基于氧化还原电位的铁释放预测模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化还原电位(ORP)是水处理中常用的水质综合指标,可用来反映溶液体系的宏观氧化还原特性,具有便于研制价格低廉,操作方法简单,检测结果迅速准确等优点。
     本文的主要目的是完善给水管网铁释放机理,建立铁释放预测模型。本文利用室内小试针对氧化还原电位(ORP)与铁释放的相关性展开研究;分析并提出了铁释放ORP作用机理,并且基于此机理提出建立了铁释放预测模型;最终利用室内、室外管网中试平台对该预测模型进行验证。
     现有铁释放机理研究认为铁释放可分为好氧阶段与缺氧阶段。但由于缺乏定量研究,该机理尚未建立相应的数学模型,无法用于铁释放预测。本文利用由2条管龄不同的腐蚀管道制成的小试装置研究了不同影响因素及水平下(溶解氧、余氯、一氯胺、pH、温度、氯离子、硫酸根)铁释放与ORP的相关性。利用实验结果建立了铁释放的ORP预测模型。同时研究了铁细菌对铁释放的影响效果与ORP的关系。
     室内小试的实验结果表明:1.ORP与铁释放具有一定的相关性,ORP会因为铁释放量上升而下降,并且它也可以分辨出铁释放的好氧阶段与缺氧阶段。2.ORP与铁释放的相关性并不会因管材、水质条件变化的改变。3.因此ORP可以对复杂水质条件下的铁释放风险进行评价。ORP≤100mV,铁释放量超标;ORP>300mV,铁释放量达标。4.对于铁释放问题,ORP与铁细菌存在协同作用,ORP>100mV时,铁细菌对铁释放基本不存在影响;而ORP<100mV后,铁细菌对铁释放有明显的促进作用。
     基于上述实验结果与前人研究成果,本文提出了铁释放的ORP机理。本机理认为:1.ORP决定了二价铁的氧化速率,提高ORP会加快二价铁的氧化速率,减少铁释放量。2.当ORP低于临界值后,二价铁将无法被氧化,铁释放进入缺氧阶段。3.铁浓度上升会导致ORP下降。基于此机理,本文提出了铁释放的ORP预测模型,该模型认为水中的铁释放量与ORP符合指数模型。并可以根据ORP值对铁释放风险进行评价。
     利用室内、室外管网中试对该模型的准确性进行验证。实验结果表明该模型的准确性在不同季节、不同管材、不同管网位置、不同运行工况的情况下均得到了很好验证。
As a common measurement in water treatment, oxidation reduction potential (ORP) is used to characterize the oxidation capacity of solution. It has many advantages such as easy to develop, low cost, simple operation method, and rapid and accurate test results.
     The object of this paper is to complete the theory systems of iron release from corroded iron pipes in drinking water distribution systems, and set up a forecast model about iron release. Relationships between ORP and iron release was investigated. Then a new ORP mechanism of iron release was analyzed and presented, and a new iron release prediction model based on the mechanism was established. Eventually the prediction model was validated in pilot-scale drinking water distribution systems.
     At present iron release can be divided into oxic and anoxic conditions. However, by lack of quantitative research, it doesn't establish the corresponding mathematical model and it isn't used to predict iron release. This paper examined correlations between iron release and ORP under different factors and levels (such as dissolved oxygen, free chlorine, monochloramine, pH, temperature, chloride, sulfate) using bench-scale pipe reactor made of two different service age corroded pipes. And according to results, iron release prediction model based on ORP was established. Meanwhile, relationship between influence of iron bacteria on iron release and ORP was investigated.
     Results indicate that:1. ORP correlates with iron release, ORP would decease by the amount of released iron increasing; it also can identify oxic and anoxic conditions of iron release.2. This correlation isn't affected by changes of pipe scales and water quality.3. Consequently, ORP can assess risks of iron release under complex conditions. When ORP is below100mV, iron release seriously; However when ORP is greater than300mV, iron release is governed well.4. The effect of iron bacteria on iron release is influenced by ORP. When ORP is greater than100mV, the influence of iron bacteria on iron release is negligible. However, for ORP values lower100mV, iron bacteria would increase iron release.
     Based on these results and previous work, this paper puts forward the ORP mechanism of iron release. The ORP mechanism indicates that:1. The rate of reaction rate of ferrous to ferric is decided directly by ORP; Increasing ORP can enhance the reaction rate and reduce amount of iron release.2. If ORP is lower than the critical value, ferrous will not be oxide, iron release will be in anoxic conditions.3. Iron concentrations increasing would reduce ORP values. According the ORP mechanism the ORP prediction model of iron release was set up. The model that iron release and ORP accords with exponential model. And the risk of iron release could be evaluated by ORP values.
     The model was verified in pilot-scale drinking water systems. The results indicate that the accuracy of model is well validated in different factors such as seasons, pipes, locations and flow conditions.
引文
[1]许保玖,杨钦,严煦世.给水工程[Z].北京:中国建筑工业出版社,1999.
    [2]袁志彬,王占生.城市供水管网水质污染的防治研究[J].天津建设科技,2003(02):30-31.
    [3]马从容.蚌埠市饮用水的生物稳定性研究[J].工业用水与废水,2001(04):16-17.
    [4]牛璋彬,张晓健,韩宏大,等.给水管网中金属离子化学稳定性分析[J].中国给水排水,2005(05):18-21.
    [5]Vreeburg I J, Boxall D J. Discolouration in potable water distribution systems:A review[J]. Water research,2007,41(3):519-529.
    [6]Edwards M. Controlling corrosion in drinking water distribution systems:a grand challenge for the 21st century[J]. Water Science & Technology,2004,49(2):1-8.
    [7]Sarin P, Snoeyink V L, Lytle D A, et al. Iron corrosion scales:model for scale growth, iron release, and colored water formation[J]. Journal of environmental engineering, 2004,130(4):364-373.
    [8]牛璋彬,王洋,张晓健,等.某市给水管网中铁释放现象影响因素与控制对策分析[J].环境科学,2006,27(2).
    [9]Deborde M, von Gunten U. Reactions of chlorine with inorganic and organic compounds during water treatment—kinetics and mechanisms:a critical review[J]. Water research, 2008,42(1):13-51.
    [10]张晓健,牛璋彬.给水管网中铁稳定性问题及其研究进展[J].中国给水排水,2006,22(2).
    [11]邢晓夏,刘均洪.生物腐蚀的研究进展[J].化学工业与工程技术,2005,26(2):31-34.
    [12]Sarin P. Iron release from corrosion scales in old iron/steel drinking water distribution pipes[M].2002.
    [13]Volk C, Dundore E, Schiermann J, et al. Practical evaluation of iron corrosion control in a drinking water distribution system[J]. Water research,2000,34(6):1967-1974.
    [14]Foundation A R, Wasser D. Internal Corrosion of Water Distribution Systems[M]. American Water Works Association,1996.
    [15]刘峰.给水管道细菌腐蚀机理[J].化学工程师,2003,5:21.
    [16]王洋.给水管网铁稳定性特性及控制技术研究[D].北京:清华大学,2009.
    [17]高玖藜.供水管道铁释放现象影响因素研究[D].浙江大学,2013.
    [18]Husband S, Boxall J B. Field studies of discoloration in water distribution systems:model verification and practical implications [J]. Journal of Environmental Engineering, 2009,136(1):86-94.
    [19]陈韬,彭永臻,田文军,等.ORP检测在水处理中的应用[J].中国给水排水,2003,19(5):20-22.
    [20]何玲,姚芳宇.认识消毒过程中的氧化还原电位[J].城市管理与科技,1994,4:10.
    [21]Wareham D G, Mavinic D S, Hall K J. Sludge digestion using ORP-regulated aerobic-anoxic cycles[J]. Water Research,1994,28(2):373-384.
    [22]Wareham D G, Hall K J, Mavinic D S. Real-time control of aerobic-anoxic sludge digestion using ORP[J]. Journal of Environmental Engineering,1993,119(1):120-136.
    [23]Sarin P, Snoeyink V L, Bebee J, et al. Iron release from corroded iron pipes in drinking water distribution systems:effect of dissolved oxygen[J]. Water Research,2004,38(5):1259-1269.
    [24]Wang H, Hu C, Hu X, et al. Effects of disinfectant and biofilm on the corrosion of cast iron pipes in a reclaimed water distribution system[J]. Water research,2012,46(4):1070-1078.
    [25]McNeill L S, Edwards M. Review of iron pipe corrosion in drinking water distribution systems[J]. J. AWWA,2001,93(7):88-100.
    [26]Benjamin M M, Sontheimer H, Leroy P. Internal corrosion of water distribution systems[J]. AWWARF and TZW. Denver, Co,1996.
    [27]Sontheimer H, Kolle W, Snoeyink V L. Siderite model of the formation of corrosion-resistant scales[J]. Journal of the American Water Works Association, 1981,73(11):572-579.
    [28]Tuovinen O H, Button K S, Vuorinen A, et al. Bacterial, Chemical, and Mineralogical Characteristics of Tubercles in Distribution Pipelines (PDF)[J]. Journal-American Water Works Association,1980,72(11):626-635.
    [29]Herro H M, Port R D. The Nalco Guide to Cooling Water System Failure Analysis:Nalco Chemical Company[M]. McGraw-Hill,1993.
    [30]Sarin P, Snoeyink V L, Bebee J, et al. Physico-chemical characteristics of corrosion scales in old iron pipes[J]. Water Research,2001,35(12):2961-2969.
    [31]Swietlik J, Raczyk-Stanislawiak U, Piszora P, et al. Corrosion in drinking water pipes:The importance of green rusts[J]. Water research,2012,46(1):1-10.
    [32]Lin J, Ellaway M, Adrien R. Study of corrosion material accumulated on the inner wall of steel water pipe[J]. Corrosion Science,2001,43(11):2065-2081.
    [33]牛璋彬,王洋,张晓健,等.给水管网中铁释放现象的影响因素研究[J].环境科学,2007,28(10):2270-2274.
    [34]Baylis J R. PREVENTION OF CORROSION AND" RED WATER"[J]. Journal (American Water Works Association),1926,15(6):598-633.
    [35]Jim K K L. Investigation of iron release from galvanized pipe sections[D]. University of Illinois at Urbana-Champaign,1999.
    [36]Tamaura Y, Buduan P V, Katsura T. Studies on the oxidation of iron (Ⅱ) ion during the formation of Fe3O4 and a-FeO (OH) by air oxidation of Fe [OH] 2 suspensions[J]. J. Chem. Soc., Dalton Trans.,1981(9):1807-1811.
    [37]Taylor R M. Influence of chloride on the formation of iron oxides from Fe (Ⅱ) chloride. II. Effect of [C1] on the formation of lepidocrocite and its crystallinity[J]. Clays Clay Miner, 1984,32:175-180.
    [38]Carlson L, Schwertmann U. The effect of CO2 and oxidation rate on the formation of goethite versus lepidocrocite from an Fe (II) system at pH 6 and 7[J]. Clay Miner,1990,25:65-71.
    [39]Gerke T L, Maynard J B, Schock M R, et al. Physiochemical characterization of five iron tubercles from a single drinking water distribution system:Possible new insights on their formation and growth[J]. Corrosion Science,2008,50(7):2030-2039.
    [40]Tang Z, Hong S, Xiao W, et al. Characteristics of iron corrosion scales established under blending of ground, surface, and saline waters and their impacts on iron release in the pipe distribution system[J]. Corrosion Science,2006,48(2):322-342.
    [41]McNeill L S, Edwards M. Review of iron pipe corrosion in drinking water distribution systems[J]. J. AWWA,2001,93(7):88-100.
    [42]Copson H R. Effects of velocity on corrosion[J]. Corrosion, I960,16(2):86t-92t.
    [43]Eliassen R, Pereda C, Romeo A J, et al. Effects of pH and velocity on corrosion of steel water pipes[J]. Journal (American Water Works Association),1956:1005-1018.
    [44]Gedge G. Corrosion of cast Iron in potable water service[J]. The Institute of Materials, Corrosion and Related Aspects of Materials for Potable Water Supplies(UK),1993,1993:18-28.
    [45]Beckett M A, Snoeyink V L, Jim K, et al. A pipe loop system for evaluating iron uptake in distribution systems:American Water Works Association—Water Quality Technology Conference, San Diego, CA, USA,1998[C].
    [46]Kuch A. Investigations of the reduction and re-oxidation kinetics of iron (Ⅲ) oxide scales formed in waters[J]. Corrosion Science,1988,28(3):221-231.
    [47]Nawrocki J, Raczyk-Stanislawiak U, Swietlik J, et al. Corrosion in a distribution system: Steady water and its composition[J]. Water research,2010,44(6):1863-1872.
    [48]Eisnor J D, Gagnon G A. Impact of secondary disinfection on corrosion in a model water distribution system.[J]. Journal of Water Supply:Research & Technology-AQUA,2004,53(7).
    [49]Lehtola M J, Laxander M, Miettinen I T, et al. The effects of changing water flow velocity on the formation of biofilms and water quality in pilot distribution system consisting of copper or polyethylene pipes[J]. Water research,2006,40(11):2151-2160.
    [50]Larson T E. Bacteria, corrosion and red water[J]. Journal (American Water Works Association),1939:1186-1196.
    [51]Larson T E. Chemical Control of Corrosion (PDF)[J]. Journal-American Water Works Association,1966,58(3):354-362.
    [52]Clement J A. Development of red water control strategies[M]. American Water Works Association,2002.
    [53]Volkening V B. Corrosion of steel pipe by chlorinated seawater at various velocities[J]. Corrosion, VI,1950:123-128.
    [54]Larson T E. Corrosion by domestic waters[M]. Illinois State Water Survey Urbana, Ⅱ.,1975.
    [55]陈笑居.给水管道的微生物腐蚀[D].哈尔滨工业大学,2011.
    [56]Zhang Y, Edwards M. Anticipating effects of water quality changes on iron corrosion and red water.[J]. Journal of Water Supply:Research & Technology-AQUA,2007,56(1).
    [57]Uhlig H H. Corrosion and Corrosion Control,1971 [Z]. June.
    [58]Imran S A, Dietz J D, Mutoti G, et al. Red water release in drinking water distribution systems[J]. Journal of the American Water Works Association,2005,97(9):93-100.
    [59]Lasheen M R, Sharaby C M, El-Kholy N G, et al. Factors influencing lead and iron release from some Egyptian drinking water pipes[J]. Journal of hazardous materials, 2008,160(2):675-680.
    [60]Benefield L D, Judkins J F, Weand B L. Process chemistry for water and wastewater treatment[M]. Prentice Hall Inc,1982.
    [61]Snoeyink V. L., Jenkins D水化学[Z].北京:中国建筑工业出版社,1990.
    [62]Sarin P, Clement J A, Snoeyink V L, et al. Iron release from corroded, unlined cast-iron pipe[J]. Journal-American Water Works Association,2003,95(11):85-96.
    [63]Theis T L, Singer P C. stabilization of ferrous iron by organic compounds in natural waters[J]. Trace Metals and Metal Organic Interactions in Naturalwaters. PC Singer, ed,1973.
    [64]高玖藜,柳景青,张土乔,等.水中氯离子和腐植酸对管网铁释放的影响[J].浙江大学学报(工学版),2013,8:000.
    [65]高金良,常魁,方海恩,等.城市配水管网改造工程配水分析及其应用[J].中国给水排水,2008,24(2):32-35.
    [66]蒋晓丽.南水北调江水切换对保定市现有供水设施的影响及对策研究[D].河北农业大学,2008.
    [67]王洋,张晓健,陈超,等.水源切换引起给水管网黄水问题原因分析[J][J].环境科学,2009,30(12):3555-3561.
    [68]Ahmadi A B. Effect of water quality parameters on corrosion of mild steel, copper and zinc[D]. University of Florida,1981.
    [69]米子龙,张晓健,陈超,等.硫酸根和碱度变化对管网铁释放的影响[J][J].中国给水排水,2012,28(1):31-34.
    [70]吴永丽,石宝友,孙慧芳,等.水中硫酸根及溶解氧质量浓度变化对管垢金属元素释放的影响[J].环境科学,2013,34(9):3480-3485.
    [71]McNeill L S, Edwards M. The importance of temperature in assessing iron pipe corrosion in water distribution systems[J]. Environmental Monitoring and Assessment,2002,77(3):229-242.
    [72]Ghiorse W C. Biology of iron-and manganese-depositing bacteria[J]. Annual reviews in microbiology,1984,38(1):515-550.
    [73]Hanert H. Struktur und Wachstum von Gallionella ferruginea Ehrenberg am naturlichen Standort in den ersten 6 Std der Entwicklung[J]. Archiv fur Mikrobiologie,1970,75(1):10-24.
    [74]Balashova V V. [Enrichment culture of Gallionella filamenta n. sp][J]. Mikrobiologiia, 1966,36(4):646-650.
    [75]Bisset K A, Brown D. SOME ELECTRON MICROSCOPE OBSERVATIONS ON MORPHOLOGY OF SPHAEROTILUS-NATANS[J]. Giornale di Microbiologia, 1969,17(1-2):97.
    [76]Dondero N C. The Sphaerotilus-Leptothrix group[J]. Annual Reviews in Microbiology, 1975,29(1):407-428.
    [77]Phaup J D. The biology of< i> Sphaerotilus species[J]. Water Research,1968,2(9):597-614.
    [78]Salle A J. Fundamental principles of bacteriology[M]. Tata McGraw-Hill Education,1984.
    [79]Videla H A, Herrera L K. Understanding microbial inhibition of corrosion. A comprehensive overview[J]. International Biodeterioration & Biodegradation,2009,63(7):896-900,
    [80]Teng F, Guan Y T, Zhu W P. Effect of biofilm on cast iron pipe corrosion in drinking water distribution system:corrosion scales characterization and microbial community structure investigation[J]. Corrosion science,2008,50(10):2816-2823.
    [81]Emde K, Smith D W, Facey R. Initial investigation of microbially influenced corrosion (MIC) in a low temperature water distribution system[J]. Water Research,1992,26(2):169-175.
    [82]Starosvetsky D, Armon R, Yahalom J, et al. Pitting corrosion of carbon steel caused by iron bacteria[J]. International biodeterioration & biodegradation,2001,47(2):79-87.
    [83]许保玖.给水处理理论[M].中国建筑工业出版社,2000.
    [84]Tuhela L, Carlson L, Tuovinen O H. Ferrihydrite in water wells and bacterial enrichment cultures[J]. Water Research,1992,26(9):1159-1162.
    [85]Zuo R, Kus E, Mansfeld F, et al. The importance of live biofilms in corrosion protection[J]. Corrosion science,2005,47(2):279-287.
    [86]齐宇,叶劲.自来水输送过程中的水质变化[J].给水排水技术动态,1997,3:10.
    [87]LeChevallier M W, Babcock T M, Lee R G. Examination and characterization of distribution system biofilms.[J]. Applied and Environmental Microbiology,1987,53(12):2714-2724.
    [88]Wolfe R S. Microbial concentration of iron and manganese in water with low concentrations of these elements[J].1960.
    [89]Hasselbarth U, Ludemann D. Biological incrustation of wells due to mass development of iron and manganese bacteria[J]. WATER TREATMENT AND EXAMINATION, VOL.21, P 20-29,1972.3 FIG,2 TAB,12 REF.,1972.
    [90]Rodina A G. Methods in aquatic microbiology[M]. University Park Press,1972.
    [91]Busalmen J P, Vazquez M, De Sanchez S R. New evidences on the catalase mechanism of microbial corrosion[J]. Electrochimica Acta,2002,47(12):1857-1865.
    [92]Weart J G, Margrave G E. Oxidation-reduction potential measurements applied to iron removal[J]. Journal (American Water Works Association),1957:1223-1233.
    [93]Kucera S, Wolfe R S. A selective enrichment method for Gallionella ferruginea[J]. Journal of bacteriology,1957,74(3):344.
    [94]Wolfe R S. Cultivation, morphology, and classification of the iron bacteria[J]. Journal (American Water Works Association),1958:1241-1249.
    [95]LeChevallier M W, Lowry C D, Lee R G. Disinfecting biofilms in a model distribution system[J]. Journal of the American Water Works Association,1990,82(7):87-99.
    [96]王洋,牛璋彬,张晓健,等.某市给水管网铁细菌生长特征调查[J].中国给水排水,2007,23(1):34-37.
    [97]尹军,刘志生,赵可,等.饮用水中无机成分与氧化还原电位的关系[J].环境与健康杂志,2006,23(2):148-151.
    [98]徐华成,徐晓军,王凯,等.饮用水氧化还原电位的影响因素分析[J].苏州科技学院学报:工程技术版,2007,20(2):63-66.
    [99]van Loon G W, Duffy S J. Environmental chemistry:a global perspective.[J]. Environmental chemistry:a global perspective,2005(Ed.2).
    [100]Kim Y H, Hensley R. Effective control of chlorination and dechlorination at wastewater treatment plants using redox potential[J]. Water environment research,1997,69(5):1008-1014.
    [101]Yu R, Chen H, Cheng W, et al. Application of pH-ORP titration to dynamically control the chlorination and dechlorination for wastewater reclamation[J]. Desalination, 2009,244(1):164-176.
    [102]Liu J Q, Jiang W, Wu J M, et al. The Influence of Total Hardness on Chlorine Decay in Water Distribution Systems[J]. Applied Mechanics and Materials,2014,535:776-784.
    [103]张自杰,林荣忱,金儒霖.排水工程[J].下册,2000,4.
    [104]Charpentier J, Martin G, Wacheux H, et al. ORP regulation and activated sludge:15 years of experience[J]. Water science and technology,1998,38(3):197-208.
    [105]Chen K, Chen C, Peng J, et al. Real-time control of an immobilized-cell reactor for wastewater treatment using ORP[J]. Water research,2002,36(1):230-238.
    [106]Holman J B, Wareham D G. Oxidation-reduction potential as a monitoring tool in a low dissolved oxygen wastewater treatment process[J]. Journal of environmental engineering, 2003,129(1):52-58.
    [107]Qureshi A, Lo K V, Liao P H, et al. Real-time treatment of dairy manure:Implications of oxidation reduction potential regimes to nutrient management strategies[J]. Bioresource technology,2008,99(5):1169-1176.
    [108]Mansfeld F, Little B. A technical review of electrochemical techniques applied to microbiologically influenced corrosion[J]. Corrosion Science,1991,32(3):247-272.
    [109]Hall J, Zaffiro A D, Marx R B, et al. On-line water quality parameters[J].2007.
    [110]Xie Y, Wang Y, Giammar D E. Impact of chlorine disinfectants on dissolution of the lead corrosion product PbO2[J], Environmental science & technology,2010,44(18):7082-7088.
    [111]Douterelo I, Sharpe R L, Boxall J B. Influence of hydraulic regimes on bacterial community structure and composition in an experimental drinking water distribution system[J]. Water research,2013,47(2):503-516.
    [112]赵志领,赵洪宾,何文杰,等.城市给水管网的水质变化规律研究[J].中国给水排水,2006,22(19):44-46.
    [113]汝勤.离子选择性电极分析法[M].人民教育出版社,1980.
    [114]王涛.改进ORP法水中臭氧杀菌效果检测仪的研制[D][D].大连:大连理工大学,2007.
    [115]Bard A J, Faulkner L R. Electrochemical methods:fundamentals and applications[M]. Wiley New York,1980.
    [116]洪妍,郭秋梅,董铁有,等.ORP的测量及数显ORP标定的原理[J].河南科技大学学报:自然科学版,2006,27(1):18-20.
    [117]Eaton A D, Franson M A H. Standard methods for the examination of water & wastewater[M].2005.
    [118]Cullimore D R, McCann A E. The identification, cultivation and control of iron bacteria in ground water[J]. Aquatic Microbiology,1977:219-261.
    [119]SY T.油田注入水细菌分析方法-绝迹稀释法[S][D].,1994.
    [120]Gagnon G A, Slawson R M. An efficient biofilm removal method for bacterial cells exposed to drinking water[J]. Journal of Microbiological Methods,1999,34(3):203-214.
    [121]鲁巍,王云,张晓健.BAR反应器中生物膜的分离及定量[J].中国给水排水,2005,21(2):91-94.
    [122]许嘉炯,雷挺,沈裘昌,等.嘉兴南郊水厂微污染河网水集成净水处理工艺选择与设计[J].给水排水,2009,34(9):9-14.
    [123]魏复盛,国家环境保护总局,水和废水监测分析方法编委会.水和废水监测分析方法[M].中国环境科学出版社,2002.
    [124]GB T.生活饮用水标准检验方法[S][D].,2006.
    [125]程立,方闻,谭斌,等.一氯胺消毒剂检测新技术及应用[J].供水技术,2008(5):43-45.
    [126]GB.生活饮用水卫生标准[S][D].,2006.
    [127]Al-Jasser A O. Chlorine decay in drinking-water transmission and distribution systems:Pipe service age effect[J]. Water Research,2007,41(2):387-396.
    [128]Wolfe R L, Ward N R, Olson B H. Inorganic chloramines as drinking water disinfectants:a review[J]. Journal of the American Water Works Association,1984,76(5):74-88.
    [129]米子龙,张晓健,王洋,等.磷酸盐类缓蚀剂对给水管网铁释放的控制作用[J].中国给水排水,2013,29(023):52-55.
    [130]刘勇建,牟世芬,林爱武,等.北京市饮用水中溴酸盐,卤代乙酸及高氯酸盐研究[J].环境科学,2004,25(2):51-55.
    [131]Lehtola M J, Miettinen I T, Hirvonen A, et al. Estimates of microbial quality and concentration of copper in distributed drinking water are highly dependent on sampling strategy[J]. International journal of hygiene and environmental health,2007,210(6):725-732.
    [132]Tuovinen O H, Button K S, Vuorinen A, et al. Bacterial, Chemical, and Mineralogical Characteristics of Tubercles in Distribution Pipelines (PDF)[J]. Journal-American Water Works Association,1980,72(11):626-635.
    [133]Allen M J, Taylor R H, Geldreich E E. The Occurrence of Microorganisms in Water Main Encrustations (PDF)[J]. Journal-American Water Works Association,1980,72(11):614-625.
    [134]Starosvetsky D, Armon R, Yahalom J, et al. Pitting corrosion of carbon steel caused by iron bacteria[J]. International biodeterioration & biodegradation,2001,47(2):79-87.
    [135]Stratmann M, Bohnenkamp K, Engell H. An electrochemical study of phase-transitions in rust layers[J]. Corrosion Science,1983,23(9):969-985.
    [136]Stratmann M, Hoffmann K.< i> In situ Moβbauer spectroscopic study of reactions within rust layers[J]. Corrosion Science,1989,29(11):1329-1352.
    [137]李宽良.天然水氧化还原电位(Eh)的概念及Eh—pH测法研究[J].水文地质工程地质,1981,5:19.
    [138]张朝能,水体中饱和溶解氧的求算方法探讨[J].环境科学研究,1999,12(2):54-55.
    [139]赵洪宾.给水管网系统理论与分析[M].中国建筑工业出版社,2003.
    [140]牛璋彬,王洋,张晓健,等.给水管网中管内壁腐蚀管垢特征分析[J].环境科学,2006,27(6):1150-1154.
    [141]沙鸥,马卫兴,徐国想,等.地表水中溶解氧监测及变化规律[J].环境监测管理与技术,2008,20(1):48-50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700