环烷基甲胺的合成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要研究环烷基甲胺合成过程中的环烷基化反应和氰基氢化反应。乙醇钠体系进行环烷基化反应时间长、收率低。以碳酸钾为碱,甲苯为溶剂,相转移催化丙二酸二乙酯及氰乙酸乙酯的环烷基化反应,该方法具有反应时间短、收率高等优势。相转移催化剂对环烷基化反应有着重要的作用,季铵盐、聚醚都可作为环烷基化反应的催化剂,本文采用季铵盐和聚乙二醇复配表现出“协同效应”使反应产率得到提高。相转移催化环烷基化反应不适合采用无溶剂法来进行,对反应过程中的溶剂效应进行分析后选择甲苯作为溶剂和带水剂。通过对环烷基化反应进行动力学分析,证明了该反应属于二级反应,同时计算出环烷基化反应的表观反应活化能。对相转移催化环烷基化反应的反应条件进行了优化,并且在1000L的反应釜中进行了中试放大实验,放大后收率稳定,为工业化提供了参考数据。
     采用微波辐射进行相转移催化丙二酸二乙酯及氰乙酸乙酯的环烷基化反应。本文系统研究了极性非质子溶剂和弱极性非质子溶剂在微波环烷基化反应中的应用情况,发现弱极性的非质子溶剂如甲苯在环烷基化反应中具有比极性非质子溶剂更好的使用效果。对离子液体在微波环烷基化中的应用进行了研究,研究结果表明添加少量离子液体的反应介质能更好的促使反应的进行。微波对相转移催化环烷基化反应的作用分为“热效应”和“非致热效应”,通过实验证明了它们对环烷基化反应的影响。
     采用非晶态合金Ni-B纳米管为催化剂进行环烷基氰化物的加氢反应,反应速度明显快于以Raney Ni和非晶态合金Ni-B纳米颗粒为催化剂的氢化速度,并且对伯胺的选择性远远高于后两种催化剂。非晶态合金Ni-B纳米管大的表面积以及纳米管具有良好的储氢性能都有利于加快氰基的氢化反应速度,特别是纳米管具有负曲率的内表面,使得多个表面位之间发生协同的概率增加,同时液体在非晶态合金纳米管内发生管的限域效应,促使氰基转化反应的平衡倾向于向右进行,加快氰基的转化速度。非晶态合金Ni-B纳米管在氰基催化氢化反应中保持了良好的稳定性。非晶态合金Ni-B纳米管对氯代硝基苯加氢也具有良好的催化活性,而且能很好的抑制脱氯反应的发生。
     利用超声波处理非晶态合金Ni-B纳米管催化剂,处理后的催化剂对环烷基氰化物具有更好的加氢活性。根据超声波的“空穴效应”对超声波辅助常压氢化环烷基氰化物的反应机理及超声波促进催化氢化反应机理进行了研究,实验证明超声波辅助还原环烷基氰化物并未改变反应的表观反应活化能。超声波辅助常压下以非晶态合金Ni-B纳米管为催化剂对硝基苯进行氢化还原,该催化剂显示了较好的催化活性。
This paper mainly studied the cycloalkylation and hydrogenation in the synthesis of cycloalkanemethanamine. The traditional method of cycloalkylation was use sodium ethylate as catalyst and ethanol as solvent, this method with the disadvantage of long reaction period and low yield. The cycloalkylation of diethyl malonate and ethyl cyanoacetate with alkyl dihalide was investigated by using comminuted potassium carbonate as a base and toluene as solvent in the presence of phase-transfer catalyst (PTC), which provided a conventional procedure with the advantage of short reaction period and high product yield. PTCs were essential to cycloalkylation of diethyl malonate and ethyl cyanoacetate, quaternary ammonium compound and polyethyleneglycol were used selectively. Nevertheless, the mixtures of them were more active because of "synergistic interactions". The reaction was not suitable conducted under solvent-free condition, water formed during the reaction was removed by azeotropic distillation with toluene throughout the reaction. The factors influencing the product yield were discussed and the mechanism and kinetic of the reaction were also studied on the basis of the experimental data, the reaction can be described by the pseudo-second-order kinetics, and then calculated the cycloalkylation activation energy. Pilot-plant of cycloalkylation was investigated in 1000 L reaction equipment, the yield of the optimum technique show stable performance and the pilot-plant test provides the basic infromations for industrial production.
     The cycloalkylation was investigated using microwave irradiation in the presence of PTC. As we known, solvents were very important to the reaction, the comprehensive study showed some less polar aromatic solvent (toluene) had better effect, comparing to dipolar solvents in cycloalkylation under microwave irradiation. The applications of ionic liquids were also studied, indicating the reactions with added ionic liquids into the solvent were more efficient. Since the early days of microwave synthesis, the observed rate accelerations compared to oil-bath experiments have led to speculation on the existence of so-called "thermal" and "non-thermal" effect, this article analyzed the affection on cycloalkylation on the basis of the experiment data.
     In comparison with noncrystalline Ni-B nanoparticales and Raney Ni catalysts, the noncrystalline Ni-B nanotubes exhibited higher activity and better selectivity in the hydrogenation of cycloalkanecarbonitrile. The higher catalytic activity of the nanotubes can be partially ascribed to their larger surface area and good hydrogen storage properties. Especially, the negative curvature of the nanotube's inner surface can enhance the coordination of reaction molecules by the multiple active centers, which should affect the reaction equilibrium and result in an increase in the yield of cycloalkanemethanamine. Transmission electron microscopy (TEM) was used to determine the characterization and stability of the nanotubes. Noncrystalline Ni-B nanotubes exhibited higher activity and better selectivity in the hydrogenation of chloronitrobenzene compared wtih noncrystalline Ni-B nanoparticales and Raney Ni catalysts.
     The effect of the preultrasonication on the catalytic performance of noncrystalline Ni-B nanotubes was investigated in selcetive hydrogenation of cycloalkanecarbonitrile to cycloalkanemethanamine. The results demonstrated that employment of ultrasonic wave had benefit on the maintenance of catalyst activity. The mechanic of ultrasonic hydrogenation of cycloalkanecarbonitrile under normal pressure was discussed on the basis of the "cavitation effect". The activation energy of the reaction was calculated, which had no obvious changed under ultrasonic compared with traditional hydrogenation. The noncrystalline Ni-B nanotubes also exhibited good activity for hydrogenation of nitrobeneze under ultrasonic irradition at atmospheric pressure.
引文
1 Chidambaram G, David M. Selective synthesis of primary amines directly from alcohols and ammonia. Angew Chem Int Ed.2008,47(45):8661-8664
    2 Srinivasa G R, Nalina L, Abiraj K. et al. Zinc/ammonium formate. A chemoselective and cost-effective protocol for the reduction of azides to amines. J Chem Res Synop.2003, (10):630-631
    3 Bipul B, Manu D P, Anima B. et al. Amberlyst-15(H+)-NaBH4-LiCl. An effective reductor for oximes and hydrazones. Synlett.1999, (4):409-410
    4 Nung Y M, Eui K G, Heui S S.et al. Borohydride exchange resin, a new reducing agent for reductive amination. Synth Commun.1993,23(11):1595-1599
    5 Herbert B C, Narasimhan S, Choi Y M. Improved procedure for borane-dimethyl sulfide reduction of primary amides to amines. Synthesis.1981,6:441-442
    6 Kyba E P, John A M. Primary alkyl amines. Generation by reduction of a-alkoxyazides. Tetrahedron Lett.1977,32:2737-2740
    7 Kiyotaka M. Structure of Pyrimidine Derivatives Produced by Condensation of Ethyl Cyanoacetate with Methylguanidine. J Org Chem.1987,52:5655-5657
    8 Eugene L G. Condensation of Dimethyl Acetylene Dicarboxylate with Malononitrile, Ethyl Cyanoacetate, and Malonate Esters. J Org Chem. 1964,29(2):1964-1965
    9 Henry R H, Robert L M. Hydantions Containing a Tetrahydropyranyl Substituent. J Am Chem Soc.1942,64(7):1672-1674
    10 Dmowski W, Wolniewicz A. Selective reactions of 1,1-cycloalkane dicarboxylic acids with SF4. A route to 1,1-bis(trifluoromethyl)cycloalkanes,1-fluoroformyl-1-(trifluoromethyl)cycloalkanes and 1-(trifluoromethyl)-l-cycloalkanecarboxylic acids. J Fluorine Chem.2000,102:141-146
    11俞善信,郭建宏.无水氟化钾和乙腈在乙酰乙酸乙酯活波亚甲基烃基化中的作用.化学试剂.1994,16(4):242-243
    12李润涛,曹胜利,张书胜等.K3PO4·7H20存在下活波亚甲基化合物的烷基化反应研究.化学试剂.1995,17(6):321-323
    13陈继涛.相转移催化在有机合成中的应用.西北师范大学报.2000,36(1):94-96
    14张新胜.相转移催化反应得研究.华东化工学院学报.1993,19(6):304-306
    15吕月仙.相转移催化反应及其机理.华北工学院学报.1997,18(3):231-234
    16王艳相.转移催化反应及其在有机合成中的应用.化工时刊,2005,19(9)54-55
    17 Weber W P, Goke G W. Novelties of Solid-Liquid Phase Transfer Catalysed Synthesis
    of α-Isopropyl-p-chlorophe-nyl Acetonitrile from p-Chlorophenyl Acetonitrile. Org Process Res Dev.2003,7(4):588-598
    18 Henry N. C. Wong, Moon Yuen Hon, Chun Wah Tse. et al. Use of cyclopropanes and their derivatives in organic synthesis. Chem Rev.1989,89(1):165-198
    19谢文林,成本诚.丙二酸二乙酯的相转移催化烃基化反应的研究.化学试剂.2001,23(3):132-133
    20刘惠英,程广.丙二酸二乙酯烷基化改进法的研究.化学试剂.1991,13(4):248,202
    21曾庆北,邓彦能,黄文芳.相转移催化活泼亚甲基的烃基化.化学试剂.1990,12(1):58-59
    22 Hanan E S A. Cycloalkylation reactions of fatty amines with a,ω-dihaloalkanes:Role of bis-quaternary ammonium salts as phase-transfer catalysts. Catal Commun.2007, 8:855-860
    23 Joseph P J, Wang M L. Cycloalkylation of phenylacetonitrile with 1,4-dibromobutane catalyzed by aqueous sodium hydroxide and a new phase transfer reagent, Dq-Br. Appl Catal A:General.2000,198:127-137
    24 Joseph P J, Christy W, Brandon C E. et al. Phase transfer catalyzed intramolecular cycloalkylation of phenylacetonitrile with a,v-dibromoalkanes in supercritical ethane. J Supercrit Fluids.2003,27:179-186
    25 Chatti S, Bortolussi M, Loupy A. Synthesis of diethers derives from dianhydrohexitols by phase transfer catalysis under micrwowave. Tetrahedron Lett.2000, 41(18):3367-3370
    26 Liu Y, Lu Y, Liu P. et al. Effects of microwave on selective oxidation of toluene to benzoic acid over a V2O5/TiO2 system. Appl Catal A.1998,170(2):207-214
    27 Sharma U, Ahmed S, Boruah R C.A facile synthesis of annilated pyridines from β-formyl enamides under microwave irradiation. Tetrahedron Lett.2000, 41(18):3493-3495
    28 Gedye R N, Wei J B. Rate enhancement of organic reactions by microwave at atmospheric pressure. Can J Chem.1998,76(5):525-532
    29 Dayal B, Rao K, Salen G. Microwave induced organic reactions of bile acids: esterification and deacetylation using mild reagents. Steroids.1995,60:453-457
    30 Bendale P M, Khadilkar B M. Selective hydrolysis of nitriles to amides using NaOH-PEG under microwave irradiation. Synth Conmmun.2000,30(10):1713-1718
    31 Banik B K, Barakat K J, Wagle D R. et al. Microwave-assisted rapid and simplifies hydrogenation. J Org Chem.1999,64(16):5746-5753
    32 Moghaddam I M. Water promoted Michael addition of secondary amines to carbonyl compounds under microwave. Synth conmmun.2000,30(4):643-650
    33 Lin G, Lin W Y. Microwave promoted lipase-catalyzed reaction.Tetrahedron Lett.1998, 39(24):4333-4336
    34 Perio B, Dozias M J, Jacquault P. et al. Solvent free protection of carbonyl group under microwave irradiation. Tetrahedron Lett.1997,38(45):7867-7870
    35 Barthez J M, Filikov A V, Fredeiksen L D. et al. Microwave-enhanced metal-and acid-catalyzes hydrogen isotope exchange reaction. Can J Chem.1998,76(7):726-728
    36 Maria F P, Valerie T, Thierry B. Microwave-assisted regioselective N-alkylation of cyclic amidines. Tetrahedron Lett.2007,48:7657-7659
    37 Juan A V, Juan J V, Julio A B. et al. A new approach to the synthesis of 2-aminoimidazo[1,2-α]pyridine derivatives through microwave-assisted N-alkylation of 2-halopyridines. Tetrahedron.1999,55:2317-2326
    38 Gyorgy K, Erika B, Eva K. et al. Chemoselectivity in the microwave-assisted solvent-free solid-liquid phase benzylation of phenols:O-versus C-alkylation Tetrahedron Lett.2008,49:5039-5042
    39 Saber C, Michel B, Andre L. Cation and leaving group effects in isosorbide alkylation under microwave in phase transfer catalysis. Tetrahedron.2001,57(20):4365-4370
    40 Ganapati D Y, Priyal M B. Novelties of microwave assisted liquid-liquid phase transfer catalysis in enhancement of rates and selectivities in alkylation of phenols under mild conditions. Catal Commun.2004,5(5):259-263
    41 Lluis B, John A F J, Fatna A M. et al. Microwave-assisted, tin-mediated, regioselective 3-O-alkylation of galactosides. Tetrahedron Lett.2004,45(35):6685-6687
    42 Costarrosa L, Ruiz-Martinez J, Rios R V RA. et al. Basic zeolites as catalysts in the N-alkylation of imidazole:Activation by microwave irradiation. Microporous Mesoporous Mater.2009,120:115-121
    43 Mariela B, Mariangeles G, Ana M B. Microwave-assisted rapid and efficient synthesis of C-alkyl imidazoisoquinolinone derivatives. Tetrahedron Lett.2009,50:1507-1509
    44龚菁,王云翔,钱蕙等.微波辐射相转移催化丙二酸二乙酯的烷基化反应研究.苏州科技学院学报(自然科学版).2006,23(1):58-61
    45刘汉文,胡彩玲.微波辐射相转移催化丙二酸二乙酯丁基化反应研究.湘潭大学自然科学学报.2006,28(3):68-71
    46 Loupy A, Maurel F, Andrea S G Improvements in Diels-Alder cycloadditions with some acetylenic compounds under solvent-free microwave-assisted conditions: experimental results and theoretical approaches. Tetrahedron.2004,60(7):1683-1691
    47 Olivier C, Karine G, Jack H. et al. Microwave solvent-free synthesis of nitrocyclohexanols. Tetrahedron Lett.2004,45(2):391-395
    48 Jiri P, Milan P. Microwave-assisted solvent-free intramolecular 1,3-dipolar cycloaddition reactions leading to hexahydrochromeno[4,3-b]pyrroles:scope and limitations. Tetrahedron.2007,63(2):337-346
    49 Lin Y L, Cheng J Y, Chu Y H. Microwave-accelerated Claisen rearrangement in bicyclic imidazolium [b-3C-im][NTf2] ionic liquid. Tetrahedron.2007,63(45):10949-10957
    50 Berardi S, Conte V, Fiorani G. et al. Improvement of ferrocene acylation. Conventional vs. microwave heating for scandium-catalyzed reaction in alkylmethylimidazolium-based ionic liquids. J Organomet Chem.2008,693(18):3015-3020
    51 Duwez P, Willens R H, Klement W. et al. Continous series of metastable solid solution in silver-copper alloys. J Appl Phys.1960,31:1136-1137
    52 Smith G V, Moluar A. Proceedings of the 7th International Congress on Catalysis, Tokyo,1980. Amsterdam, Elsevier,1981.355
    53渡边辙等编著.于维平,李荻译.非晶态合金电镀方法及应用.北京:北京航天航空大学出版社,1992
    54王一禾,杨膺善.非晶态合金.北京:冶金工业出版社,1989
    55牛玉舒,李保山,金明秀等.发泡非晶态合金对苯加氢的催化性能.石油化工高等学校学报.2001,14(1):6-9
    56 Saide, Inous A, Masumoto T. et al. Preparation of ultrafine amorphous powders by the chemical reduction method and the properties of their sintered products. Mater Sci Eng. 1991,A133:771-774
    57孙昱,李斌栋,吕春绪等.Ni-B非晶态合金催化加氢制备氯代苯胺.精细化工2006,23(11):1071-1074
    58孙昱,吴秋洁,李斌栋等.化学还原新体系制备负载Ni-B非晶态催化剂及其催化加氢性能.应用化学.2006,23(9):1047-1051
    59王文静,严新焕,许丹倩等.Ni-B非晶态合金催化剂用于卤代硝基苯液相加氢制卤代苯胺.催化学报.2004,25(5):369-372
    60刘波,陈雪莹,庄继华等.负载型Ni-B非晶态合金的制备及其催化加氢活性研究.复旦学报(自然科版).2002,41(4):424-427
    61 Li H, Li H X, Deng J F. The crystallization process of ultrafine Ni-B amorphous alloy. Mater Lett.2001,50:41-46
    62 Lee S P, Chen Y W. Catalytic properities of Ni-B and Ni-P ultranfine materials. J Chem Technol Biotechnol.2000,75:1073-1079
    63 Iijima S. Helical microtubules of graphitic carbon. Nature 1991,354:56-58
    64 Klimov V I, Mikhailovsky A A, Xu S. et al. Optical Gain and Stimulated Emission in Nanocrystal Quantum Dots. Science 2000,290:314-317
    65 Klein D L, Roth R, Lim A K L. et al. A single-electron transistor made from a cadmium selenide nanocrystal. Nature.1997,389:699-701
    66 Pettersson H, Bath L, Carlsson N. et al. Case study of an InAs quantum dot memory: Optical storing and deletion of charge. Appl Phys Lett.2001,79:78-80
    67 Shipway A N, Katz E, Willner I. Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. ChemPhysChem 2000,1:18-52
    68 Phillips J. Evaluation of the fundamental properties of quantum dot infrared detectors. J Appl Phys.2002,91:4590-4594
    69 Colvin V L, Schlamp M C, Alivisatos A P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature.1994,370:354-357
    70 Zhu Y, Liu F P, Ding W P. et al. Noncrystalline metal-boron nanotubes:synthesis, characterization and catalytic hydrogenation properties. Angew Chem Int Ed.2006, 45:7211-7214
    71 Zhu Y, Liu F P, Guo X F. et al. Catalytic activities of non-crystalline metal-boron nanotubes. The 13th National Congress on Catalysis. Lanzhou, China,2006, Oral-133
    72 Zhu Y, Guo X K, Shen Y Q. et al. Preparation and catalytic property of non-crystalline alloy of iron-boron with one-dimensional nanostructures. Nanotechnology.2007,18:195601
    73马爱增.负载型Ni-B非晶态合金催化剂的表征及催化性能.催化学报.1999,20(6):603-607
    74马爱增,陆婉珍,闵恩泽.含金属添加剂的负载型Ni-B非晶态合金催化剂的结构及催化性能.石油化工.2000,29(3):179-183
    75周国光,余锡宾,王明辉等.非晶态Ni-B/SiO2催化硝基苯加氢及其晶化失活.上海师范大学学报.1998,27(3):58-63
    76王明辉,李和兴.Ni-B/SiO2非晶态合金催化剂应用于硝基苯液相加氢制苯胺.催化学报.2001,22(3):287-290
    77吴跃东,张静,骆红山.乙腈液相选择性加氢中Ni-B非晶态合金和Raney Ni催化性能的比较.化学研究与应用.2003,15(4)463-466
    78 Wang M H, Li H X, Wu Y D:et al. CoMParative studies on the catalytic behaviors between the Ni-B amorphous alloy and other Ni-based catalysts during liquid phase
    hydrogenation of acetonitrile to ethylamine. Mater Lett.2003,57:2954-2964
    79 Li H X, Wu Y D, Zhang J. et al. Liquid phase acetonitrile hydrogenation to ethylamine over a highly active and selective Ni-Co-B amorphous alloy catalyst. Appl Catal A:General.2004,275:199-206
    80 Li H X, Luo H S, Zhuang L. et al. Liquid phase hydrogenation of furfural to furfuryl alcohol over the Fe-promoted Ni-B amorphous alloy catalysts J Mol Catal A:Chem 2003,203:267-275
    81 Fang J, Chen X Y, Liu B. et al. Liquid-phase chemoselective hydrogenation of 2-ethylanthraquinone over chromium-modified nanosized amorphous Ni-B catalysts. J Catal.2005,229:97-104
    82 Li H X, Li H, Dai W L. et al. Preparation of the Ni-B amorphous alloys with variable boron content and its correlation to the hydrogenation activity. Appl Catal A:General. 2003,238:119-130
    83郭延红,付峰,郭立民.Ni-B/SiO2非晶态催化剂对卤代芳香硝基化合物的催化加氢性能.化学工程师.2004,6:51-52
    84 Chen Y Z, Chen Y C. Hydrogenation of para-chloronitrobenzene over nickel borides. Appl Catal A:General.1994,115:45-47
    85孙昱,吴秋洁,吕春绪等.Ni-B/SiO2非晶态合金催化加氢制备邻氯苯胺.染料与染色.2005,42(6):32-34
    86严新焕,孙军庆,徐颖华等.Ni-Co-B非晶态合金催化剂用于氯代硝基苯液相加氢制氯代苯胺.催化学报.2006,27(2)119-123
    87曾小君,杨高文,徐肖邢等.非晶态合金催化剂用于二乙醇胺脱氢氧化制备亚氨基二乙酸的研究.精细化工.2001,18(10):608-610
    88 Xue D, Chen H, Wu G H. Amorphous Ni-B alloy membrane:preparation and application in ethanol dehydrogenation. Appl Catal A:General.2001,214(1):87-94
    89 Richards W T, Loomis A L. The Chemical effects of high frequency sound waves I. A preliminary survey. J Am Chem Soc.1927,49(12):3086-3100
    90 Luche J L, Damiano J C, Ultrasounds in organic syntheses.1. Effect on the formation of lithium organometallic reagents. J Am Chem Soc.1980,102(27):7926-7927
    91 Suslick K S, Schubert P F, Goodale J W. Senochemistry and sonocatalysis of iron carbonyls. J Am Chem Soc.1981,103(24):7342-7344
    92 Suslick K S, Goodale J W, Schubert P F. et al. Sonochemistry and sonocatalysis of metal carbonyls. J Am Chem Soc.1983,105(18):5781-5785
    93 Suslick K S, Casadonte D J, Doktycz S J. The effect of ultrasound on nickel and copper powders. Solid State Ionicis.1989,32/33(1):444-452
    94 Suslick K S, Casadonte D J. Heterogeneous sonocatalysis with nickel powder. J Am Chem Soc.1987,109(11):3459-3461
    95孟琦,吴跃东,万颖等.用超声波技术制备的Raney Ni催化剂及其催化加氢活性.催化学报.2004,24(7):529-532
    96张静,吴跃东,李和兴.超声波制备Ni-B非晶态合金催化剂用于乙腈加氢制备乙胺.石油化工.2004,33增刊:1065-1067
    97 Szollosi G, Kun I, Torok B. et al. Ultrasonics in chemoselective heterogeneous metal catalysis. Sonochemical hydrogenation of unsaturated carbonyl compounds over platinum catalysts. Ultrason Sonochem.2000,7(4):173-176
    98 Pyo S H. Han B H. Reduction of nitroarenes by activated metals. Bull Korean Chem Soc.1995,16:181-183
    99 Nagaraja D, Pasha M A. Reduction of aryl nitro compounds with aluminium/NH4Cl: effect of ultrasound on the rate of the reaction. Tetrahedron Lett.1999, 40(44):7855-7856
    100 Basu M K, Becker F F, Banik B K. Ultrasound-promoted highly efficient reduction of aromatic nitro compounds to the aromatic amines by samarium/ammonium chloride. Tetrahedron Lett.2000,41(30):5603-5606
    101马春景,王勤.吴跃东等.超声波作用下Ru-B非晶态合金催化肉桂醛常压加氢制备肉桂醇的研究.石油化工.2004,33增刊:878-880
    102葛秀涛,焦健,肖建平等.常温常压下吡咯及其衍生物的镍催化加氢反应考察.化学物理学报.2001,14(2):231-236
    103范崇政,焦健,肖建平等.常温常压下五元杂环的催化加氢反应.催化学报.2001,22(1):49-52
    104 Wang H, Lian H Z, Chen J J. et al. Ultrasoniclly accelerated hydrogenations of α,β-unsaturated ketones with Raney nickel catalyst, Synth Commun.1999(29): 129-135
    105 Brown A D, Bryans J, Bunnage M E. Indole-2-carboxamide derivatives useful as beta-2 agonists. EP 1,460,064.22 Aug.2004
    106 William J F, David A, David J G. et al. Discovery of imidazolidine-2,4-dione-linked HIV protease inhibitors with activity against lopinavir-resistant mutant HIV. Bioorg Med Chem.2006,14:6695-6712
    107 Janus S L, Erik B P, Claus N. Synthesis of N-1-Alkylated 6-Benzyluracil-5-carboxylic Esters as-Potential Non-Nucleoside Reverse Transcriptase Inhibitors. Synthesis.2004,11:1874-1878
    108 William M L, Gerard G M P, Alan N. et al. Pyridine-3-carboxamides as novel CB2 agonists for analgesia. Bioorg Med Chem Lett.2009,19(1):259-263
    109 Hirokazu U, Makoto K, Hirohisa S. et al. Synthesis and structure-activity relationships of oxamyl dipeptide caspase inhibitors developed for the treatment of liver disease. Bioorg Med Chem Lett.2009,19(1):199-202
    110 Darrell K W, Cyrus A A, Steven Z C. Hydrogen-Bonded DeUG-DAN Heterocomplex: Structure and Stability and a Scalable Synthesis of DeUG with Reactive Functionality. Org Lett.2009, 11(1):61-64
    111 Yasutomi A, Shuji K, Taiichi O. et al. Discovery, synthesis and biological evaluation of isoquinolones as novel and highly selective JNK inhibitors(1). Bioorg Med Chem. 2008,16(8):4715-4732
    112 Cogan D A, Aungst R, Breinlinger E C. et al. Structure-based design and subsequent optimization of 2-tolyl-(1,2,3-triazol-1-yl-4-carboxamide) inhibitors of p38 MAP kinase. Bioorg Med Chem Lett.2008,18(11):3251-3255
    113 Chun Y K, Liang J Z. Efficient preparation of α,α-dialkyl-α-(phenylselanyl) acetates and α,β-unsaturated esters from the corresponding α,α-dialkyl-α-cyanoacetates by a lithium naphthalenide induced reductive selenenylation process. Synthesis.2007, (23):3659-3665
    114 Rozen S, Rechavi D, Hagooly A. Novel reactions with the underutilized BrF3. The chemistry with nitriles. J Fluorine Chem.2001,111(2):161-165
    115 Shan K S, Chang N Y, JudyY. A convenient new procedure for the construction of highly substituted acetates. Reductive alkylation ofa-cyano esters. Tetrahedron Lett. 1997,38(44):7713-7716
    116 Jonas S, Jens C. Synthesis of 1-methylbenzimidazoles from carbonitriles. Synlett. 2009, (1):63-66
    117 Heravi M M, Bita B, Oskooie H A. A novel three-component reaction for the synthesis of N-cyclohexyl-3-aryl-quinoxaline-2-amines. Tetrahedron Lett.2009,50(7):767-769
    118 Hill M D, Mohammad M. Direct synthesis of substituted pyrimidines and quinazolines. Synthesis.2008, (5):823-827
    119 Hill M D, Mohammad M. Observations on the use of microwave irradiation in aza heterocycle synthesis. Tetrahedron Lett.2008,49(27):4286-4288
    120 Yang H B, Lin X F, Padilla F. et al. Discovery of a potent, selective and orally bioavailable 3,9-diazaspiro[5.5]undecan-2-one CCR5 antagonist. Bioorg Med Chem Lett.2009,19(1):209-213
    121 Francoise G, Gouville A C, James W. et al. Discovery of 4-{4-[3-(Pyridin-2-yl)-1H-pyrazol-4-yl]pyridin-2-yl}-N-(tetrahydro-2H-pyran-4-yl)benzamide(GW78838): A Potent, Selective, and Orally Active Transforming Growth Factor-Type Ⅰ Receptor Inhibitor. J Med Chem.2006,49(7):2210-2221
    1 Henry R H, Robert L M. Hydantoins containing a tetrahydropyranyl substitutent. J Am Chem Soc.1942,64:1672-1674
    2 Dmowski W, Wolniewicz A. Selective reactions of 1,1-cycloalkane dicarboxylic acids with SF4. A route to 1,1-bis(trifluoromethyl)cycloalkanes,1-fluoroformyl-1-
    (trifluoromethyl)cycloalkanes and 1-(trifluoromethyl)-l-cycloalkane carboxylic acids. J Fluorine Chem.2000,102:141-146
    3俞善信,郭建宏.无水氟化钾和乙腈在乙酰乙酸乙酯活波亚甲基烃基化中的作用.化学试剂.1994,16(4):242-243
    4李润涛,曹胜利,张书胜等.K3PO4·7H2O存在下活波亚甲基化合物的烷基化反应研究.化学试剂.1995,17(6):321-323
    5 Grant H H, Alfred B. Tetrahydropyranyl amino alcohols. J Am Chem Soc.1943,65: 370-372
    6 Wailey W J, Daly J J. Pyrolysis of esters. ⅩⅧ. Synthesis of nitriles by pyrolysis of
    cyanoacetic esters. J Am Chem Soc.1959,81:5397-5399
    7高鸿宾.有机化学.第三版.北京:高等教育出版社,1999
    8刘兴旺.乙醇钠还原酯的机理.化工时刊.2002,28:40-43
    9东北师范大学等五院校合编.有机化学.第三版.北京:高等教育出社,1993
    10顾可权.重要有机化学反应.第二版.上海:上海科学技术出版社,1983
    11 Williams R J. Introduction to organic chemistry. J Phys Chem 1933,37(5):657-657
    12颜杰.相转移催化反应机理与催化剂结构.四川轻化工学院学报.1997,10(1):49-53
    13陈卫东,钱旭红,宋恭华.相转移催化在芳香氟化反应中的应用.化工生产与技术.2003,10(2):1-4
    14 Saber C, Michel B, Andre L. Cation and leaving group effect in isosorbide alkylation under microwave in phase transfer catalysis. Tetrahedron.2001,57:4365-4370
    15 Wang Maw-ling, Tseng Yao-hsuan. Kinetic model for synthesizing 4,4'-diethanoxy-biphenyl by phase transfer catalysis. J Mol Catal A:Chem.2002,188(1):51-61
    16管泽民,祁国珍.相转移催化反应的研究Ⅱ.聚乙二醇催化合成硝基苯烷醚的动力学和机理.华东化工学院学报.1992,18(4):215-220
    17张敏,魏俊发,史真.无溶剂、无相转移催化下环已酮剂制已内酯.西北大学学报(自然科学版).2006,36(3):403-409
    18王季惠,李谦和.无溶剂条件下相转移催化苯乙酮选择性地丁基化.科技译丛.1994.3:27-30
    19 Landini D. Phase Transfer Catalysis (PTC):search for alternative organic solvents, even environmentally benign. J Mol Catal A:Chem.2003,30(8):235-243
    20王明慧,吴坚平,杨立荣等.固液相转移催化合成1-(2,4)-二氯苯基)-2-(1-咪唑基)-乙醇.高等化学工程学报.2006,20(6):910-914
    21 Choi K Y, Lee C Y. Kinetics of Bulk Free-Radica Polymerization of Methyl Methacrylate Using Potassium Peroxydisulfate with 18-Crown-6 as Phase-Transfer Catalyst. Ind Eng Chem Res.1987,26(10):2079-2086
    22 Ganapatl D Y, Man M S. Kinetic of reaction of benzyl chloride with sodium acetate/benzoate:phase transfer catalysis in solid-liquid system. Ind Eng Chem Process Des.2005,20(2):385-390
    23磨建新.温度对化学反应速度,平衡与转化率的影响.高教论坛.2004,(5):161-163
    24 Nishi B. Effect of water on solid-liquid phase-transfer reaction of activated aryl halides with nitrite salts and change in course of reaction. J Org Chem.1991,56(16):4967-4969
    1黄卡玛,杨晓庆.微波加快化学反应中非热效应研究新进展.自然科学进展.2006,16(3):273-279
    2 Perreux L, Loupy A. A tentative rationalization f microwave effects in organic synthesis according to the reaction medium and mechanistic considerations. Tetrahedron.2004,57: 9199-9223
    3 Peinnequin A, Piriou A, Mathieu J. et al. Non-thermal effects of continuous 2.45 GHz microwaves on Fas-induced apoptosis in human Jurkat T-cell line. Bioelectochemistry. 2000,51:157-161
    4 Pomerai D I, Smith B, Dawe A. et al. Microwave radiation can alter protein conformation without bulk heating. FEBS Letters.2003,543:93-97
    5 Porcelli M, Cacciapuoti G, Fusco S. et al. Non-thermal effects of microwaves on proteins: thermaophilic enzymes as model system. FEBS Letters.1997,402:102-106
    6杨晓庆,黄卡玛.微波与化学反应相互作用中的关键问题讨论.电波科学学报.2006,21(5):803-809
    7 Loupy A. Microwaves in organic synthesis. Second edition. WILEY-VCH.2006:148
    8 Mingos D M P, Baghurst D R. Tilden Lecture. Applications of microwave dielectric heating effects to synthetic problems in chemistry. Chem Soc Rev.1991,20:1-47
    9 Garbacia S, Desai B, Lavastre O. et al. Microwave-assisted ring-closing metathesis revisited. On the question of the nonthermal microwave effect. J Org Chem.2003, 68:9136-9139
    10 Bogdal D, Lukasiewicz M, Pielichowski J. et al. Microwave-assisted oxidation of
    alcohols using magtrieve. Tetrahedron 2003,59:649-653
    11周霞萍,严六明.噻吩及衍生物的微波反应机理研究.燃料化学学报.1998,26(6):506-509
    12金钦汉,戴树珊,黄卡玛.微波化学.北京:科学出版社.1999:15
    13张华莲,胡希明,赖声礼.微波对化学反应作用的动力学原理研究.华南理工大学学报(自然科学版).1997,25(9):46-50
    14黄卡玛,刘永清,唐敬贤等.电磁波对化学反应非致热作用的实验研究.高等学校化学学报.1996,17(5):764-768
    15黄卡玛,刘永清,唐敬贤等.电磁波对化学反应的非热作用及其在电磁生物非热效应机理研究中的意义.1996,12(2):126-132
    16 Sarju J, Danks T N, Wagner G Rapid microwave-assisted synthesis of phenyl ethers under mildly basic and nonaqueous conditions. Tetrahedron Lett.2004,45:7675-7677
    17 Deshayes S, Liagre M, Loupy A. et al. Microwave activation in phase transfer catalysis. Tetrahedron.1999,55:10851-10870
    18王真.微波场中气液固态介质形为研究[博士学位论文].吉林:吉林大学.1994
    19 Marque S, Snoussi H, Turck A. et al. Selective and efficient fluorination of chlorodiazines undr solvent-free phase transfer catalysis. J Fluorine Chem.2004, 125:1847-1851
    20 Jorapur Y R, Jeong J M, Chi D Y. Potassium carbonate as a base for the N-alkylation of indole and pyrrole in ionic liquids. Tetrahedron Lett.2006,47:2435-2438
    21 Leadbeater N E, Torenium H M. A Study of the ionic liquid mediated microwave heating of organic solvents. J Org Chem.2002,67:3145-3148
    22 Kim D W, Song C E, Chi D Y. New method of fluorination using potassium fluoride in ionic liquid:significantly enhanced reactivity of fluoride an improved selectivity. J Am Chem Soc.2002,124:10278-10279
    23 Kim D W, Choe Y S, Chi D Y. Significantly enhanced reactivities of the nucleophilic substitution reactions in ionic liquid. J Org Chem.2003,68:4281-4285
    24梁政勇.卤素交换氟化反应研究[博士学位论文].江苏:南京理工大学.2008
    25邓友全.离子液体-性质、制备与应用.北京:中国石化出版社.2006:15
    1 Li H, Li H X, Deng J F. The crystallization process of ultrafine Ni-B amorphous alloy. Mater Lett.2001,50:41-46
    2 Zhu Y, Liu F P, Ding W P. et al. Noncrystalline metal-boron nanotubes:synthesis, characterization and catalytic hydrogenation properties. Angew Chem Int Ed.2006, 45:7211-7214
    3 Li H X, Wang W J, Li H. et al. Crystallization deactivation of Ni-P/SiO2 amorphous catalyst and the stabilizing effect of silica support on the Ni-P amorphous structure. J Catal.2000,194:211-221
    4 Li H X, Wang M H, Xu Y P. Gas-phase adiponitrile hydrogenation over modified Ni-P /SiO2 amorphous catalysts. Chem Lett.2000,9:1048-1049
    5 Li H X, Xu Y P, Deng J F. Selective hydrogenation of adlponitrile over a Raney Ni-P amorphous catalysts. New J Chem.1999,23:1059-1061
    6 Shen J Y, Hu Z, Zhang L F. et al. The preparation of Ni-P ultrafine amorphous alloy particles by chemical reduction. Appl Phys Lett.1991,59:3545-3546
    7 Li Y D, Li X L, He R R. et al. Artificial lamellar mesostructures to WS2 nanotubes. J Am Chem Soc.2002,124:1411-1416
    8 Zhu Y, Liu F P, Guo X F. et al. Catalytic activities of non-crystalline metal-boron nanotubes. The 13th National Congress on Catalysis. Lanzhou, China,2006, Oral-133
    9 Zhu Y, Guo X K, Shen Y Q. et al. Preparation and catalytic property of non-crystalline alloy of iron-boron with one-dimensional nanostructures. Nanotechnology.2007, 18:195601
    10祝艳,丁维平,郭学锋.溶致液晶模板法合成非晶态合金一维纳米结构[博士学位论文].江苏:南京大学.2006
    11 Deng J F, Li H X, Wang W J. Progress in design of new amorphous alloy catalysts. Catal Today.1999,51:113-125
    12 Chen Y. Chemical preparation and characterization of metal-metalloid ultrafine amorphous alloy particles. Catal Today.1998,44(1-4):3-16
    13方志刚,沈百荣,陆靖等.Ni-B非晶态合金中电子转移问题的DFT研究,化学学报,1999.57:894-900
    14 Okamoto Y, Nitta Y, Imanaka T. et al. Surface state and catalytic activity and selectivity of nickel catalysts in hydrogenation reactions. J Catal.1980,64:397-404
    15 Dillon A C, Jones K M, Bekkedahl T A. et al. Storage of hydrogen in single-walled carbon nanotubes. Nature.1997,386:377-379
    16朱宏伟,徐才录,陈桉等.碳纳米管表面处理对储氢性能的影响.炭素技术.2000,4:12-14
    17 Fan Y Y, Liao B, Liu M. et al. Hydrogen uptake in vapor-grown carbon nanofibers. Carbon.1999,37:1649-1652
    18 Turner C H, Johnson J. K, Gubbins K E. Effect of confinement on chemical reaction equilibria. J. Chem. Phys.2001,114:1851-1859
    19 Bartkowiak M S, Dudziak G, Sikorski R. et al. Melting/freezing behavior of a fluid confined in porous glasses and MCM-41:Dielectric spectroscopy and molecular simulation. J. Chem. Phys.2001,114:950-962
    20 Byl O, Kondratyuk P, Yates J T, Adsorption and dimerization of NO inside single-walled carbon nanotubes-An infrared spectroscopic study. J. Phys. Chem. B 2003, 107:4277-4279
    21 Libera J, Gogotsi Y. Hydrothermal synthesis of graphite tubes using Ni catalyst. Carbon. 2001,39:1307-1318
    22王文静,严新焕,许丹倩等.Ni-B非晶态合金催化剂用于卤代硝基苯液相加氢制卤代苯胺.催化学报.2004,25(5):369-372
    23熊峻,陈吉祥,张继炎.氯代硝基苯加氢合成氯代苯胺的催化剂研究进展.化学试剂.2006,28(6):331-335
    1 Bianchi C L, Martini F, Ragaini V. New ultrasonically prepared Co-based catalyst for Fischer-Tropsch synthesis. Ultrason Sonochem.2001,8:131-135
    2 Suslick K S, Casadonte D J. Heterogeneous sonocatalysis with nickel powder. J Am Chem Soc.1987,109:3459-3460
    3张静,吴跃东,李和兴.超声波制备Ni-B非晶态合金催化剂应用与乙腈加氢制备乙胺.石油化工.2004,33:1065-1067
    4马春景,王勤,吴跃东等.超声波作用下Ru-B非晶态合金催化肉桂醛常压加氢制备肉桂醇的研究.石油化工.2004,33:878-880
    5 Szollosi G, Kun I, Torok B. et al. Ultrasonics in chemoselective heterogeneous metal catalysis sonochemical hydrogenation of unsaturated carbonyl compounds over platinum catalysts. Ultrason Sonochem.2000,7:173-176
    6范崇政,焦健,肖建平.常温常压下五元杂环的催化加氢反应.催化学报.2001,22(1):49-52
    7 Suslick K S, Hammerton D A, Cline R E. The sonochemical hot spot. J Am Chem Soc. 1986,108:5641-5642
    8 Crum L A. Comments on the evolving field of sonochemistry by a cavitation physicist. Ultrason Sonochem.1995,2(2):147-152
    9汤立新,韩萍芳,吕效平.超声波气升式内环流反应器传质性能的实验研究.高校化学工程学报.2003,3(17):243-247
    10 Mcqueen D H. Ultrasonically enhanced chemical dissociation from solid surfaces with application to cleaning electronic circuit boards. Ultrasonics.1990,28(6):422-427
    11 Luche J L, Effect of ultrasound on heterogeneous systems. Ultrason Sonochem.1994, 1(2):111-118
    12王成会,林书玉.超声空化效应对溶液电导率的影响.声学技术.2006,25(4):309-312
    13 Mojtahedi M M, Abaee M S, Hamidi V. et al. Ultrasound promoted protection of alcohols:An efficient solvent-free pathway for the preparation of silyl ethers in the presence of no additive. Ultrason Sonochem.2007,14:596-598
    14 Liu Y X, Jin Q Z, Shan L. et al. The effect of ultrasound on lipase-catalyzed hydrolysis of soy oil in solvent-free system. Ultrason Sonochem.2008,15:402-407
    15 Ji S J, Shen Z L, Gu D G. et al. Ultrasound-promoted alkynylation of ethynylbenzene to ketones under solvent-free condition. Ultrason Sonochem.2005,12:161-163
    16 Liu Y C, Huang C Y, Chen Y W. Liquid-phase selective hydrogenation of p-chloronitrobenzene on Ni-P-B nanocatalysts. Ind Eng Chem Res.2006,45:62-69
    17 Low G M. Ultrasound in synthesis:natural products and supersonic reactions. Ultrason Sonochem.1995,2(2):153-163
    18孟琦,吴跃东,万颖等.用超声波技术制备的Raney Ni催化剂及其催化加氢活性.催化学报.2004,25(7):529-532

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700