基于荧光指示剂共价固定的新型光化学传感器的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文合成了几种含末端双键、可共价固定的新型荧光化合物,并以此作为荧光指示剂,与膜基质单体在光引发剂作用下发生光聚反应共聚在经过硅烷化处理的石英或普通玻片上制成光极膜,制备了对一些物质有响应的荧光化学传感器。(1)合成了N-烯丙基咔唑,研制了一种强力霉素荧光传感器,线性范围为6.0×10~(-7)-2.0×10~(-3)mol·1~(-1),一些常见的无机盐和有机物对测定无明显干扰,测定结果与分光光度法测定的结果一致,研制的强力霉素传感器可测定药片和尿样中强力霉素的含量。(2)用荧光基团2-氨基苯并噻唑与对烯丙氧基苯甲醛合成了一种新的Schiff碱类化合物,研制成了一种Schiff碱新颖光化学传感器,用于呋喃唑酮的测定。检测范围为1.0×10~(-6)-1.0×10~(-3)mol·1~(-1)。用传感器测定药片中呋喃唑酮含量的平均值和标准偏差与药典中的标准方法分光光度法测定的结果一致。(3)用强荧光基团2-氨基苯并蒽酮与对烯丙氧基苯甲醛合成了另一种新的Schiff碱类化合物,与甲基丙烯酸羟乙酯、丙烯酰胺、环乙二醇二丙烯酸酯共聚制得光极膜,制备了一种苯并蒽酮Schiff碱光化学传感器,可用于单质碘的测定。测定时的最佳pH为8.0。单质碘猝灭光极膜的线性范围在1.0×10~(-5)-1.0×10~(-3)mol·1~(-1)之间,常见的无机离子和一些可能共存的有机物不干扰测定,用该传感器测试了普通食盐中碘的回收率。(4)合成了一种具较强荧光的的有机光致变色化合物4-甲基-7-烯丙基萘并[1,2-b]吡喃-2-酮,并将其作为荧光指示剂应用到光化学传感器中,研制了一种测定呋喃西林的荧光传感器,线性范围为6.0×10~(-6)-8.0×10~(-4)mol·1~(-1)。研制的呋喃西林传感器可测定药片中呋喃西林的含量。
In this thesis, several new fluorescence carriers have been synthesized bearing a carbon chain with a terminal double bond introduced into the molecule and copolymerized with a monomer under UV irradiation on the silanized glass or quartz disk. The sensors prepared were studied. Covalent immobilization effectively prevents the leakage of the carrier dye from the sensor membrane, a phenomenon that shortens the lifetime of ordinary optical sensors. These sensor prepared have been applied to analysis of different species.
    (1) Carbazole is a promising pharmaceutical species. A novel optical sensor for determining doxycycline based on the fluorescence quenching of N-allylcarbazole immobilized on an quartz glass plate surface by covalent bonding has been described. The sensor shows satisfactory virtues in reversibility, repeatability, selectivity and sufficient lifetime resulting from its excellent optode membrane. Its response time is less than 60 seconds. The determination range and detection limit of the sensor are 6.0+10-7 2.0+10-3 mol.1-1 and 2.0+10-7 mol.1-1, respectively. The lifetime of each sensor is at least three to four months. The sensor can be used for direct determination of doxycycline in pharmaceutical preparations and urine samples.
    (2) An aminobenthiazole schiff base has been synthesized as a new fluorescence carrier by reacting 2-aminobenthiazole with p-allyoxybenzoldohyde. The new kind of schiff base can be utilized for preparing an optical sensor, used for determining furazolidone based on the fluorescence quenching. Aminobenthiazole schiff base immobilized on a glass plate surface by covalent bonding can circumvent the leakage of the fluorephore from the sensor surface and guarantee a relatively long working lifetime. The sensor shows satisfactory virtues in reversibility, repeatability, selectivity and sufficient lifetime. Its response time is less than one minute. The determination range and detection limit of the sensor are 1.0+10-6-1.0+10-3mol.1-1 and 6.0+10-7 mol.1-1. respectively. The sensor can be used for direct determination of
    
    
    
    furazolidone in pharmaceutical preparations and urine samples.
    (3) Another schiff base was synthesized by reacting 2-aminobenzanthrone with p-allyoxybenzoldohyde and used for determination of iodine based on fluorescence quenching. As a fluorescence carrier, the aminobenzanthrone schiff base was immobilized on a glass plate surface by covalent bonding. The sensor possesses a short response time, nice reproducibility and reversibility. Iodine in solution can be determined in range between 1.0+10-5 and 1.0+10-3 mol.1-1. The determination limit of the sensor is 6.0+10-6 rnol.l-1'. The sensor has been applied to the dettermination in sodium chloride.
    (4) 4-methyl-7-allyloxynaphtho[l, 2-b]pyran-2-ketone has been synthesized as a fluorescent carrier for preparing optical chemical sensor and used for direct determination of nitrofurazone. The carrier is immobilized on a quartz glass plate surface treated with a silanizing agent to prevent the leakage of the dye. This sensor can be utilized for nitrofurazone assay based on fluorescence quenching. The sensor shows good repeatability, long lifetime and a fast response of less then 2.5 min. Nitrofurazone can be determined in the range between 6.0+10-6 to 8.0+10-4mol.1-1' with a detection limit of 4.5+10-6 mol.1-1 at pH 6.0.
引文
[1] 黄本立.世纪之交的分析化学,回顾与思考.化学进展,2001,13:145-150
    [2] 王柯敏.光化学传感器理论与方法.长沙:湖南教育出版社,1995
    [3] 高鸿 主编.分析化学前沿.北京:科学出版社,1991
    [4] Myszka D G. Survey of the 1998 optical biosensor literature. J Mol Recogmit, 1999, 12:390-408
    [5] Oldham B P, McCarroll M E, McGown L B, et al. Molecular fluorescence, phosphorescence, and chemiluminescence spectrometry. Anal Chem, 2000, 72: 197R-209R
    [6] Buhlman P, Pretsch E, Bakker E, Carrier-based ion-selective electrodes and bulk optodes. 2. Ionophores for potentiometric and optical sensors. Chem Rev, 1998, 98:1593-1687
    [7] Clement R E, Yang P W. Environmental analysis. Anal Chem, 1999, 71: 257R-292R
    [8] Hisamoto H, Suzuki K. Ion-selective optodes: current developments and future rpospects. Trends in Anal Chem, 1999, 18(8): 513-524
    [9] O'Connell P J, Guilbault G G. Future trends in biosensor research. Anal Letters, 2001, 34(7): 1063-1078
    [10] Wolfbeis O S. Fiber-optic chemical sensors and biosensors. Anal Chem, 2000, 72: 81R-89R
    [11] Wolfbeis O S. Fiber-optic chemical sensors and biosensors. Anal Chem, 2002, 74: 2663-2678
    [12] 王刚,万其进,叶永康.pH化学传感器的进展.分析科学学报,1999,15:246-251
    [13] 范世福,陈莉,肖松山等.光纤化学传感器及其发展现状,光学仪器,1999, 12:37-44
    [14] 荆淼,李伟,庄峙厦等,光纤化学pH传感技术的现状和进展.传感技术学报,2002,3:264-269
    [15] 庄峙厦,李伟,陈曦等.海洋环境监测中的光纤化学/生物传感技术.厦门大
    
    学学报(自然科学版),2001,40(2):477-485
    [16] Lobnik A, Majcen N, Niederreiter K, et al. Optical pH sensor based on the absorption of antenna generated europium luminescence by bromothymolblue in a sol-gel membrane. Sensors and Actuators B. 2001, 74:200-206
    [17] Lobnic A, Oehme I, Murkovic I, et al. PH optical sensors based on sol-gels: chemical doping versus covalent immobilization. Anal Chim Acta, 1998, 367: 159-165
    [18] Michael K L, Taylor L C. A far-field-viewing sensor for making analytical measurements in remote locations. Anal Chem. 1999, 71:2766-2773
    [19] Clark H A, Hoyer M, Philbert E S. Optical nanosensors for chemical analysis inside single living cell. 1. Fabrication. characterization, and method for intracellular delivery of PEBBLE sensors. Anal Chem, 1999, 71:4831-4836
    [20] Zhang zhujun, Seitz W R. A fluorescent sensor for aluminum( ), magnesium(Ⅱ), zinc(Ⅱ) and cadmium(Ⅱ) based on electrostatically immobilized quinolin-8-ol sulfonate. Anal Chim Acta, 1985, 171: 251
    [21] Krause C, Wemer T, Huber C, et al. pH-insensitive ion selective optode: A coextraction-based sensor for potassium ions. Anal Chem, 1999, 71: 1544-1548
    [22] Kurihara K, Ohtsu M, Yoshida T, et al. Micrometer-sized sodium ion-selective optodes based on a "tailed" neutral ionphore. Anal Chem, 1999, 71:3558-3566
    [23] Ji J, Rosenzweig Z. Fiber optic pH/Ca~(2+) fluorescence microsensor based on spectral processing of sensing signals. Anal Chim Acta, 1999, 397:93-102
    [24] Malcik N, Tunoglu N, Caglar P, et al. Genetically engineered molecular networks for biosensing system. Sensors and Actuators B. 1998, 53:204-210
    [25] Ahmad M. Hamzah H, Marsom E S. Development of a Hg fiber-optic sensor for aqueous enviromental monitoring. Talanta, 1998, 47:275-283
    [26] Vaughan A A, Narayanaswamy R. Optical fiber reflectance sensors for the detection of heavy metal ions based on immobilized Br-PADAP. Sensors and Actuators B, 1998, 51:368-376
    [27] Huber C, Klimant I, Krause C, et al. Optical sensors for seawater salinity. Fresenius' J Anal Chem, 2000, 368:196-202
    [28] Huber C, Klimant I, Krause C, et al. Nitrate-selective optical sensor applying a lippophilic fluorescent potential-sensitive dye. Anal Chim Acta, 2001, 449:81-
    
    93
    [29] Russell R. Pishko M V, Gefrides C C, et al. A fluorescence-based glucose biosensor using concanavalin a and dextran encapsulated in a poly(ethylene glycol) hydrogel. Anal Chem, 1999, 71: 3126-3132
    [30] Appleton B, Gibson T D. Detection of total sugar concentration using photoinduced electron transfer materials: development of operationally stable, reusable optical sensors. Sensors and Actuators B, 2000, 65:302-304
    [31] 曾恚恚,王柯敏,田利等.基于芘的荧光熄灭的单质碘荧光敏感膜的研究.分析化学,1994,22(1):10-14
    [32] Yang R H, Wang K M, Xiao D, et al. Development of a iodine sensor based on fluorescence energy transfer. Analyst, 2000, 125: 1411-1445
    [33] Neurauter G, Klimant I, Wolfeis O S. Fiber-optic microsensor for high resolution pCO_2 sensing in marine environment. Fresenius J Anal Chem, 2000, 366(5): 481-487
    [34] Michael D D, Natthew M B. Calibration-free optical chemical sensors. Anal Chem, 1999.71:1152-1159
    [35] Tabacc M B, Uttamlal M, McAllister M. et al. An autononous sensor and telemetry system for low-level pCO_2 measurements in seawater. Anal Chem, 1999, 71:154-161
    [36] Neurauter G, Klimant I, Wolfbeis O S. Microsecond lifetime-based optical carbon dioxide sensor using luminescence resonance energy transfer. Anal Chim Acta, 1999, 382: 67-75
    [37] Rharbi Y, Yekta A. Winnnik M A. A method for measuring oxygen diffusion and oxygen permeation in polymer films based on fluorescence quenching. Anal Chem, 1999, 71:5045-5053
    [38] Amao Y. Okura I. An oxygen sensing system based on the phosphorescence quenching of metalloporphyrin thin film on alumina plates. Analyst, 2000, 125: 1601-1604
    [39] Vasil'ev V V, Borisov S M. Optical oxygen sensors based on phosphorescent water-soluble platinum metals porphyrins immobilized in perfluorinated ionexchange membrane. Sensors and Actuators B. 2002, 82(2-3): 272-276
    [40] Douglas P, Eaton K. Response characteristics of thin film oxygen sensors, Pt and
    
    Pd octaethylporphyrins in polymer films. Sensors and Actuators-B, 2002, 82(2-3): 200-208
    [41] Amao Y, Asai K, Okura I. Fluorescence quenching oxygen sensor using an aluminum phthalocyanine-polystyrene film. Anal Chim Acta, 2000, 407:41-44
    [42] 李伟,陈曦,庄峙厦等.基于荧光猝灭原理的光纤化学传感器在线监测水中溶解氧.北京大学学报(自然科学版),2001,37(2):226-230
    [43] Mendoza E A, Kempen L U, Menon A, et al. Multi-point fiber optic hydrogen sensor system for detection of cryogenic leaks in aerospace application. SPIE-Int Soc Opt Eng, 2001. 4204:139-150
    [44] Suzuki H, Hirakawa T, Sasaki S. An integrated module for sensing pO_2, pCO_2, pH. Anal Chim Acta, 2000, 405:57-65
    [45] Caner M T, Schwartz M. Devices and methods for the detection of basic gases. U.S. Patent 6328932,2001
    [46] Susan L R B, Raoul K. Fiber-optic nitric oxide-selective biosensors and nanosensors. Anal Chem, 1998, 70:971-976
    [47] Susan L R B, Raoul K. Development and cellular applications of fiber Optic nitric oxide sensors based on a gold-adsorbed fluorophore. Anal Chem, 1998,70: 4902-4906
    [48] Grant S A, Satcher J H, Bettencourt K. Development of sol-gol-based fiber optic nitrogen dioxide gas sensors. Sensors and Actuators B, 2000, 69:132-137
    [49] Raimundo I M Jr, Narayanaswamy R. Evaluation of nation-crystal violet films for the construction of an optical relative humidity sensor. The Analyst, 1999, 124: 1623-1627
    [50] Gupta B D, Ratnajali N N. A novel probe for a fiber optic humidity sensor. Sensors and Actuators B, 2001, 80:132-135
    [51] Shriver-Lake L C, Patterson C H, Van Bergen S K. New horizons: explosive detection in soil extracts with a fiber-optic biosensors. Field Anal Chem Technol, 2000, 4:239-245
    [52] 李新霞,陈坚.光纤化学传感器芘了酸-烷胺玻璃键合试剂相的合成,性能及乙醇中芦丁的测定.分析科学学报,2000,16:97-101
    [53] Cullum B M, Griffin G D, Vo-Dinh T. Nanosensors for analysis of a single cell. Proc. SPIE-Int Soc Opt Eng, 2001, 4254:35-40
    
    
    [54] Moradian A, Mohr G J, Linnhoff M, et al. Continuous optical monitoring of aqueous amines in transflectance mode. Sensors and Actuators B, 2000, 62 154-161
    [55] 龙立平,王柯敏,杨荣华等.基于四氧杂四烯衍生物荧光增强的苯酚传感器.分析化学,2002,30:152-156
    [56] 龙立平,王柯敏,杨荣华等.基于四氧杂四烯衍生物荧光猝灭的钼酸根传感器.应用化学,2002,19(11):1021-1026
    [57] Serra G, Schirone A, Boniforti R. Fibre-optical pH sensor for sea-water monitoring. Anal Chim Acta, 1990, 232 337-341
    [58] Motellier S, Michels M H, Dureault B, et al. Fiber-optical pH sensor for in sim applications. Sensors and Actuators B, 1993, 11 467
    [59] Motellier S, Noire m H, Pitsch H, et al. PH determination of clay interstitial water using a fiber-optical sensor. Sensors and Actuators B, 1995, 29 345
    [60] Igarashi S, Kuwae K, Yotsuyanagi T. Optical pH sensor of electrostatically immobilized porphyrin on the surface of sultbnated-polystyrene. Anal Sci, 1994, 10 821
    [61] Cardwell T J, Cattrall R W, Deady L W, et al. A fast reponse membrane-based pH indicator optode. Talanta, 1993, 40 765
    [62] Wroblewski W, Rozniecka E, Dybko A. Cellulose based bulk pH optomembranes. Sensors and Actuators B, 1998, 48 471-475
    [63] Schulman S G, Chen S X, Bai F L, et al. Dependence of the fluorescence of immobilized 1-hydroxypyrene-3,6,8-trisulfonate on solution pH extension of the range of applicability of a pH fluorosensor. Anal Chim Acta, 1995,304 165-170
    [64] Chen X, Dai Y J, Li Z, et al. Optical rebbery ormosils sensor for the detection of ammonia. Fresenius J Anal Chem, 2001, 370 1048-1051
    [65] Zhang Z J, Zhang Y K, Ma W B, et al. Poly(vinyl alcohol) as a substrate for indicator immobilization for fiber-optic chemical sensors. Anal Chem, 1989, 61 202-205
    [66] Werner T, Wolfbeis O S. Optical sensor for the pH 10-13 range using a new support material. Fresenius J Anal Chem, 1993. 346 564-568
    [67] Brank K S, Walt D R. Fabrication of patterned sensor arrays wieh aryl azides on a polymer-coated imaging optical fiber bundle. Anal Chem, 1994, 66 3519-3520
    
    
    [68] Nivens D A. Zhang Y K, Angel S M. A fiber-optic pH sensor prepared using a base-catalyzed organo-silica sol-gel. Anal Chim Acta, 1998, 376:235-245
    [69] Ji J, Rosenzweig N, Griffin C, Rosenzeig Z. Synthesis and application of submicrometer fluorescence sensing particles tbr lysosomal pH measurements in murine macrophages. Anal Chem, 2000, 72:3497-3503
    [70] Alarie J P, Vo-Dinh T. A fiber-optic cyclodextrin-based sensor. Talanta, 1991, 38(5): 529-534
    [71] Xavier M P, Garcia-Fresnadillo D, Moreno-Bondi M C, et al. Oxygen sensing in nonaqueous media using porous glass with covalently bound luminescent Ru(Ⅱ) complexes. Anal Chem, 1998, 70:5184-5189
    [72] Tanabe T, Touma K, Hamasaki K, et al. Immobilized fluorescent cyclodextrin on a cellulose membrane as a chemosensor for molecule detection. Anal Chem, 2001.73:3126-3130
    [73] Guillermo O, Ana M G, Cesar de D, et al. Reversible fiber-optic fiuorosensing of lower alcohols. Anal Chem, 1995, 67:2231
    [74] Ferguson J A, Healey B G, Bronk K S, et al. Simultaneous monitoring of pH, CO_2 and O_2 using an optical imaging fiber. Anal Chim Acta, 1997, 340:123-131
    [75] Munkholm C, Walt D R. A fiber-optic sensor for CO_2: measurement. Talanta, 1988, 35(2): 109-112
    [76] Mohr G J, Tirelli N, Spichiger-Keller U E. Plasticizer-free optode membranes for dissolved amines based on copolymers from alkyl methacrylates and the fiuoro reactand ETH~T 4014. Anal Chem, 1999, 71:1534-1539
    [77] Jenkins A L, Uy O M, Murray G M. Polymer-based lanthanide luminescent sensor for detection of the hydrolysis product of the nerve agent soman in water. Anal Chem, 1999, 71:373-378
    [78] Huang H M, Wang K M, Xiao D, et al. Selective optode for o-momonitrophenol based on fluorescence quenching of a conjugated polymer. Anal Chim Acta, 2001, 439:55-63
    [79] Citterio D, Minamihashi K, Kuniyoshi Y, et al. Optical determination of low-level water concentrations in organic solvents using fluorescent acridinyl dyes and dye-immobilized polymer membranes. Anal Chem, 2001, 73:5339-5345
    [80] Grant S A, Glass R S. A sol-gel based fiber optic sensor for local blood pH
    
    measurements. Sensors and Actuators B, 1997, 45:35-42
    [81] Song A, Parus S, Kopelman R. High-performance fiber-optic.pH microsensors for pracrical physiological measurement using a dual-emission sensitive dye. Anal Chem, 1997, 69:863-867
    [82] Kosch U. Klimant I, Werner T, et al. Strategies to design pH optodes with luminescence decay times in the microsecond time regime. Anal Chem, 1998, 70: 3892-3897
    [83] Liebsch G, Klimant I, Krause C, et al. Fluorescent imaging of pH with optical sensors using time domain dual lifetime referencing. Anal Chem, 2001, 73: 4354-4363
    [84] Liu Y H, Dam T H, Pantano P. A pH-sensitive nanotip array imaging sensor. Anal Chim Acta, 2000, 419:215-225
    [85] Cajlakovic M, Lobnik A, Werner T. Stability of mew optical pH sensing material based on cross-linked poly(vinyl alcohol) copolymer. Anal Chim Acta, 2002, 455: 207-213
    [86] Misra V, Mishra H, Joshi H C, et al. An optical pH sensor based on excitation energy transfer in Nation film. Sensors and Actuators B, 2002, 81(2-3): 133-141
    [87] Jin W J, Costa-Fermamdez J M, Sanz-Medel A. Room temperature phosphorescence pH optosensor based on energy transfer. Anal Chim Acta, 2001, 431:1-9
    [88] Choi M M F, Tse O L. Humidity-sensitive optode membrane based on a fluorescent dye immobilized in gelatin film. Anal Chim Acta, 1999, 378: 127-134
    [89] Choi M M F, Shuang S M. Fluorescent optode membrane based on organogel for humidity sensing. Analyst, 2000, 125:301-305
    [90] Costa-Fernandez J M, Sanz-Medel A. Air miosture sensing materials based on the room temperature phosphorescence quenching of immobilized mercurochrome. Anal Chim Acta, 2000, 407:61-69
    [91] Hartmamm P, Trettnak W. Effects of polymer matrices on calibration functions of luminescent oxygen sensors based on porphyrin ketone complexes. Anal Chem, 1996, 68:2615-2620
    [92] Mills A, Thomas M. Fluorescence-based thin plastic film ion-pair sensors for
    
    oxygen. Analyst, 1997, 122:63-68
    [93] Li X P, Rosenzweig Z. A fiber optic sensor for rapid analysis of bilirubin in serum. Anal Chim Acta, 1997, 353:263-273
    [94] Lee S K, Okura I. Optical sensor for oxygen using a porphyrin-doped sol-gel glass. Analyst, 1997, 121:81-84
    [95] Amao Y, Miyashita T, Okura I. Optical oxygen detection based on luminescence change of metalloporphyrins immobilized in poly(isobutylmethacrylate-co-trifiuoroethylmethacrylate) film. Anal Chim Acta, 2000, 42.1:167-174
    [96] Xu H, Aylott J W, Kopelman R, et al. A real-time ratiometric method for the determination of molecular oxygen inside living cells using sol-gel-based spherical optical nanosensors with applications to rat C6 glioma. Anal Chem, 2001.73:4124-4133
    [97] Lu J Z, Zhang Z J. A reusable optical sensing layer for picric acid based on the uminescence quenching of the Eu-thenoyltrifluoroacetone complex. Anal Chim Acta. 1996. 318:175-179
    [98] Alava-Moreno F, Diaz-Garcia M E, Sanz-Medel A. Room temperature phosphorescence optosensor for tetracyclines. Anal Chim Acta, 1993, 281: 637-644
    [99] Fujita S, Momlyama M, Kondo Y. Fluorescent substrates for potential use in enzyme-linked immunosorbent assay of membrane-bound nucleic acids. Anal Chem, 1994, 66:1347-1353
    [100] Chang Q, Lakowicz J R, Rao G. Fluorescence lifetime-based sensing of methanol. Analyst, 1997, 122:173-177
    [101] Sutter J M, Jurs P C. Neural network classification and quantification of organic vapors based on fluorescence data from a fiber-optic sensor array. Anal Chem, 1997, 69:856-862
    [102] 郭炬亮,陈坚.用光纤化学传感器连续在线监测呋喃妥因肠溶片的体外溶出度.药物分析杂志,1997,17:228-231
    [103] Mohr G J, Spoichiger U E, Jona W, et al. Using N-aminoperylene-3, 4, 9, 10-tetracarboxylbisimide as a fiuorogenic reactand in the optical sensing of aqueous propionaldehyde. Anal Chem, 2000, 72:1084-1087
    [104] Yang R H. Wang K M, Xiao D, et al. A host-guest optical sensor for aliphatic
    
    amines based on lipophilic cyclodextrin. Fresenius J Anal Chem, 2000, 367: 429-435
    [105] Zhang Ⅹ B, Li Z Z, Guo C C, et al. Porphyrin-metalloporphyrin composite based optical fiber sensor for the determination of berberine. Anal Chim Acta, 2001, 439:65-71
    [106] Yang R H, Wang K M, Long L R et al. A selective optode membrane for histidine based on fluorescence enhancement of meso-meso-linked porphyrin dimer. Anal Chem, 2002, 74:1088-1096
    [107] Yang R H, Wang K M, Long L P, et al. A selective PVC membrane for dj- or trininitrophenol based on N, N-dibenzyl-3. 3', 5, 5'-tetramethylbenzidine. Analyst, 2002, 127(1): 119-124
    [108] Yang Ⅹ H, Wang K M, Xiao D, et al. Development of a fluorescent optode membrane for sodium ion based on the calix[4]arene and tetraphenylporphine. Talanta, 2000, 52:1033-1039
    [109] Shortreed M, Bakker E, Kopelman R. Miniature sodium-selective ion-exchange optode with fluorescent pH. Chromoionophores and tunable dynamic range. Anal Chem, 1996, 68:2656-2662
    [110] Kurihara K, Ohtsu M, Yoshida T, et al. Micrometer-sized lithium ion-selective microoptodes based on a "tailed" neutral ionophore and a fluorescent anionic dye. Anal Chim Acta, 2001, 426:11-18
    [111] Stromberg N, Hulth S. Ammonium selective fluoresensor based on the principles of coextraction. Anal Chim Acta, 2001, 443:215-225
    [112] Ertas N, Akkaya E U, Ataman O Y. Simultaneous determination of cadmium and fluorescence spectrometry. Talanta, 2000, 51:693-699
    [113] Ahmad M, Narayanaswamy R. Optical fiber Al(Ⅲ) sensor based on solid surface fluorescence measurement. Sensors and Actuators B, 2002, 81(2-3): 259-266
    [114] Mayr T, Werner T. Highly selective optical sensing of copper(Ⅱ) ions based on fluorescence quenching of immobilized lucifer yellow. Analyst, 2002, 127(2): 248-252
    [115] Chan W H, Yang R H, Wang K M. Development of a mercury ion-selective optical sensor based on fluorescence quenching of 5,10,15,20-
    
    tetraphenylporphyrin. Anal Chim Acta, 2001, 444:261-269
    [116] Zhang Ⅹ B, Guo C C, Li Z Z, et al. An optical fiber chemical sensor for mercury ions based on a porphyrin dimer. Anal. Chem.. 2002, 74:821-825
    [117] Mohr G J, Lehmamm F, Ostereich R, et al. Investigation of potential-sensitive fluorescent dyes for application in nitrate sensitive polymer membranes. Fresenius J Anal Chem, 1997, 357:284-291
    [118] Peter S, Tsagkatakis Ⅰ, Bakker E. Cross-linked dodecyl acrylate microspheres: movel matrices for plasticizer-free optical ion sensing. Anal Chim Acta, 2001, 442:25-33
    [119] Munkholm C, Walt D R, Milanovich F P. et al. Polymer modification of fiber optic chemical sensors as a method of enhancing fluorescence signal for pH measurement. Anal Chem, 1986, 58:1427-1430
    [120] Zhang Z J. Zhang Y K, Ma W B, et al. Poly(vinyl alcohol) as a substrate for indicator immobilization for fiber-optic chemical sensors. Anal Chem, 1989, 61: 202-205
    [121] Werner T, Wolfbeis O S. Optical sensor for the pH 10-13 range using a new support material. Fresenius J Anal Chem, 1993. 346:564-568
    [122] Brank K S. Walt D R. Fabrication of patterned sensor arrays wieh aryl azides on a polymer-coated imaging optical fiber bundle. Anal Chim, 1994, 66:3519-3520
    [123] Schulman S G, Chen S Ⅹ, Bai F L, et al. Dependence of the fluorescence of immobilized 1-hydroxypyrene-3,6,8-trisulfonate on solution pH: extension of the range of applicability of a pH fluorosensor. Anal Chim Acta, 1995, 304:165-170
    [124] McNamara K P, Nguyen T, Dumitrascu G, et al. Synthesis, characterization, and application of fluorescence sensing lipobeads for intracellular pH measurements. Anal Chem, 2001, 73:3240-3246
    [125] Gong Z. Zhang Z. Cyclodextrin-based optosensor for the determination of riboflavin in pharmaceutical preparations. Analyst, 1996, 121: 1119-1122
    [126] Alarie J P, Vo-Dinh T. A fiber-optic cyclodextrin-based sensor. Talanta, 1991, 38(5): 529-534
    [127] Liu W H, Wang Y, Tang Y H, et al. Optical fiber sensor for tetracycline antibiotics based on fluorescence quenching of covalently immobilized anthracene. Analyst, 1998, 123:365-369
    
    
    [128] Yang Ⅹ, Liu W H, Shan W W, et al. An optode with a covalently bound fluorescent dye 3-acryloylaminobenzanthrone. for an ethanol assay. Anal Sci, 2000. 16(9): 935-938
    [129] Yang Ⅹ. Niu C G. Shen G L, et al. Picric acid sensitive optode based on a fluorescence carrier covalently bound to membrane. Analyst, 2001,126:349-352
    [130] Yang Ⅹ, Niu C G, Shang Z J, et al. Optical-fiber sensor for determining water content in organic solvents. Sensors and Actuators B, 2001, 75:43-47
    [131] Munkholm C, Walt D R. A fiber-optic sensor for CO_2 measurement. Talanta, 1988, 35(2): 109-112
    [132] Liu W H, Tang J H, Wang Y, et al. Optosensing of hydrochloric acid based on the fluorescence quenching of a flavone copolymer. Fresenius J Anal Chem, 1998. 362:387-390
    [133] Niu C G, Li Z Z, Zhang Ⅹ B, et al. Covalently immobilized aminonaphthalimide as fluorescent carrier for preparation of optical sensor. Analytical and Bioanalytical Chemistry, 2002, 372:519-524.
    [134] Niu C G, Yang Ⅹ, Lin W Q, et al. N-Ally-4(N-2'hydroxyethyl)amino-1,8-napthalimide as a fluorophore for optical chemosensing nitrofurantoin. Analyst, 2002, 127: 512-517.
    [135] Salinas F. Nevado J J B, Espinosa A. Determination of oxytetracycline and doxycycline in pharmaceutical compounds, urine and honey by derivative spectrophotometry. Analyst, 1989, 114:1141-1145
    [136] Chang W B, Zhao Y B, Ci Y Ⅹ, et al. Spectrofluorimetric determination of tetracycline and anhydrotetracycline in serum and urine. Analyst, 1992, 117: 1377-1378
    [137] Tsuji K, Formation of trimethylsilyl derivatives of tetracyclines for separation and quantitation by gas-liquid chromatography. Anal Chem, 1973, 45:2136-2140
    [138] Ding Ⅹ L Mou S F, J. Ion chromatographic analysis of tetracyclines using polymeric column and eluent. J Chromatogr A, 2000, 897:205-214
    [139] Gil E C, Schepdael A V, Roets E, et al. Analysis of doxycycline by capillary electrophoresis method development and validation. J Chromatogr A, 2000, 895:43-49
    [140] Oka H. Ikai Y, Ito Y. et al. Improvement of chemical analysis of antibiotics Ⅹ
    
    ⅩⅢ Identification of residual tetracyclines in bovine tissues by ellectrospray high-performance liquid chromatography tandem mass spectrometry. J Chromatogr B, 1997, 693:337-344
    [141] Zhu J, Show D D, Cassada D A, et al. Analysis of oxytetracycline, tetracycline, and chlortetracycline in water using solid-phase extraction and liquid chromatography-tandem mass-spectrometry. J Chromatogr A, 2001, 928: 177-186
    [142] Axisa B, Naylor A R, Bell P R F, et al. Simple and reliable method of doxycycline determination in human plasma and biological tissues. J Chromatogr B, 2000, 744:359-365
    [143] Yang R H, Wang K M, Xiao Dan, et al. A selective sensing membrane for the determination of tetracycline with heptakis(2.6-di-isobuty)-β-cyclodextrine as substrate. J Microchem, 2000, 64:213-220
    [144] 罗海航,祁国珍,左新举等.以咔唑杂环化合物为偶合组分的单偶氮分散染料及其研究进展.染料工业,1994,31(4):1-9
    [145] 李笃信,孟志霞,焦晨旭等.3,6-双(二苯胺基)-9-乙基咔唑的合成.精细化工,2001,18(5):271-272
    [146] Okamoto K Ⅰ, Oda N, Itaya A, et al. The photoconductivity of poly(N-vinylcarbazole). Ⅶ. The effect of the singlet and triplet quenchers on the phyotoconductivity. Bulletin of the Chem Soc Japan, 1976, 49(5): 1415-1416.
    [147] 章思规.实用精细化学手册(有机卷).北京:化学工业出版社,1996,101-105
    [148] 李振,李俊,秦金贵.简法合成N-乙基咔唑.化学试剂,2001,23(5):297
    [149] 黄美声,沈玉刚.用三波长分光光度新计算法测定溃疡灵中呋喃唑酮的 含量.药学通报,1987,22:72-75
    [150] 赵敏,胡劲波,来永春等.离子注入Ni-C修饰电极伏安法测定痢特灵.北京师范大学学报(自然科学版),1997,33:517-520
    [151] Buchberger W, Niessner G, Bakry R. Determination of nifuroxazide with polarography and adsorptive stripping voltammetry at mercury and carbon paste electrodes. Fresenius J Anal Chem, 1998, 362:205-208
    [152] McCracken R J, Blanchflowan W J, Rowan C. Determination of furazolidone in procine tissue using thermospray liquid chromatography-mass spectrometry and
    
    a study of the pharmacokinetics and stability of its residues. Analyst, 1995, 120: 2347-2351
    [153] Fuh M-R S, Chan S A, Wang H L, et al. Determination of antibacterial regents by liquid chromatography-electrospray-mass spectrometry. Talanta, 2000, 52: 141-151
    [154] Leitner A, Zollner P, Linder.W J. Determination of the metabolites of nitrofuran antibiotics in animal tissue by high-performance liquid chromatography-tandem mass spectrometry. J Chromatography A, 2001, 939:49-58
    [155] Kao Y M, Chang M H, Cheng C C, et al. Multiresidue determination of veterinary drugs in chicken and swine muscles by high performance liquid chromatography. Journal of Food and Drug Analysis, 2001, 9:84-95
    [156] Draisci R, Giannetti L, Lucentini L, et al. Determination of nitrofuran residues in avian eggs by liquid chromatography-UV photodiode array detection and confirmation by liquid chromatography-ionspray mass spectrometry. J Chromatography A, 1997, 777:201-211
    [157] Nazimuddin M, Akbar-Ali M, Smith F E. The peparation and characterization of some nickel(Ⅱ) and copper(Ⅱ) complexes of one ligands. Polyhedron, 1991, 10:1327-1332
    [158] Che C M, Poon C K. Redox properties of tetraaza-macrocycles of iron, ruthenium and osmium. Pure & Appl Chem, 1988, 60: 495-500.
    [159] Dischino D D, Delaney E J, Emswiler J E, et al. Synthesis of nonionic gadolinium useful as contrast agents for magnetic resonance imaging. Inorg Chem, 1991, 30: 1265-1269.
    [160] 陈小明,刘爱莲.光导纤维生物膜碘荧光传感器的研究.中国环境监测,1996,1 2(5):46-47
    [161] 李吉学,朱忠和,朱世民.表面活性剂增敏阴极溶出伏安法测定痕量的碘.分析实验室,1994,13:67-69
    [162] 刘成勤.PVC膜碘离子选择电极测定海带中的碘.湖北化工,1998,1:50-52
    [163] 王剑影,程信良,崔晓辉.火焰原子吸收光谱法间接测定人发中的碘.长春科技大学学报,1997,29:309-311
    [164] 范哲锋.流动注射(FⅠ)在线沉淀ICP-AES法测定碘.分析科学学报,
    
    1999,15:309-312
    [165] 高玲,杨元,谯斌宗.端视ICP-AES法测定水中微量碘.光谱实验室,1999,16:583-585
    [166] 张爱梅,王术皓,崔慧.阻止动力学分光光度及荧光光度法测定微量碘.分析化学 2001 29 1160-1162
    [167] 康夫放,沈国励,俞汝勤.电聚合四氨基酞菁金属配合物修饰的碘离子化学传感器.五邑大学学报(自然科学版),2000,14:6-10
    [168] 韩鹤友,何治柯,曾云鹗.吐温 80-Au Cl-4 化学发光新体系测定痕量碘离子的研究.分析科学学报,1999,15:318-320
    [169] 吕明玉,刘绍璞.[I_2Br]-与某些碱性三芳基甲烷染料的水相显色反应及其应用于碘的分光光度测定.分析化学,2001,29:323-326
    [170] 刘二保,韩素琴,卫洪清等.高锰酸钾-甲醛-碘化学发光法测定碘.分析科学学报,2002,18:207-209
    [171] 刘耀华.呋麻滴鼻液的紫外分光测定法.药学通报,1985,20:656-658
    [172] 吴琳.HPLC测定鼻炎灵喷剂中4种组分的含量.中国药学杂志,1996,37:415-417
    [173] 黎志文.紫外分光光度法测定炉甘石洗剂中呋喃西林与苯酚含量.桂林医学院学报,1996,9:300-301
    [174] 李小燕,陈合山.HPLC法同时测定呋麻滴鼻液中二组分的含量.药物分析杂志,1996,16:37-39
    [175] 伍新燕,吴成泰,王文峰.吲哚啉螺萘并吡喃的合成和时间分辩光谱研究.高等学校化学学报,1998,19:246-248
    [176] 寇希元,王永梅,徐黎立等.萘并吡喃类光致变色化合物的合成及性能研究.高等学校化学学报,2000,21:717-720
    [177] 潘桂兰,魏景强,朱爱平.萘并吡喃类化合物的光致变色性质和反应机理.中国科学(B辑),2001,31:246-252
    [178] Adam W,Qian Ⅹ H,Saha-Moller.Synthesis and photooxygenation of the 2H-4,8,9-trimethylfuro [2',3':5,6] naptho [1,2-b]-pyran-2-one,an unnatural furocoumarin with a benzene spacer.J Org Chem,1993,58:3769-3771
    [179] 陶志福,钱旭红,宋恭华.一种新型呋喃香豆素类似物——呋喃并萘并吡喃酮的合成及DNA嵌入活性.有机化学,1997,17:428-432

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700