅷ. Immobilization of keggin-type heteropolyacids on poly(4-vinylpyridine), Polyhedron, 1986, 5, 1031-1033.
    176. B. Keita, L. Nadjo, Surface functionalization of electrodes with oxometalates entrapped in polymeric matrices: Evidence for a microenvironment effect, J. Electroanal. Chem., 1988, 240, 325-332.
    177. B. Keita, K. Essaadi, L. Nadjo, Surface functionalization with
    
    oxometalates entrapped in polymeric matrices: Part I. New and remarkably stable poly(4-vinylpyridine) based redox coatings, J. Electroanal. Chem., 1989, 259, 127-146.
    178. B. Keita, D. Bouaziz, L. Nadjo, Surface functionalization with oxometallates entrapped in polymeric matrices: Part 3. Homogeneous vs. heterogeneous-phase formation and equilibria of isopolytungstates, J. Electroanal. Chem., 1990, 284, 431-444.
    179. B. Keita, D. Bouaziz, L. Nadjo, Electrochemical and spectroscopic monitoring of the interaction between hydrogen peroxide and tungstophosphate heteropolyanion in homogeneous phase and in a polymer matrix, Electroanalysis., 3, 637(1991).
    180. M.-C. Pham, J. Moslih, F. Chauveau, P.-C. Lacaze, In situ multiple internal reflection fourier transform infrared spectroscopic (MIRFTIRS) study of the electrochemical immobilization of heteropolyanions in poly(1-naphthol) coated electrodes, J. Appl. Electrochem. 21,902(1991).
    181. M.-C. Pham, M. Mostefai, F. Chauveau, P.-C. Lacaze, Synthesis and characterization of electrodes modified by poly(1-naphthol) films doped with heteropolyanions, Synth. Met., 52, 305(1992).
    182. B. Fabre, G. Bidan, R. Cespuglo, S. Burlet, PCT Int. WO9606, 347.
    183. Clemente-Leon, B. Agricole, C. Mingitaud, C. J. Gomez-Garcia, E. Coronado, P. Delhaes, Application of the langmuir-blodgett technique to polyoxometalates: towards new magnetic films, Angew. Chem. Int. Ed. Engl., 1997, 36, 1114.
    184. Clemente_Leon, B. Agricole, C. Mingotaud, C. J. Gomez-Garcia, E. Corinado, P. Delhaes, Toward new organic superlattices Keggin polyoxometalates in langmuir-blodgett films, Langmuir., 1997, 13, 2340.
    185. Ingersoll, P. J. Kulesza, L. R. Faulker, Polyoxometallate-based
    
    layered composite films on electrodes, J. Electrochem. Soc., 1994, 141, 140.
    186. J. Kuhn, G. Roslonek, L. R. Faulkner, Intercalation of metal complex cations in polyoxometallates formation of composite film with distinct electrocatalytic center, J. Electroanal. Chem. 1990, 280, 233.
    187. A. Kuhn, F. C. Anson, adsorption of monolayers of P_2Mo_(18)O_(62)~(6-) and deposition of multiple layers of Os(bpy)_3~(2+)- P_2Mo_(18)O_(62)~(6-) on electrode surface, Langmuir, 12, 5481-5488(1996).
    188. C. Sun, J. Zhao, H. Xu, Y. Sun, X. Zhang, J. Shen, Fabrication of multiplayer films containing 1:12 phosphomolybdaic anions on the surface of a gold electrode based on electrostatic interaction and its application as an electrochemical detector in flow-injection amperometric detection of hydrogen peroxide, J. Electroanal. Chem., 435, 63(1997).
    189. I. Moriguchi, K. Hanai, A. Hoshikuma, Y. Teraoka, S. Kagawa, Chem. Lett., 691 (1994).
    190. I. Moriguchi, J. F. Fendler, Characterization and Electrochromic Properties of Ultrathin Films Self-Assembled from Poly(diallyldimethylammonium) Chloride and Sodium Decatungstate, Chem. Mater, 10, 2205-2211(1998).
    191. F. Caruso, D. G. Kurth, D. Volkmer, M. J. Koop, A. Muller, Ultrathin molybdenum polyoxometalate-polyelectrolyte multiplayer films, Langmuir, 14, 3462(1998).
    192. I. Ichinose, H. Tagawa, H. Mizuki, Y. Lvov, T. Kunitake, Formation Process of Ultrathin Multilayer Films of Molybdenum Oxide by Alternate Adsorption of Octamolybdate and Linear Polycations, Langmuir, 14, 187-192(1998).
    193. C.A. Widrig, C. A. Alves, M. D. Porter, Scanning tunneling microscopy of ethanethiolate and n-octadecanethiolate monolayers spontaneously absorbed at gold surfaces, J. Am. Chem. Soc., 1991, 113,
    
    2805-2810.
    194. C.A. Widrig, C. Chung, M. D. Porter, The electrochemical desorption of n-alkanethiol monolayers from polycrystalline Au and Ag electrodes, J. Electroanal. Chem., 1991, 310, 335-359.
    195. M.G. Samant, C. A. Brown, J. G. Gordon, Structure of an ordered self-assembled monolayer of docosyl mercaptan on gold(111) by surface x-ray diffraction, Langmuir, 7, 437-439(1991).
    196. S.M. Stole, M. D. Porter, In situ infrared external reflection spectroscopy as a probe of the interactions at the liquid-solid interface of long-chain alkanethiol monolayers at gold Langmuir, 1990, 6, 1199-1202.
    197. M.D. Porter, T. B. Bright, D. L .Allara, C. E. D. Chidsey, Spontaneously organized molecular assemblies. 4. Structural characterization of n-alkyl thiol monolayers on gold by optical ellipsometry, infrared spectroscopy, and electrochemistry, J. Am. Chem. Soc., 1987, 109, 3559-3568.
    198. L. Strong, G. M. Whiteside, Structures of self-assembled monolayer films of organosulfur compounds adsorbed on gold single crystals: electron diffraction studies, Langmuir, 4, 546-558(1988).
    199. A. Ulman, J. E. Eilers, N. Tillman, Packing and molecular orientation of alkanethiol monolayers on gold surfaces, Langmuir, 1989, 5, 1147-1152.
    200. S.Q. Liu, Z. Y. Tang, A. L. Bo, E. K. Wang, S. J. Dong, Electrochemistry of heteropolyanions in coulombically linked self-assembled monolayers, J. Electroanal. Chem., 458, 87(1998).
    201. L. Cheng, L. Niu, J. Gong. S. J. Dong, Electrochemical growth and characterization of polyoxometalate-containing monolayers and multilayers on alkanethiol monolayers self-assembled on gold electrodes, Chem. Mater., 11, 1465(1999).
    202. S.Q. Liu, Z. Y. Tang, Z. Shi, L. Niu, E. K. Wang, S. J. Dong,
    
    Electrochemical preparation and characterization of silicotungstic heteropolyanion monolayer electrostatically linked aminophenyl on carbon electrode surface, Langmuir, 15, 7268(1999).
    203. M. Delamar, R. Hitmi, J. Pinson, J. M. Saveant, Covalent modification of carbon surfaces by grafting of functionalized aryl radicals produced from electrochemical reduction of diazonium salts, J. Am. Chem. Soc., 1992, 114, 5883-5884.
    204. R. Hitmi, J. Pinson, J. M. Saveant, Fr. Pat. 91 011172.
    205. C. Bourdillon, M. Delamar, C. Demaille, R. Hitmi, J. Moiroux, J. Pinson, Immobilization of glucose oxidase on a carbon surface derivatized by electrochemical reduction of diazonium salts, J. Electroanal. Chem., 1992, 336, 113-123.
    206. I. Bhugun, J. M. Saveant, Derivatization of surfaces and self-inhibition in reversible electrochemical reactions: cyclic voltammetry and preparative-scale electrolysis, J. Electroanal. Chem., 395, 127(1995).
    207. P. Allongue, M. Delmar, B. Desbat, O. Fagebaume, R. Hitmi, J. Pinson, J. M. Saveant, Covalent Modification of Carbon Surfaces by Aryl Radicals Generated from the Electrochemical Reduction of Diazonium Salts, J. Am. Chem. Soc., 1997, 119, 201-207.
    208. J.Y. Liu, L. Cheng, B. F. Liu, and S. J. Dong, Covalent modification of a glassy carbon surface by 4-aminobenzoic acid and its application in fabrication of a polyoxometalates-consisting monolayer and multiplayer films, Langmuir, 16, 7471 (2000).
    209. B. Keita, A. Belhouari, L. Nadjo, Oxometalate-clay-modified electrodes: synthesis and properties of anionic clays pillared by metatungstate, J. Electroanal. Chem., 1993, 355, 235-251.
    210. B. Keita, N. Dellero, L. Nadjo, Oxometalate-clay-modified electrodes: example of metatungstate incorporated in stearyltrimethylammonium-montmorillonite layers, J. Electroanal.
    
    Chem., 1991, 302, 47-57.
    211.孙长青等,高等学校化学学报,1998.
    212. P. Wang, Y. Yuan, Z. B. Han, G. Y. Zhu, Sol-gel-derived graphite organosilicate composite electrodes bulk-modified with Keggin-type germanomolybdic acid, J. Mater. Chem., 11,549(2001).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700