几类有机双光子吸收材料的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双光子吸收是非线性光学现象的一种,是指一个原子或分子同时吸收两个光子向高能级跃迁的过程。在过去的几十年里双光子吸收材料在化学、物理等科学领域都有很重要的应用,近些年来它在生命科学领域的应用也越来越受到人们的关注。因此从理论上设计研究具有优良双光子吸收性质的材料是这一科学领域的重要基础。本论文主要对几类有机双光子吸收材料进行了系统的理论研究。首先用密度泛函方法(DFT)进行分子的几何构型优化,然后在优化得到的平衡几何构型基础上采用半经验的ZINDO方法、完全态求和公式(SOS)及我们自己编制的FTRNLO程序计算得到了与分子的单光子和双光子吸收性质相关的信息。并进一步揭示了分子结构与单、双光子吸收性质的内在联系,为理论设计和实验合成具有优良双光子吸收性质的材料提供了有价值的理论依据。
     本论文主要内容如下:
     1.研究了一系列四羧酸二萘嵌苯衍生物分子,揭示了四羧酸二萘嵌苯是一种分子刚性很好的主体结构,加强分子末端取代基的给电子能力或扩大分子长轴方向上共轭长度都可以有效的改良此类衍生物分子的双光子吸收性质。
     2.研究了一系列芘衍生物分子,揭示了向芘分子主体引入取代基数目、位置的变化和形成环状共轭二聚体对其双光子吸收性质的影响,并阐明了双光子吸收过程中振子强度变化与双光子吸收截面大小的内在联系。
     3.研究了一系列星型DCM衍生物分子,揭示了溶剂效应对分子几何结构和单、双光子吸收性质的影响及溶剂介电常数与分子内电荷转移情况、双光子吸收截面之间的内在联系。
     4.设计研究了一系列以苯并[h]苯并呋喃为基础的二价镁离子双光子荧光探针分子。揭示了增强此类探针分子对镁离子的双光子荧光响应的有效途径及其本质原因。为生物活体内的镁离子探测提供了重要的理论依据。
Novel two-photon absorption (TPA) materials have attracted increasing interest in recent years due to their potential applications in many different fields such as chemistry, physics and biology. Up to now, the practical TPA materials are still limited, further exploring and researching on new materials with potential TPA properties are urgent. In this thesis, several organic TPA materials have been systematic theoretical investigated. The density functional theory has been used to optimize the geometrical structure. On the basis of the equilibrium geometries, the one- and two-photon absorption properties have been calculated by ZINDO program combine SOS equation and self-compiled FTRNLO program. Then, the internal relations between molecular structure and one- and two-photon absorption properties have been revealed. These investigations will provide some useful and valuable information for designing and synthesizing novel TPA materials with large TPA cross-section values.
     1. The investigation on the perylene tetracarboxylic derivatives (PTCDs) reveal that increasing the number of naphthalene nucleus, extending the conjugated length on long axis, increasing the strength of donor group on lateral side, and keeping the conjugation effect and inductive effect along the same molecular axis are the efficient ways to enlarge TPA cross-section of PTCDs.
     The formula of predicting the maximum TPA cross-section of PTCDs compounds are obtained by the relationship between the maximum TPA cross-section and the number of naphthalene nucleus on long axis or number of biphenyl on short axis. PTCDs exibit extremly large TPA cross-section and they are promising TPA materials.
     2. A series of pyrene derivatives have been theoretically studied. Results show that pyrene derivatives exhibit extremely large TPA cross-sections and present strong OPA around 400 nm, which indicate that introducing donor groups to pyrene molecule, increasing the number of donor groups, extending the conjugated length, or forming circular conjugated dimmer are all efficient ways to enlarge TPA cross-sections. All these results give us some basic principles to design pyrene derivatives with large TPA cross-sections. This shed light into the significance of the pyrene derivatives as promising fluorescent probes in biochemistry when it was linked to some special recognizing groups.
     3. The solvent effect on DCM derivatives have been studied. Results show that increasing the number of branches in DCM molecules and introducing stronger electron withdrawing groups are efficient ways to enhance the TPA cross-sections. Investigations on the solvent effects reveal that TPA cross-section increases as the polarity of the solvents increases and it reaches the maximum when the dielectric constantεequal to 20.7. ICT show regular changes which are in agreement with the changing trend of the TPA cross sections, and the products of transition dipole moments andΔQ are all linearly proportional to the TPA cross-sections.
     4. A series of magnesium ion (Mg2+) selective fluorescent probes based on benzo[h]chromene derivatives have been theoretically studied. Results show that all the studied probe molecules exhibit large TPA cross-sections in response to Mg2+ in 700-1200 nm range. The TPA cross-sections can be greatly enhanced by introducing acceptor groups to the lateral side of benzo[h]chromene, and that probes with stronger acceptor group show larger TPA cross-sections and result in 70-fold enhancing when coordinate with Mg2+. These results shed light into the design strategy of efficient TP fluorescent probes with large TPA cross-sections for Mg2+ sensing in living systems.
引文
[1] G?PPERT-MAYER M.über Elementarakte mit zwei Quantensprüngen [J]. Ann. Phys., 1931, 401: 273–294.
    [2] KAISER W, GARRETT C G B. Two-Photon Excitation in CaF2: Eu2+ [J]. Phys. Rev. Lett., 1961, 7: 229– 231.
    [3] BLANCHARD-DESCE M. Molecular engineering of NLO-phores for new NLO microscopies [J]. C. R. Phys., 2002, 3: 439-448.
    [4] MARDER S R. Organic nonlinear optical materials: where we have been and where we are going [J]. Chem. Commun., 2006, 131-134.
    [5] STREHMEL B, STREHMEL V. TWO-PHOTON PHYSICAL, ORGANIC, AND POLYMER CHEMISTRY: THEORY, TECHENIQUES, CHROMOPHORE DESIGN, AND APPLICATIONS [J]. Adv. Photochem. 2007, 29: 111-354.
    [6] CRONSTRAND P, LUO Y, ?GREN H. Multi-photon Absorption of Molecules [J]. Adv. Quantum Chem., 2005, 50: 1-21.
    [7] BHAWALKAR J D, HE G S, PRASAD P N, Nonlinear multiphoton processes in organic and polymeric Materials [J]. Rep. Prog. Phys., 1996, 59: 1041-1070.
    [8] LIN T C, CHUNG S J, KIM K S, et al. in Polymers for Photonics Applications, Vol. II, [M]. Berlin: Springer, 2003.
    [9] HELMCHEN F, DENK W, Deep tissue two-photon microscopy [J]. Nat. Methods, 2005, 2: 932-940.
    [10] MARUO S, NAKAMURA O, KAWATA S, Three-dimensional microfabrication with two-photon-absorbed photopolymerization [J]. Opt. Lett., 1997, 22: 132-134.
    [11] CUMPSTON B H, ANANTHAVEL S P, BARLOW S, et al. Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication [J]. Nature, 1999, 398: 51-54.
    [12] KAWATA S, SUN H B, TANAKA T, et al. Finer features for functionalmicrodevices [J]. Nature, 2001, 412: 697-698.
    [13] ZHOU W, KUEBLER S M, BRAUN K L, et al. An Efficient Two-Photon-Generated Photoacid Applied to Positive-Tone 3D Microfabrication [J]. Science, 2002, 296: 1106-1109.
    [14] DENK W, STRICKLER J H, WEBB W W, Two-photon laser scanning fluorescence microscopy [J]. Science 1990, 248: 73-76.
    [15] XU C, ZIPFEL W, SHEAR J B, et al. Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy [J]. Proc. Natl. Acad. Sci. USA, 1996, 93: 10763-10768.
    [16] LARSON D R, ZIPFEL W R, WILLIAMS R M, et al. Watersoluble QDs for Multiphoton Fluorescence Imaging in vivo [J]. Science, 2003, 300: 1434-1436.
    [17] PALMER G M, KEELY P J, BRESLIN T M, et al. Autofluorescence Spectroscopy of Normal and Malignant Human Breast Cell Lines [J]. Photochem. Photobiol., 2003, 78: 462-469.
    [18] PARTHENOPOULOS D A, RENTZEPIS P M, Three-Dimensional Optical Storage Memory [J]. Science 1989, 245: 843-845.
    [19] BELFIELD K, LIU Y, NEGRES R, et al. Two-Photon Photochromism of an Organic Material for Holographic Recording [J]. Chem. Mater., 2002, 14: 3663-3667.
    [20] KAWATA S, KAWATA Y, Three-Dimensional Optical Data Storage Using Photochromic Materials [J]. Chem. Rev. 2000, 100: 1777-1788.
    [21] HE G S, BHAWALKAR J D, ZHAO C F, et al. Optical limiting effect in a two-photon absorption dye doped solid matrix [J]. Appl. Phys. Lett., 1995, 67: 2433-2435.
    [22] SPANGLER C W. Recent development in the design of organic materials for optical power limiting [J]. J. Mater. Chem., 1999, 9: 2013-2020.
    [23] BAUER C, SCHNABEL B, KLEY E B, et al. Two-Photon Pumped Lasing from a Two-Dimensional Photonic Bandgap Structure with Polymeric Gain Material [J]. Adv. Mater., 2002, 14: 673-676.
    [24] ABBOTTO A, BEVERINA L, BOZIO R. Push-Pull Organic Chromophores for Frequency-Upconverted Lasing [J]. Adv. Mater., 2000, 12: 1963-1967.
    [25] KONIG K. Multiphoton microscopy in life sciences [J]. J. Microsc. 2000, 200: 83-104.
    [26] ZIPFEL W R, WILLIAMS R M, CHRISTIE R, Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation [J]. Proc. Natl. Acad. Sci. USA 2003, 100: 7075-7080.
    [27] KOHLER R H, CAO J, ZIPFEL W R. Exchange of Protein Molecules Through Connections Between Higher Plant Plastids [J]. Science, 1997, 276: 2039-2042.
    [28] MILLER M J, WEI S H, PARKER I, et al. Two-photon imaging of lymphocyte motility and antigen response in intact lymph node [J]. Science, 2002, 296: 1869-1873.
    [29] BHAWALKAR J D, KUMAR N D, ZHAO C F, et al. Two-photon photodynamic therapy [J]. J. Clin. Laser Med. Surg., 1997, 15: 201-204.
    [30] KIM S, OHULCHANSKYY T, PUDAVAR H, et al. Organically Modified Silica Nanoparticles Co-encapsulating Photosensitizing Drug and Aggregation-Enhanced Two-Photon Absorbing Fluorescent Dye Aggregates for Two-Photon Photodynamic Therapy [J]. J. Am. Chem. Soc., 2007, 129: 2669-2675.
    [31] DICHTEL W, SERIN J, EDDER C, et al. Singlet Oxygen Generation via Two-Photon Excited FRET [J]. J. Am. Chem. Soc., 2004, 126: 5380-5381.
    [32] PRASAD P N, WILLIAMS D J, Introduction to Nonlinear Optical Effects in Molecules and Polymers [M]. New York, Wily, 1991.
    [33] SHEIK-BAHAE M, SAID A A, VAN STRYLAND E W. High-sensitivity, single-beam n2 measurements [J]. Opt. lett., 1989, 14: 955-957.
    [34] SHEIK-BAHAE M, SAID A A, WEI T H. Sensitive measurement ofoptical nonlinearities using a single beam [J]. IEEE J. Quant. Electron, 1990, 26: 760-769.
    [35] XU C, WEBB W W, Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm [J]. J. Opt. Soc. Am. B, 1996, 13: 481–491.
    [36] DROBIZHEV M, STEPANENKO Y, DZENIS Y, et al. Extremely Strong Near-IR Two-Photon Absorption in Conjugated Porphyrin Dimers: Quantitative Description with Three-Essential-States Model [J]. J. Phys. Chem. B, 2005, 109: 7223–7236.
    [37] MAKAROV N S, DROBIZHEV M, REBANE A, Two-photon absorption standards in the 550-1600 nm excitation wavelength range [J]. Opt. Express, 2008, 16: 4029–4047.
    [38] RUMI M, EHRLICH J E, HEIKAL A A, et al. Structure?Property Relationships for Two-Photon Absorbing Chromophores: Bis-Donor Diphenylpolyene and Bis(styryl)benzene Derivatives [J]. J. Am. Chem. Soc., 2000, 122: 9500– 9510.
    [39] PETICOLAS W L, GOLDSBOROUGH J P, RIECKHOFF K E. Double Photon Excitation in Organic Crystals [J]. Phys. Rev. Lett., 1963, 10: 43– 45.
    [40] EHRLICH J E, WU X L, LEE I Y S. Two-photon absorption and broadband optical limiting with bis-donor stilbenes [J]. Opt. Lett., 1997, 22: 1843– 1845.
    [41] BEVERINA L, FU J, LECLERCQ A, et al, Two-Photon Absorption at Telecommunications Wavelengths in a Dipolar Chromophore with a Pyrrole Auxiliary Donor and Thiazole Auxiliary Acceptor [J]. J. Am. Chem. Soc., 2005, 127: 7282– 7283.
    [42] POND S J K, RUMI M, LEVIN M D, et al. One- and Two-Photon Spectroscopy of Donor?Acceptor?Donor Distyrylbenzene Derivatives: Effect of Cyano Substitution and Distortion from Planarity [J]. J. Phys. Chem. A, 2002, 106: 11470– 11480.
    [43] CHUNG S J, ZHENG S, ODANI T, et al. Extended Squaraine Dyes withLarge Two-Photon Absorption Cross-Sections [J]. J. Am. Chem. Soc., 2006, 128: 14444– 14445.
    [44] REINHARDT B A, BROTT L L, CLARSON S J, et al. Highly Active Two-Photon Dyes: Design, Synthesis, and Characterization toward Application [J]. Chem. Mater., 1998, 10: 1863– 1874.
    [45] CHUNG S J, KIM K S, LIN T C, et al. Cooperative Enhancement of Two-Photon Absorption in Multi-branched Structures [J]. J. Phys. Chem. B, 1999, 103: 10741– 10745.
    [46] KANNAN R, HE G S, LIN T C, et al. Toward Highly Active Two-Photon Absorbing Liquids. Synthesis and Characterization of 1,3,5-Triazine-Based Octupolar Molecules [J]. Chem. Mater., 2004, 16: 185– 194.
    [47] VENTELON L, CHARIER S, MOREAUX L, et al. Nanoscale Push-Push Dihydrophenanthrene Derivatives as Novel Fluorophores for Two-Photon-Excited Fluorescence [J]. Angew. Chem. Int. Ed., 2001, 40: 2098– 2101.
    [48] DROUMAGUET C L, MONGIN O, WERTS M H V, et al. Towards Smart Multiphoton Fluorophores: Strongly Solvatochromic Probes for Two-Photon Sensing of Micropolarity [J]. Chem. Commun., 2005, 2802– 2804.
    [49] VARNAVSKI O, YAN X, MONGIN O, et al. Strongly Interacting Organic Conjugated Dendrimers with Enhanced Two-Photon Absorption [J]. J. Phys. Chem. C, 2007, 111: 149– 162.
    [50] MONGIN O, PORRèS L, CHARLOT M, et al. Synthesis, Fluorescence, and Two-Photon Absorption of a Series of Elongated Rodlike and Banana-Shaped Quadrupolar Fluorophores: A Comprehensive Study of Structure-Property Relationships [J]. Chem. Eur. J., 2007, 13: 1481– 1498.
    [51] LEE S K, YANG W J, CHOI J J, et al. 2,6-Bis[4-(p-dihexylaminostyryl)styryl]anthracene Derivatives with Large Two-Photon Cross Sections [J]. Org. Lett., 2005, 7: 323– 326.
    [52] THORLEY K J, HALES J M, ANDERSON H L, et al. Porphyrin Dimer Carbocations with Strong Near Infrared Absorption and Third-Order Optical Nonlinearity [J]. Angew. Chem. Int. Ed., 2008, 47: 7095– 7098.
    [53] AHN T K, KIM K S, KIM D Y, et al. Relationship between Two-Photon Absorption and theπ-Conjugation Pathway in Porphyrin Arrays through Dihedral Angle Control [J]. J. Am. Chem. Soc., 2006, 128: 1700–1704.
    [54] KUROTOBI K, KIM K S, NOH S B, et al. A Quadruply Azulene-Fused Porphyrin with Intense Near-IR Absorption and a Large Two-Photon Absorption Cross Section, Angew [J]. Chem. Int. Ed., 2006, 45: 3944– 3947.
    [55] NAKAMURA Y, JANG S Y, TANAKA T, et al. Two-Dimensionally Extended Porphyrin Tapes: Synthesis and Shape-Dependent Two-Photon Absorption Properties [J]. Chem. Eur. J., 2008, 14: 8279– 8289.
    [56] EASWARAMOORTHI S, JANG S Y, YOON Z S, et al. Structure?Property Relationship for Two-Photon Absorbing Multiporphyrins: Supramolecular Assembly of Highly-Conjugated Multiporphyrinic Ladders and Prisms [J]. J. Phys. Chem. A, 2008, 112: 6563– 6570.
    [57] MORLEY J O. Nonlinear optical properties of organic molecules. XII. Calculations of the hyperpolarizabilities of donor-acceptor polyynes [J]. Int. J. Quantum Chem., 1993, 46: 19– 26.
    [58] DROBIZHEV M, KAROTKI A, REBANE A, et al. Dendrimer molecules with record large two-photon absorption cross section [J]. Opt. Lett., 2001, 26: 1081– 1083.
    [59] CUMPSTON B H, ANANTHAVEL S P, BARLOW S, et al. Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication [J]. Nature, 1999, 398: 51-54.
    [60] SUN H B, SUWA T, TAKADA K, et al. Shape precompensation in two-photon laser nanowriting of photonic lattices [J]. Appl. Phys. Lett., 2004, 85: 3708-3710.
    [61] SERBIN J, EGBERT A, OSTENDORF A, et al. Femtosecondlaser-induced two-photon polymerization of inorganic–organic hybrid materials for applications in photonics [J]. Opt. Lett., 2003, 28 : 301-303.
    [62] STRICKLER J H, WEBB W. Three-dimensional optical data storage in refractive media by two-photon point excitation [J]. Opt. Lett., 1991, 16: 1780-1782.
    [63] FURATA T, WANG S S H, DANTZKER J L, et al. [J]. PNAS, 1999, 96: 1193-1200.
    [64] IKEDA C, YOON Z S, PARK M, et al. Helicity induction and two-photon absorbance enhancement in zinc(ii) meso-meso linked porphyrin oligomers via intermolecular hydrogen bonding interactions. [J]. J Am Chem Soc, 2005, 127: 534-535.
    [65] (a)徐光宪,黎乐民.量子化学基础原理和从头计算法[M].北京:科学出版社, 1981. (b)封继康.基础量子化学原理[M].北京:高等教育出版社, 1987. (c)王德民,叶学其.神奇的预测:趣谈量子化学[M].湖南:湖南教育出版社, 2001.
    [66] HEITLER W, LONDON F. Wechselwirkung neutraler Atome und hom?opolare Bindung nach der Quantenmechanik [J]. Z. Physik., 1927, 44: 455-472.
    [67] SCHR?DINGER E.über das Verh?ltnis der Heisenberg-Born-Jordanschen Quantenmechanik zu der meinen [J]. Annalen der Physik, 1926, 79: 734-756.
    [68] SCHR?DINGER E. An Undulatory Theory of the Mechanics of Atoms and Molecules [J]. Phys. Rev. 1926, 28: 1049-1070.
    [69] BORN M, OPPENHEIMER R. Zur quantentheorie der molekeln[J]. Ann. Physik., 1927, 84: 457-484.
    [70] BORN M, HUANG K. Dynamical theory of crystal lattices[C]. New York: Oxford University Press, 1954.
    [71] PAULI W.über den Zusammenhang des Abschlusses der Elektronengruppen im Atom mit der Komplexstruktur der Spektren[J]. Z. Physik., 1925, 31: 765-783.
    [72] HARTREE D R. The calculations of atomic structure[M]. New York: John Wiley & Sons, 1957.
    [73] FORK V. N?herungsmethode zur L?sung des quantenmechanischen Mehrk?rperproblems[J]. Z. Physik., 1930, 61: 126-148.
    [74] SLATER J C. Note on Hartree′s Method[J]. Phys. Rev., 1930, 35:210-211.
    [75] ROOTHAAN C C J. New Developments in Molecular Orbital Theory[J]. Rev. Mod. Phys., 1951, 23: 69-89.
    [76] HALL G G. The Molecular Orbital Theory of Chemical Valency. VIII. A Method of Calculating Ionization Potentials[J]. Proc. R. Soc. Lond. A, 1951, 205: 541-552.
    [77] HOBENBERG P, KOHN W. Inhomogeneous electron gas[J]. Phys. Rev. B, 1964, 136: 864-871.
    [78] KOHN W, SHAM L J. Self-consistent equations including exchange and correlation effects[J]. Phys. Rev. A, 1965, 140: 1133-1138.
    [79] SLATER J C. Vol. 4: Quantum theory of molecular and solids[M]. New York: McGraw-Hill, 1974.
    [80] SALAHUB D E, ZERNER M C. The challenge of d and f electrons[M]. ACS: Washington D. C. 1989.
    [81] PARR R G, YANG W. Density-functional theory of atoms and molecules[M]. Oxford: Oxford University Press, 1989.
    [82] LABANOWSKI J K, ANDZELM J W. Density functional methods in chemistry[M]. New York: Springer-Verlag, 1991.
    [83] POPLE J A, GILL P W M, JOHNSON B G. Kohn-Shamdensity-functional theory within a finite basis set[J]. Chem. Phys. Letter., 1992, 199: 557-560.
    [84] JOHNSON B G, FRISCH M J. An implementation of analytic second derivatives of the gradient-corrected density functional energy[J]. J. Chem. Phys., 1994, 100: 7429-7442.
    [85] LEE C, YANG W, PARR R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Phys. Rev. B, 1988, 37: 785-789.
    [86] DECKE A D. Density-functional exchange-energy approximation with correct asymptotic behavior[J]. Phys. Rev. A, 1988, 38: 3098-3100.
    [87] MIEHLICH B, SAVIN A, STOLL H, PREUSS H. Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr[J]. Chem. Phys. Lett., 1989, 157: 200-206.
    [88] HOFFMANN R. An Extended Hückel Theory. I. Hydrocarbons[J]. J. Chem. Phys., 1963, 39: 1397-1412.
    [89] POPLE J A, SEGAL G A. Approximate Self-Consistent Molecular Orbital Theory. II. Calculations with Complete Neglect of Differential Overlap[J] . J. Chem. Phys., 1965, 43: S136-S151.
    [90] POPLE J A, BEVERIDGE D L.江元生译近似分子轨道理论方法[M].北京:科学出版社,1976.
    [91] RIDLEY J E, ZERNER M C. Triplet states via intermediate neglect of differential overlap: Benzene, pyridine and the diazines[J]. Theo. Chim. Acta., 1976, 42: 223-236.
    [92] DEWAR M J S, ZOEBISCH E G, HEALY E F, et al. Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model[J]. J . Am. Chem. Soc., 1985, 107: 3902-3909.
    [93] STEWART J J P. Optimization of parameters for semiempirical methodsI. Method[J]. J. Comput. Chem., 1989, 10: 209-220.
    [94] Condon E U, Shortley G H. The Theory of Atomic Spectra[M]. UK: Cambridge University Press, 1953.
    [95] SLATER J C. The Quantum Theory of Atomic Structure[M]. McGraw-Hill, 1960, Vol. 1.
    [96] MATAGA N, NISHIMOTO K. Z. Physik. Chem(Frankfrut), 1957, 13, 140.
    [97] PARISER R, PARR R G. A Semi-Empirical Theory of the Electronic Spectra and Electronic Structure of Complex Unsaturated Molecules. II [J]. J. Chem. Phys., 1953, 21: 767-776.
    [98] RIDLEY J, ZERNER M. An Intermediate Neglect of Differential Overlap Technique for Spectroscopy" Pyrrole and the Azines [J]. Theor. Chim. Acta., 1973, 32: 111-134.
    [99] BALK P, DEBRUIJN S, HOIJTINK G J. ELECTRONIC SPECTRA OF ALTERNANT HYDROCARBON MONONEGATIVE IONS [J]. Rec. Trav. Chim., 1957, 76, 907-918.
    [100]周世勋.量子力学[M].上海:上海科技出版社,1963.
    [101]过巳吉.非线性光学[M].西安:西北电讯工程学院出版社, 1986,p224.
    [102] ORR B J, WARD J F. Perturbation theory of the non-linear optical polarization of an isolated system[J]. Molec Phys., 1971, 20: 513-526.
    [103] DICK B, HOCHSTRASSER R M, Trommmsdorf H P. Resonant Molecular Optics: Nonlinear Optical Properties of Organic Molecules and Crystals [M]. Academic Press, 1987, Vol. 12, p. 159.
    [104] BHAWALKAR J D, HE G S, PRASAD P N. Nonlinear multiphoton processes in organic and polymeric materials [J]. Rep. Prog. Phys., 1996, 59: 1041-1070.
    [105] KANIS D R M, RATNER A, MARKS T J. Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects [J]. Chem. Rev. 1994, 94: 195-242.
    [106] DVORNIKOV A S, RENTZEPIS P M. Accessing 3D memory information by means of nonlinear absorption [J]. Opt. Commun. 1995. 119: 341-346.
    [107] DENK W, SVOBODA K. Photon upmanship: why multiphoton imaging is more than a gimmick [J]. Neuron 1997, 18: 351-357.
    [108] ALLAIN C, SCHMIDT F, LATIA R, et al. Vinyl-pyridinium triphenylamines: Novel far-red emitters with high photostability and two-photon absorption properties for staining DNA [J]. ChemBiochem 2007, 8: 424-433.
    [109] FLEITZ P A, BRANT M C, SUTHERLAND R L, et al. Nonlinear measurements on AF-50 [J]. SPIE Proc. 1998, 3472: 91-97.
    [110] LANGHALS H. Dyes with high dielectric constants [J].Chem. Phys. Lett. 1988, 150: 321-324.
    [111] HOROWITZ B G, KOUKI F, SPEARMAN P, et al. Evidence for n-type conduction in a perylene tetracarboxylic diimide derivative [J]. Adv. Mater. 1996, 8: 242-245.
    [112] SCHLETTWEIN D, BACK A, SCHILING B, et al. Ultrathin Films of Perylenedianhydride and Perylenebis(dicarboximide) Dyes on (001) Alkali Halide Surfaces [J]. Chem. Matter. 1998, 10: 601-612.
    [113] IRVI J, BURSHTEIN Z, MIRON E, et al. The perylene derivative BASF-241 solution as a new tunable dye laser in the visible [J]. IEEEJ. Quantum Elenctron. 1990, 26: 1516-1520.
    [114] LOHMANNSROBEN H G, LANGHALS H. Laser performance of perylenebis(dicarboximide) dyes with long secondary alkyl chains [J]. Appl. Phys. B, 1989, 48 : 449-452.
    [115] FORREST S R. Ultrathin Organic Films Grown by Organic Molecular Beam Deposition and Related Techniques [J]. Chem Rev 1997, 97: 1793-1896.
    [116] KATZ H E. Organic molecular solids as thin film transistor semiconductors [J]. J. Mater Chem 1997, 7: 369-376.
    [117] TENNE D A, PARK S, KAMPEN T U, et al. Single crystals of the organic semiconductor perylene tetracarboxylic dianhydride studied by Raman spectroscopy [J]. Phys Rev B 2000, 61: 14564-14569.
    [118] KERA S, SETOYAMA H, ONOUE M, et al. Origin of indium-[perylene-3,4,9,10-tetracarboxilic dianhydride] interface states studied by outermost surface spectroscopy using metastable atoms [J]. Phys Rev B 2001, 63: 115204-(1-8).
    [119] ZHANPEISOV N U, NISHIO S, FUKUMURA H. Density functional theory study of vibrational properties of the 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) molecule: IR, Raman, and UV-vis spectra [J].International Journal of Quantum Chemistry 2005, 105: 368-375.
    [120] OLIVEIRA S L, CORREA D S, MISOGUTI L, et al. Perylene derivatives with large two-photon-absorption cross-sections for application in optical limiting and upconversion lasing [J]. Adv. Mater. 2005, 17: 1890-1893.
    [121] CORREA D S, OLIVEIRA S L, MISOGUTI L, et al. Investigation of the Two-Photon Absorption Cross-Section in Perylene Tetracarboxylic Derivatives: Nonlinear Spectra and Molecular Structure [J]. J. Phys. Chem. A 2006, 110: 6433-6438.
    [122] LANGHALS H, KAROLIN J, JOHANSSON L B-?. Spectroscopic properties of new and convenient standards for measuring fluorescence quantum yields [J]. J. Chem. Soc., Faraday Trans. 1998, 94: 2919-2922.
    [123] CHA M, TORRUELLAS W E, STEGEMAN G I, et al. Two photon absorption of di-alkyl-amino-nitro-stilbene side chain polymer [J]. J. Appl. Phys. Lett. 1994, 65: 2648-2650.
    [124] KOGEJ T, BELJONNE D, MEYERS F, et al. Mechanisms for enhancement of two-photon absorption in donor–acceptor conjugated chromophores [J]. Chem .Phys. Lett 1998, 298: 1-6.
    [125] BISHOP D M, LUIS J M, KIRTMAN B. Vibration and two-photon absorption [J]. J. Chem. Phys. 2002, 116: 9729-9739.
    [126] BELJONNE D, WENSELEERS W, ZOJER E, et al. Role of dimensionality on the two-photon absorption response of conjugated molecules: The case of octupolar compounds [J]. Adv. Funct. Mater. 2002, 12: 631-641.
    [127] FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 2003, Revision C02; Gaussian, Inc Pittsburgh PA, 2003.
    [128] BECKE A D. A new mixing of Hartree–Fock and local density‐functional theories [J]. J Chem Phys 1993, 98: 1372.
    [129] FRANCL M M, PIETRO W J, HEHRE W J, et al. [J]. J Chem Phys 1982, 77: 3654-3665.
    [130] ALBOTA M, BELJONNE D, BRéDAS J-L, et al. Design of Organic Molecules with Large Two-Photon Absorption Cross Sections [J]. Science, 1998, 281: 1653-1656.
    [131]òSCAR R P, LUO Y, ?GREN H. Effects of conjugation length, electron donor and acceptor strengths on two-photon absorption cross sections of asymmetric zinc-porphyrin derivatives.[J]. J Chem Phys, 2006, 124: 094310-1-094310-5.
    [132] MA W B, WU Y Q, GU D H. Theoretical investigation on the one- and two-photon absorption properties for a series of symmetrical charge transfer fluorene-phenylene and fluorene-thiophene derivatives [J]. Journal of Mocular Structure: THEOCHEM 2006, 772: 81-87.
    [133] BONI L D, CONSTANTINO C J L, MISOGUTI L, et al. Two-photon absorption in perylene derivatives [J]. Chemical. Physics. Letter 2003, 371: 744-749.
    [134] TOMASI J, PERSICO M. Molecular Interactions in Solution: An Overview of Methods Based on Continuous Distributions of the Solvent [J]. Chem Rev 1994, 94:2027-2094.
    [135] CRAMER C J, TRUHLAR D G. In Solvent Effects and Chemical Reactivity Tapia, O. Bertrán, J., Eds.; Kluwer: Dordrecht, 1996, p 1.
    [136] MIERTUS S, SCROCCO E, TOMASI J. Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects [J]. J Chem Phys 1981, 55: 117-129.
    [137] MIERTUS S, TOMASI. Approximate evaluations of the electrostatic free energy and internal energy changes in solution processes [J] J Chem Phys 1982, 65: 239-245.
    [138] COSSI M, BARONE V, CAMMI R, et al. Ab initio study of solvated molecules: a new implementation of the polarizable continuum model [J]. J. Chem Phys Lett 1996, 255: 327-335.
    [139] CANCES E, MENNUCCI B, TOMASI J. A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics [J]. J Chem Phys 1997, 107: 3032-3041.
    [140] BARONE V, COSSI M, TOMASI J. Geometry optimization of molecular structures in solution by the polarizable continuum model [J]. J Compu Chem 1998, 19: 404-417.
    [141] COSSI M, SCALMANI G, REGA N, et al. New developments in the polarizable continuum model for quantum mechanical and classical calculations on molecules in solution [J]. J Chem Phys 2002, 117: 43-54.
    [142] DENK W, STRICKLER J H, WEBB W W. Two-photon laser scanning fluorescence microscopy [J]. Science, 1990, 248: 73-76.
    [143] ZHAO Y, REN A M, FENG J K, et al. Theoretical study of one-photon and two-photon absorption properties of perylene tetracarboxylic derivatives [J]. J Chem Phys, 2008, 109: 014301-1-014301-10.
    [144] LUCAS L A, DELONGCHAMP D M, RICHTER L J, et al. Thin Film Microstructure of a Solution Processable Pyrene-Based Organic Semiconductor [J]. Chem Mater, 2008, 20: 5743-5749.
    [145] HALLEUX V, CALBERT J P, BROCORENS P, et al. 1,3,6,8-Tetraphenylpyrene Derivatives: Towards FluorescentLiquid-Crystalline Columns?** [J]. Adv Funct Mater, 2004, 14: 649-659.
    [146] DAUB J, ENGL R, KURZAWA J, et al. Competition between Conformational Relaxation and Intramolecular Electron Transfer within Phenothiazine-Pyrene Dyads [J]. J Phys Chem A, 2001, 105: 5655-5665.
    [147] JONES G, VULLEV V I. Photoinduced Electron Transfer between Non-Native Donor-Acceptor Moieties Incorporated in Synthetic Polypeptide Aggregates [J]. Org Lett, 2002, 4: 4001-4004.
    [148] CARUSO F, DONATH E, MOHWALD H, et al. Fluorescence Studies of the Binding of Anionic Derivatives of Pyrene and Fluorescein to Cationic Polyelectrolytes in Aqueous Solution.[J]. Macromolecules, 1998, 31: 7365-7377.
    [149] TONG G, LAWLOR J M, TREGEAR G W, et al. Oligonucleotide-Polyamide Hybrid Molecules Containing Multiple Pyrene Residues Exhibit Significant Excimer Fluorescence [J]. J Am Chem Soc, 1995, 117: 12151-12158.
    [150] LEWIS F D, ZHANG Y F, LETSINGER R L. Bispyrenyl Excimer Fluorescence. A Highly Selective Probe for Oligonucleotide Structure [J]. J Am Chem Soc, 1997, 119: 5451-5452.
    [151] KIM S K, KIM S H, KIM H J, et al. Indium(III)-induced fluorescent excimer formation and extinction in calix[4]arene-fluoroionophores [J]. Inorg Chem, 2005, 44: 7866-7875.
    [152] YAMANA K, TAKEI M, NAKANO H. Synthesis of oligonucleotide derivatives containing pyrene labeled glycerol linkers : enhanced excimer fluorescence on binding to a complementary DNA sequence [J]. Tetrahedron Letters, 1997, 38: 6051-6054.
    [153] KIM H M, LEE Y O, LIM C S, et al. Two-photon absorption properties of alkynyl-conjugated pyrene derivatives [J]. J Org Chem, 2008, 73: 5127-5130.
    [154] BECHE A D. A new mixing of Hartree--Fock and local density-functional theories [J]. J Chem Phys, 1993, 98: 1372-1377.
    [155] BONI L D,ANDRADE A A, CORREA D S, et al. Nonlinear absorption spectrum in MEH-PPV/Chloroform solution: a competition between two-photon and saturated absorption processes [J]. J. Phys. Chem. B, 2004, 108: 5221-5224.
    [156] MARGINEANU A, HOFKENS J, COTLET M, et al. Photophysics of a water-soluble rylene dye: comparison with other fluorescent molecules for biological applications [J]. J. Phys. Chem. B, 2004, 108: 12242-12251 .
    [157] TANG C W, VANSLYKE S A, CHEN C H. Electroluminescence of doped organic thin film [J]. J. Appl. Phys., 1989, 65: 3610-3616.
    [158] JUNG B J, YOON C H, SHIM H K, et al. Pure-red dye for organic electroluminescent devices: bis-condensed DCM derivatives [J]. Adv. Func. Mater., 2001, 11: 430-434.
    [159] MA C Q, ZHANG B X, LIANG Z, et al. A novel n-Type red Luminescent material for organic light-emitting diodes [J]. J. Mater. Chem., 2002, 12: 1671-1675.
    [160] MOYLAN C R, ERMER S, LOVEJOY S M, et al. Dicyanomethylenepyran derivatives with C2v symmetry: an unusual class of nonlinear optical Chromophores [J]. J. Am. Chem Soc., 1996, 118: 12950-12955.
    [161] SHAO PIN, HUANG Z L, LI J, et al. Two-photon absorption properties of two (dicyanomethylene)-pyran derivatives [J]. Opt. Mate., 2006, 29: 337-341.
    [162] LUO Y, NORMAN P, MACK P, et al. Solvent-induced two-photon absorption of a push-pull molecule. [J]. J. Phys. Chem. A, 2000, 104: 4718-4722.
    [163] WANG C K, ZHAO K, SU Y, et al. Solvent effects on the electronic structure of a newly synthesized two-photon polymerization initiator [J]. J. Chem. Phys., 2003, 119: 1208-1213.
    [164] WOO H Y, LIU B, KOHLER B, et al. Solvent effects on the two-photon absorption of distyrylbenzene chromophores [J]. J. Am. Chem. Soc.,2005, 127: 14721-14729.
    [165] MENNUCCI M C, TOMASI J. Solvent effects on the electronic spectra: an extension of the polarizable continuum model to the ZINDO method [J]. J. Phys. Chem. A, 2004, 108: 6248-6256.
    [166] BELJONNE D, ZOJER E, SHUAI L, et al. Role of dimensionality on the two-photon absorption response of conjugated molecules: the case of octupolar compounds [J]. Adv. Funct. Mater., 2002, 12: 631-641.
    [167] ZHOU X, REN A M, FENG J K. An insight into a novel class of self-as-sembled porphyrins: geometric structure, electronic structure, one- and two-photon absorption propcrties [J]. Chem. Eur. J., 2004, 10: 5623-5631.
    [168] ZIPFEL W R, WILLIAMS R M, WEBB W W. Nonlinear magic: multiphoton microscopy in the biosciences [J]. Nat. Biotechnol, 2003, 21: 1369-1377.
    [169] KIM H M, JUNG C, KIM B R, et al. [J]. Angew. Chem. Int. Ed, 2007, 46: 3460-3463.
    [170] HARTWIG A. Role of magnesium in genomic stability [J]. Mutat. Res, 2001, 475: 113-121.
    [171] ROURKE B O, BACKX P H, MARBAN E. Phosphorylation-independent modulation of L-type calcium channels by magnesium-nucleotide complexes [J]. Science, 1992, 257: 245-248.
    [172] POLITI H C, PRESTON R R. Is it time to rethink the role of Mg2+ in membrane excitability? [J]. Neuroreport, 2003, 14: 659-668.
    [173] DAI L J, RITCHIE G, KERSTAN D, et al. Magnesium Transport in the Renal Distal Convoluted Tubule [J]. Quamme. Physiol. Rev, 2001, 81: 51-84.
    [174] SCHMITZ C, PERRAUD A, JOHNSON C O, et al. Andrew M. Scharenberg-Department of Immunology UWSOM Faculty [J]. Scharenberg, Cell, 2003, 114: 191-200.
    [175] WOLF F I, TORSELLO A, FASANELLA S, et al. Magnesium and hypertension : Current Opinion in Nephrology and Hypertension [J].Mol. Aspects Med, 2003, 24: 11-26.
    [176] RAY D, BHARADWAJ P K. A Coumarin-Derived Fluorescence Probe Selective for Magnesium [J]. Inorganic Chemistry, 2008, 47: 2252-2254.
    [177] ROMANI A, SCARPA A. Regulation of cell magnesium [J]. Arch. Biochem. Biophys, 1992, 298: 1-12.
    [178] SHODA T, KIKUCHI K, KOJIMA H, et al. Development of selective, visible light-excitable, fluorescent magnesium ion probes with a novel fluorescence switching mechanism [J]. Analyst, 2003, 128: 719-723.
    [179] FARRUGGIA G, IOTTI S, PRODI L, et al. 8-Hydroxyquinoline Derivatives as Fluorescent Sensors for Magnesium in Living Cells [J]. J Am. Chem. Soc, 2006,128: 344-350.
    [180] SUZUKI Y, KOMATSU H, IKEDA T, et al. Design and Synthesis of Mg2+-Selective Fluoroionophores Based on a Coumarin Derivative and Application for Mg2+ Measurement in a Living Cell [J]. Anal. Chem, 2002, 74: 1423-1428.
    [181] KOMATSU H, IWASAWA N, CITTERIO D, et al. Design and Synthesis of Highly Sensitive and Selective Fluorescein-Derived Magnesium Fluorescent Probes and Application to Intracellular 3D Mg2+ Imaging [J]. J. Am. Chem. Soc, 2004, 126: 16353-16360.
    [182] KIM H M, YANG P R, SEO M S, et al. Magnesium Ion Selective Two-Photon Fluorescent Probe Based on a Benzo[h]chromene Derivative for in Vivo Imaging [J]. J. Org. Chem, 2007, 72: 2088-2096.
    [183] KIM H M, YAND W J, KIM C H, et al. Two-Photon Dyes Containing Heterocyclic Rings with Enhanced Photostability [J]. Chem.Eur. 2005, 11: 6386-3691.
    [184] GUO J D, WANG C K, LUO Y, et al. Influence of electron-acceptor strength on the resonant two-photon absorption cross sections of diphenylaminofluorene-based chromophores [J]. Phys. Chem. Chem. Phys, 2003, 5: 3869-3873.
    [185] LUO Y, OSCAR R P, GUO J D, et al. Charge-transfer Zn-porphyrin derivatives with very large two-photon absorption cross sections at1.3–1.5μm fundamental wavelengths [J]. J. Chem. Phys, 2005, 122: 096101-1-096101-2.
    [186] LI W C, FENG J K, REN A M, et al. Theoretical studies on the one- and two-photon absorption properties of azulenylporphyrins and azulene-fused porphyrins [J]. Chinese Physics B, 2009, 18: 2271-2281.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700