环境友好的分离过程溶剂的计算机辅助分子设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化工生产中常遇到欲分离组分之间的相对挥发度接近1或形成共沸物的难分离物系,萃取精馏和液液萃取是常用且有效的方法,其中萃取剂的选择是关键。随着全球性污染问题的日益严峻,选择环境友好的萃取剂是今后溶剂选择发展的大趋势。本文提出了一种新的基于模拟退火算法和模糊综合评价的多目标优化方法,用于萃取精馏和液液萃取分离过程环境友好的溶剂的计算机辅助分子设计。
     首先针对萃取剂的评价具有多指标性和模糊性的特点,将模糊综合评价的方法用于萃取精馏溶剂和液液萃取萃取剂的评价,基于萃取剂的分离性能和环境性能,建立了的模糊综合评价隶属函数。
     其次,提出了改进的模拟退火算法,相对与传统的模拟退火算法,增加了记忆功能,能将搜索过程中最优的解保存下来,将所得的最终解与记忆器中的解比较取较优的作为最后结果,提高了算法的解的质量;使用加权后的综合目标函数进行多目标优化的考核,多次运行或并行该算法可得到Pareto边界上不同方向的Pareto最优解。
     再次,基于Mod.UNIFAC基团贡献法,对基团进行了预选及分类,有效克服了传统分子设计方法的“组合爆炸”,提出了实数编码的基团编码策略和二行矩阵的分子表达方法,第一行表示分子中包含的基团的种类,第二行表示分子中包含的这些基团的数目。
     将提出的多目标优化方法用于萃取精馏和液液萃取过程萃取剂的计算机辅助分子设计,生成策略包括引入基团、删除基团、替换基团、修复操作四种,避免了垃圾分子的生成,确保产生的分子满足结构可行性及化学可行性准则。
     最后将提出了方法用于实际分离物系的萃取剂选择和设计,对甲苯-甲基环己烷、甲醇-丙酮、乙醇-乙酸乙酯、甲醇-乙酸甲酯四个萃取精馏体系进行了环境友好溶剂的计算机辅助分子设计,编制了相应的Matlab源程序,得到一组满足分离要求和环境要求的溶剂,并针对甲醇-丙酮体系,采用PROII软件对设计的溶剂进行了模拟验证及比较;对醋酸-水、糠醛-水、正丁醇-水、和苯酚-水四个液液萃取体系进行了环境友好溶剂的计算机辅助分子设计,编制了相应的Matlab源程序,得到一组满足分离要求和环境要求的溶剂,并针对苯酚-水体系,选择了四种设计的溶剂采用PROII软件进行了模拟验证,证明了设计结果的准确性,且模拟结果表明本文设计的溶剂性能更优。由此表明采用本文提出的结合模拟退火算法和模糊综合评价的多目标优化方法进行计算机辅助分子设计具有较高的准确性和很好的实用性,选择的溶剂不仅满足分离过程的要求,且考虑到了设计的溶剂对环境的影响,为工业生产提供了更优的选择。
Extractive distillation and liquid-liquid extraction are effective separation processes to deal with the separation of close boiling compounds or azeotropes systems. The selection of appropriate solvents is the key. As global environment problem increasing severely, the selection of environmental friendly solvents is the trend. A new multi-objective optimization approch, based on simulated annealing algorithms and fuzzy comprehensive evaluation method, is presented and applied to the computer-aided molecular design of environmentally benign solvents for separation processes.
     Firstly, based on the characteristic of fuzziness and involvement of multiple factors in selection of solvents, the fuzzy comprehensive evaluation method is used to evaluate the design solvents, the membership functions are established according to the separation and environmental performance.
     Secondly, the modified simulated annealing approach for multi-objective optimization problem is proposed,which can record the optimal solution in the process of annealing, improving the quality of solution; evaluating the solution by the synthetical value of target functions, the algorithm can obtain a set of Pareto optimum by running the algorithm multiple times.
     Based on Modfied UNIFAC method, classifying and pre-selection the functional groups systematically are described according to some rules. The functional groups are coded according to the real-coded technique. The solvent molecules are represented by a matrix, including a group vector and a composition vector.
     The multi-objective optimization model of CAMD for separation process is formulated, and the multi-objective optimization approach combined simulated annealing approach and fuzzy comprehensive evaluation is applied to CAMD. The steps and flowsheet of multi-objective optimization approach are addressed, the parmeters are suitably designed. The new molecules can be generated by addition, deletion, replacement and restoration, which can ensure the molecular structures satisfy the construction and chemical feasible criteria.
     Finally, the CAMD multi-objective optimization approach is illustrated with four extractive distillation examples and four liquid-liquid extraction examples, the program is programmed using Matlab language, the design results are examined by the process simulation software PROII, confirm the validity of the proposed multi-objective optimization method. The solvents not only satisfy the requirement of the separation process, furthermore, but satisfy the requirement of environment.
引文
[1]刘家琪等分离工程[M].北京:化学工业出版社,2002.
    [2]杨海涛.萃取精馏技术在环己醇生产中的应用[J].化工生产与技术,2006, 13(3):41-43.
    [3]刘建新,肖翔.萃取精馏技术与工业应用进展[J].现代化工,2004, 24(6):14-17.
    [4]李新利,唐聪明.萃取精馏分离醋酸/水溶液溶剂研究进展及机理分析[J].天然气化工,2005, 30(6): 63-66.
    [5]时钧,汪家鼎,余国琮等.化学工程手册[M].北京:化学工业出版社,l996.
    [6]杨佼庸,刘大星.萃取[M],北京:冶金工业出版社,1988.
    [7] Berg.L. Separation of benzene and toluene from close boiling nonaromatics by extractive distillation [J]. AIChE Journal, 1983, 29(6): 961-972.
    [8] Berg L. Separation of ethylbenzene from p- and m- xylene by extractive distillation using mixture of oxygenated organic compounds [J]. AIChE J., 1983, 29: 694.
    [9] Berg L, Yeh A. Separation of m-xylene fiom o-xylene by extractive distillation [J]. Chem. Engg. Comm. 1987, 54:149.
    [10] Lee F M, Pahl R. Solvent screening study and conceptual extractive distillation process to produce anhydrous ethanol from fermentation broth[J]. Ind. End. Chem. Process Des. Dev., 1985, 24:168-172.
    [11] Lee F M. Use of organic sulfones as the extractive distillation solvent for aromatics recovery [J]. Ind. End. Chem. Process Des. Dev. ,1986, 25:949-957.
    [12] Letcher T M, Whitehead P G. The Determination of Activity Coefficients of Aalkanes,Alkenes, Cycloalkanes, and Alkynes at Infinite Dilution with the Polar Solvents Dimethyl Sulphoxide(DMSO), or N,N-Dimethylformamide (DMSF), or N-Methyl-2-Pyrrolidinone(NMP) Using a GLC. Technique at the Temperatures 283.15K and 298.15K [J]. J. Chem. Thermodyn, 1997, 29(11):1261-1268.
    [13] Topphoff M, Gruber D, Gmehling J. Measurement of Activity Coefficients at Infinite Dilution using Gas-Liquid Chromatography.10. Results for Various Solutes with the Stationary Phases Dimethyl Sulfoxide, Propylene Carbonate, and N-Ethylformamide [J]. J. Chem. Eng. Data, 1999, 44(6):1355-1359.
    [14] Bai T . Measurement of Activity Coefficients of Solutes at Infinite Dilution in (Dimethyl Sulfoxide + Acetamide, or Formamide, or Urea) Using Gas Liquid chromatography at the Temperature 298.15 K. [J]. J. Chem. Eng. Data, 2003, 48(5):1194-1201.
    [15] Letcher T M, Whitehead P G. Activity Coefficients at Infinite Dilution of N-Methyl-2-Pyrrolidinone (NMP), or N, N-Dimethylformamide (DMF), or Dimethyl Sulfoxide (DMSO) 1-Heptyne, or 1-Octyne Using Comparative Ebulliometrya[J]. J. Chem. Thermodyn, 2000, 32(9):1121-1130.
    [16] Miyano Y, Henry S. Constants and Infinite Dilution Activity Coefficients of Propane, Propene, Butane, Isobutene, 1-Butene, Isobutane, Trans-2-Butene and 1,3-Butadiene in 1-Propanol at T (260 to 340) K. [J]. J. Chem. Thermodyn, 2004, 36(2): 101-106.
    [17] Krummen M, Gmehling J. Measurement of Activity Coefficients at Infinite Dilution in N-Methyl-2-Pyrrolidone and N-Formylmorpholine and Their Mixtures with Water Using the Dilutor Technique[J]. Fluid Phase Equilibria, 2004, 215(2): 283-294.
    [18]鲍坚斌,刘继屏,韩世钧.拟静态法测定汽液平衡的研究[J].浙江大学学报(自然科学版), 1990, 24(3), 374
    [19] RH Ewell, JM Harrison, L Berg , Industrial & Engineering Chemistry, 1944 Azeotropic Distillation[J]. Ind. Eng. Chem. 1944, 36(3): 871.
    [20]王秀丽,孙伟,宋海华.萃取精馏萃取剂的模糊综合评判[J].天津大学学报,2003, 36(4): 478-481.
    [21] Tassions D P. In Azeotropic and Extractive Distillation[J].American Chemical Society, Washington D C, 1972.
    [22] Piertti G J, Deal C H, Derr E L. Activity Coefficients and Molecular Structure[J]. Ind. Eng. Chem. 1959, 51(1):95-99.
    [23] TC Lo, MHI Baird, C Hanson. Handbook of Solvent Extraction[M]. New York: Wiley & Sons, 1983.
    [24] TOCHIGI K, TIEGS D, GMEHLING J, et al. Determination of new ASOG parameters [J]. J Chem. Engg. Japan, 1990, 23(4):453-463.
    [25] Aage Fredenslund, Russell L Jones and John M. Prausnitz. Group contribution estimation of activity coefficients in nonideal liquid mixtures [J]. AIChE J, 1975, 21(11):1086-1099.
    [26] Fredenslund A,Gmehling J,Rasmussen P. Vaper-Liquid Equilibria UsingUNIFAC [M]. Amsterdam:Elsevier,1977.
    [27] Gmehling J, Li J, Schiller M. A Modified UNIFAC Model 2. Present Parameter Matrix and Results for Different Thermodynamic Properties [J]. Ind.Eng.Chem.Res. 1993, 32(1):178-193.
    [28] Gmehling J, Lohmann J, Jakob A, et al. A Modified UNIFAC Model 3. Revision and Extension[J]. Ind. Eng. Chem. Res. 1998, 37(12):4876-4882.
    [29] Gmehling J, Wittig R, Lohmann J, et al. A Modified UNIFAC (Dortmund) Model. 4. Revision and Extension[J]. Ind. Eng. Chem. Res. 2002, 41(6):1678-1688.
    [30] Petersen R,Fredenslund A,Rasmussen P.Artificial Neural Networks as a Predictive Tool for Vapor-Liquid Equilibrium[J]. Comput. Chem. Eng., 1994,18(Suppl): S63-S67.
    [31] Englhamt H L,Jurs P C.Prediction of supercritical carbon dioxide solubility of organic compounds from molecular structure[J].J. Chem. Inf. Comput. Sci., 1997, 37(2): 478.
    [32] Bünz A P, Braun B, Janowsky R.Application of quantitative structure- performance relationship and neural network models for the prediction of physical properties from molecular structure[J]. Ind.Eng. Chem. Res., 1998, 37(8): 3043-3051.
    [33] Bünz AP,Braun B,Janowsky R.Quantitive structure-property relationships and neural networks:corrlation and prediction of physical properties of pure components and mixtures from molecular structure[J]. Fluid Phase Equilibria, 1999, 158-160: 367-374.
    [34] Sharma R, Singhal O, Ghosh R, et al. Potential Applications of Artificail Neural Networks to Thermodynamics:Vapor-Liquid Equilibrium Predictions[J]. Comput. Chem. Eng., 1999, 23(3): 385-390.
    [35] Alvarez E, Riverol C, Correa J M, et al.Design of a combined mixing rule for the prediction of vapor-liquid equilibria using neural networks [J]. Ind. Eng. Chem Res., 1999, 38(4): 1706-1711.
    [36] Iliuta M C, Iliuta I, Larachi F. Vapor-liquid equilibrium data analysis for mixed solvent-electrolyte systems using neural network models [J]. Chem. Eng. Sci., 2000, 55(15): 2813-2825.
    [37]刘树深,曹晨忠,杨万平等.改良人工神经网络方法预测烷烃物理性质[J].化工学报,1998, 49(2): 245-250.
    [38]刘华,蒋文华,韩世钧.用分子连接性指数关联和预测链烷烃的PVT性质[J].化工学报,1999, 50(5): 709-713.
    [39] Espinosa G, Yaffe D, Cohen Y, et al.Neural network based quantitative structural property relations (QSPR) for predicting boiling points of aliphatic hydrocarbons[J]. J. Chem. Inf. Comput. Sci., 2000, 40(3):859-879.
    [40]刘平,程翼宇,刘华.运用模糊神经网络表达和预测链烷烃PVT性质[J].化工学报,2000, 58(10): 1230-1234.
    [41]孙伟,宋海华,王秀丽等.采用人工神经网络方法预测烷烃的无限稀释活度系数[J].天津理工学院学报,2001, 17(4): 93-96.
    [42]孙伟.萃取精馏溶剂选择方法的研究[D].天津:天津大学,2002.
    [43] Gani R, Brignole E. Molecular design of solvents for liquid extraction based on UNIFAC[J]. Fluid Phase Equil., 1983, 13(1): 331-336.
    [44] Brignole E, Botini S, Gani R. A strategy for design and selction of solvents for separation processes[J]. Fluid Phase Equilibria, 1986, 29(1): 125-132.
    [45] Kevin G. Joback, George Stephanopoulos, Designing molecules possessing desired physical property values [A]. FOCAPD’89, Snowmass, CO, 1989, 363-387.
    [46] Gani R, Nielsen B, Fridenslund A. A group contribution approach to computer-aided molecular design[J]. AIChE J,1991,37(9):1318-1332.
    [47] Pretel EJ, Lopez PA,Bottini SB,et al.Computer-Aided molecular design of solvents for separation processes[J]. AIChE Journal,1994,40(8):1349-1360.
    [48] Constantinou L., Bagherpour K., Gani R., Klein J.A.. Computer aided product design:problem formulations, methodology and applications[J]. Computers chem. Engng, 1996, 20(67): 685-702.
    [49] Harper P M., Gani R, Kolar P, et. al. Computer-aided molecular design with combined molecular modeling and group contribution[J]. Fluid Phase Equilibria, 1999, 158-160(1): 337-347.
    [50] Harper P M., Gani R. A Multi-step and Multi-level approach for Computer Aided Molecular Design[J]. Computers & Chemical Engineering, 2000, 24(4):677-683.
    [51] Meniai A.H., Newsham D.M.T. Molecular solvent design for liquid–liquid extraction using the UNIQUAC model [J]. Fluid Phase Equilibria 1999, 158–160: 327-335.
    [52] Magnussen T., Rasmussen P., A. Fredenslund. UNIFAC parameter table forprediction of liquid-liquid equilibriums[J]. Ind. Eng. Chem. Proc. Des. Dev, 1981, 20(2):331-339.
    [53]杨振生.萃取精馏溶剂的计算机辅助分子设计研究[D].天津大学,1995.
    [54]杨振生,李春利,吴锦元.结合图论和基团贡献法进行分子设计[J].计算机与应用化学,2001,18(6): 553-557.
    [55]雷志刚,王洪有,段占庭等. ACN萃取精馏分离C4的分子设计[J].计算机与应用化学,2007,17(4):331-334.
    [56] Lei Zhigang, Wang Hongyou, Zhou Rongqi, etc. Solvent improvement for separating C4 with ACN [J]. Computers and Chemical Engineering, 2002, 26:1213–1221.
    [57] Crismondi M., Brignole E. A. molecular design for solvents:an efficient search algorithm for branched molecules[J]. Ind. Eng. Chem. Res, 2004, 43, 784.
    [58]杨晓光.分离过程溶剂分子设计[D].天津大学,2005.
    [59] Odele O, Macchietto S. Design of optimal solvents for liquid-liquid extraction and gas absorption processes[J]. Trans. IchemE, 1990, 68(9):429~433.
    [60] Odele O, Macchietto S. Computer aided molecular design:A novel method for optimal solvent selection[J]. Fluid Phase Equilibria, 1993, 82(1):47~54.
    [61] Duvedi A P., Achenie L.E K.. Design enviromentally safe refrigerants using mathematical programming [J]. Chemical Engineerng Science, 1996, 51(15):3727~3739.
    [62] Churi N, Achenie L.E K. Novel Mathematical Programming Model for Computer Aided Molecular Design [J]. Ind. Eng. Chem. Res., 1996, 35:3788-3794.
    [63] Gani R, Karunanithi A. T and Achenie L E K. A New Decomposition-Based Computer-Aided Molecular/Mixture Design Methodology for the Design of optimal dolvents and dolvent mixturesInd. [J]. Eng.Chem.Res, 2005, 44(13): 4785-4797.
    [64] Gani R, Constable D. Method for selection of solvents for promotion of organic reactions[J]. Computers Chem. Engng., 2005, 29(7): 1661-1676.
    [65] Guennadi M. Ostrovsky, Luke E.K. Achenie, Manish Sinha. On the solution of mixed-integer nonlinear programming models for computer aided molecular design[J].Computers & Chemistry, 2002, 26:645-660.
    [66] Holland J H, Adaptation in natural and artifical systems[M]. MI: University of Michigan Press Ann Arbor, 1975.
    [67] Venkatasubramanian V. Computer-Aided molecular design using genetic algorithms[J]. Comput.Chem. Engng., 1994, 18(9):833-844.
    [68] Sundaram, Anantha Parametric sensitivity and search-space characterization studies of genetic algorithms for computer-aided polymer design[J]. Journal of Chemical Information and Computer Sciences, 1998, 38(6):1177-1191.
    [69] Dyk B, Nieuwoudt I. Design of Solvents for Extractive Distillation [J]. Ind. Eng. Chem. Res., 2000, 39:1423-1429.
    [70]郭章红.萃取精馏萃取剂分子设计的研究[D].天津:河北工业大学, 2002.
    [71]李春利,郭章红,杨振生.基于遗传算法的分子设计初探[J].化学工业与工程,2002, 19(1):113-118.
    [72] Kim J, Diwekar M. Improved Genetic Algorithms for Deterministic Optimization partI. Algorithms Development[J]. Ind. Eng. Chem. Res., 2002, 41:1276-1284.
    [73] Kim J, Diwekar M. Improved Genetic Algorithms for Deterministic Optimization partII. Solvent Selection under Uncertainty. [J]. Ind. Eng. Chem. Res., 2002, 41:1285-1296.
    [74]李霞.萃取精馏溶剂的分子设计[D],天津大学,2005.
    [75] Lin B, Chavali S, Camarda K, et al. Computer-aided molecular design using Tabu search [J]. Computers Chem. Eng., 2005, 29: 337-347.
    [76] Marcoulaki EC, Kokossis AC.Molecular design synthesis using stochastic ptimization as a tool for scoping and screening[J]. Computers &. Chemical Engineering, 1998, 22 suppl., s11-18.
    [77] Ourique J.E, Silva T.A. Computer-aided molecular design with simulated annealing and molecular graphs[J]. Computers &. Chemical Engineering, 1998, 22:s615-618.
    [78] Marcoulaki EC, Kokossis AC.On the Development of Novel Chemicals Using a Systematic Synthesis Approach.Part I.Optimization Framework.[J]. Chem. Eng. Sci., 2000,55(14):2529-2546.
    [79] Marcoulaki EC, Kokossis AC. On the development of novel chemicals using a systematic synthesis approach. Part II. Solvent designs[J].Chemical Engineering Science, 2000, 55:2547-2561.
    [80] Kim J, Diwekar M. Efficient combinatorial optimization under uncertainty. 1. Algorithmic development[J]. Ind. Eng. Chem. Res.,2002, 41:1276-1284.
    [81] Kim J, Diwekar M. Efficient combinatorial optimization under uncertainty. 2.Application to stochastic solvent selection [J]. Ind. Eng. Chem. Res.,2002, 41:1285-1296.
    [82] Xu WY, Diwekar U M. Environmentally friendly heterogeneous azeotropic distillation system design:Integration of EBS selection and IPS recycling [A]. AIChE Annual Meeting, Conference Proceedings, 2005, 5418-5436.
    [83] Papadopoulos A. I. and Linke P. Multiobjective Molecular Design for Integrated Process-Solvent Systems Synthesis [J].AICHE, 2005, 52 (3):1057-1070.
    [84]单永奎.绿色化学的评估准则[M].中国石化出版社,2006.
    [85] Duvedi A and Achenie L E K. On the design of environmentally benign refrigerant mixtures:a mathematical programming approach [J]. Computers chem. Engng, 21(8):915-923, 1997.
    [86] Buxton A, Livingston A. G, and Pistikopoulos E N. Optimal Design of Solvent Blends for Environmental Impact Minimization [J]. AICHE, 1999, 45(4):817-843.
    [87] Sinha M, Achenie L E.K., Ostrovsky G M.. Environmentally benign solvent design by global optimization[J]. Computers and Chemical Engineering 23 (1999) 1381–1394.
    [88] Marcoulaki, E.C. Kokossis, A.C.; Batzias, F.A. Novel chemicals for clean and efficient processes using stochastic optimization [J]. Computers and Chemical Engineering, 2000, 24(2):705-710.
    [89] Kim KJ and Diwekar U M. Integrated Solvent Selection and Recycling for Continuous Processes [J]. Ind. Eng. Chem. Res. 2002, 41, 4479-4488.
    [90] Mellan I,工业溶剂手册(孔德琨译)[M].北京:冶金工业出版社,1984
    [91] Mellan I, Industrial Solvents Handbook[M]. New Jersey: Noyes Data Corporation, 1970.
    [92] Mellan I, Industrial Solvents Handbook[M] , 2nd ed. New Jersey: Noyes Data Corporation, 1977.
    [93]衣守志,李平,马沛生.用基团贡献法预测纯物质蒸汽压[J].吉林化工学院学报,1994,11(3):25-28
    [94] Joback K. G., Reid R. C., Estimation of Pure-Component Properties From Group-Contributions[J]. Chem.Eng.Comm. 1987, 57(1): 233-243.
    [95] Constantinou L, Gani R, New group contribution method for estimating properties of pure compounds[J]. AIChE Journal, 40(10), 1679-1710.
    [96] Marrero-Morejon J, Pardillo-Fontdevila E, Estimation of pure compound properties using group-interaction contributions[J]. AIChE Journal, 1999, 45(3): 615-621.
    [97] Marrero J, Gani R, Group-contribution based estimation of pure component properties[J]. Fluid Phase Equilibria, 2001, 183-184: 183-208.
    [98] Weidlich U, Gmehling J, A Modified UNIFAC Model 1. Prediction of VLE, hE and [J]. Ind. Eng. Chem. Res,1987, 26 (7): 1372-1381.
    [99] Lyman WL, Reehl WF, Rosenblatt D,化学性质估算方法手册(有机化合物的环境性质) [M].北京:化学工业出版社, 1991.
    [100] Hansch C, Leo A, Substituent constants for correlation analysis in chemistry and biology[M]. New York: Wiley, 1979.
    [101] LB Kier, L Burwell, LH Hall. Molecular connectivity in chemistry and drug research[M]. Academic Press, New York, 1976.
    [102] Veith, G. D., Konasewich D. E.. Structure-activity correlations in studies of toxicity and bioconcentration with aquatic organisms[A] Proceedings of a Symposium held in Burlington, Ontario, at the Canada Center for Inland Water, Ontario, Canada, 1975.
    [103] Konemann, H. Quantitative structure–activity relationships in fish toxicity studies. 1. Relationship for 50 industrial chemicals[J]. Toxicology, 1981, 19: 209–221.
    [104]王连生,韩朔睽.分子结构,性质与活性[M].北京:化学工业出版社,1997.
    [105] Martin T M. and Young D M., Prediction of the Acute Toxicity (96-h LC50) of Organic Compounds to the Fathead Minnow (Pimephales promelas) Using a Group Contribution Method[J]. Chem. Res. Toxicol., 2001, 14(10), 1378-1385.
    [106]张跃,周寿平,宿芬.模糊数学方法及其应用[M],北京:煤炭工业出版社1992.
    [107]秦寿康.综合评价原理与应用[M],北京:电子工业出版,2003.
    [108]叶义成,柯丽华,黄德育.系统综合评价技术及其应用[M],北京:冶金工业出版社,2006.
    [109]孟紫强.环境毒理学[M],北京:中国环境科学出版社,2000.
    [110]李登峰.模糊多目标多人决策与对策[M].北京:国防工业出版社,2003
    [111]胡毓达.实用多目标最优化[M],上海科学技术出版社,1990.
    [112]胡锉云,董加礼.多目标优化的方法和理论[M],长春:吉林教育出版社1992.
    [113] Metropolis N,Rosenbluth A,Rosenbluth M,et a1.Equation of statecalculations by fast computing machines[J]. Journal of Chemical Physics, 1953, 21: 1087-1092.
    [114] Kirkpatrick S, Gelatt Jr C D, Vecchi M P. Optimization by simulated annealing[J]. Science, 1983, 220,671-680.
    [115]孙燮华,用模拟退火算法解旅行商问题[M],中国计量学院学报,2005,16(1),66-71.
    [116]王知人,刘玉峰.图的最大独立集问题的模拟退火算法[J],东北重型机械学院学报,1997, 21(3): 274-277.
    [117]靳利霞,唐焕文.模拟退火算法的一种改进及其在蛋白质结构预测中的应用[J],系统工程理论与实践,2002,9: 92-96.
    [118]杜红彬,薛东峰,姚平经.改进的自适应模拟退火算法及其在过程综合中的应用[J].高校化学工程学报,2002,16(1): 106-110.
    [119]单泉,闫光荣,雷毅.改进模拟退火算法在模块划分中的研究及应用[J].计算机工程,2007, 33(12): 208-213.
    [120]康立山.非数值并行算法(第一册)-模拟退火算法[M],北京科学出版社,1994.
    [121]王凌.智能优化算法及应用[M],清华大学出版社,斯普林格出版社,2001.
    [122]赖红松,董品杰,祝国瑞.求解多目标规划问题的Pareto多目标遗传算法[J],系统工程,2003,21(5): 24-28.
    [123]芦金婵,李乃成,王伟东.基于模拟退火的多目标优化算法[J],计算机工程与应用,2003, 23: 92-95.
    [124]程能林.溶剂手册[M].北京:化学工业出版社,1994, 9.
    [125] Liu Chong(刘冲) Petrochemical Technology Handbook(三)[M].Beijing:Chemical Industry Press. 1987.
    [126]江莉,雷良恒.一步法合成乙酸乙酯的分离工艺研究[J].现代化工,1996, (11):32 - 34.
    [127]廖安平,蓝平,李媚,谢涛等.催化精馏技术在酯化反应中的应用[J],化工进展,2001,20 (12):30-32
    [128] Feldman, et. al. United States Patent[P]. US. 1984, 4,431,838.
    [129]刘颖隆,罗顺贻.聚乙烯醇维纶数据手册[M],四川:中国化纤工业协会,1998: 116-133.
    [130] Fuchigami Y J. Hydrolysis of methyl acetate in distillation column packed with reactive packing of Ion exchange resin[J]. Chem Eng Jpn, 1990, 23(3): 354-358.
    [131]钟禄平,刘家祺,贾彦雷.萃取精馏分离甲醇和丙酮共沸物[J].化学工业与工程,2005,22(3): 211-215.
    [132]张云峰,陈丽敏,李兴奇.从糠醛废水中回收醋酸工艺研究[J].东北师大学报(自然科学版), 2001, 33(4): 66-71.
    [133]朱慎林,朴香兰.萃取-蒸馏法处理与回收糠醛废水中醋酸的研究[J],水处理技术,2002,28(4):200-202.
    [134]黄峰,张玉林.从含酸废水中回收醋酸的方法[J],石油化工环境保护,1998,2: 6-9.
    [135]张晓辉,刘家祺,贾彦雷,陈亚萍.糠醛废水中的醋酸回收工艺[J],化学工业与工程,2006, 23(2): 142-146.
    [136] Hostrup M, Harper P M., Gani R. Design of environmentally benign processes: integration of solvent design and separation process synthesis[J]. Computers and Chemical Engineering 23 (1999) 1395-1414.
    [137]顾正桂,毛梅芳,林军,王春梅.糠醛-水溶液的液液萃取分离[J],化学研究与应用,2003, 15(3): 376-378.
    [138]顾正桂,毛梅芳,林军,司玲.糠醛水溶液错流和逆流萃取分离的模拟计算[J].南京师范大学学报(工程技术版),2003, 3(2): 15-18.
    [139]胡忠.利用膜分离技术回收正丁醇-水混合液的工艺研究[J],广西化工,1998,27(3): 12-15.
    [140]张锦,李圭白,马军.含酚废水的危害及处理方法的应用特点[J],化学工程师,2001, 83(2): 36-37.
    [141]林屹,秦炜,黄少凯,戴猷元.溶剂萃取法处理苯酚稀溶液及其废水的研究[J],高校化学工程学报,2003, 17(3): 261-265.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700