氨基酸与钙离子相互作用的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在生物体中,钙离子有着重要的生理和生化功能,它通过与蛋白质等生物大分子相互作用,引起这些生物大分子构象的改变,在生物分子中产生活性中心或成为结构中心。从而参与到血液凝固、肌肉收缩、神经递质的释放等众多生理反应中,这些反应对所有的生命体来说都是不可或缺的。但蛋白质分子量较大,而氨基酸是构成生物体内蛋白质分子的基本单位,因此对氨基酸与钙离子相互作用的研究就显得尤为重要。通过这类研究我们可以确定在大生物分子中钙离子的最佳吸附位置,以及吸附强度。
     (1)首先通过调研,我们设计了大量的氨基酸-钙离子络合物的初始结构,确保在这些结构尽可能形成较多的内部氢键。然后利用紧束缚(TB)方法对所有的结构进行初步优化,当得到能量较低的结构后,采用较高水平的微扰二阶近似法MP2/6-31G(d,p)对候选的低能结构进行进一步优化,从而确定其最稳定几何构型,并针对最稳定构型在同样的计算水平下进行了频率计算。又在MP2/6-311++G(d,p)水平下计算了稳定构型的单点能。我们发现,当侧链中不含有杂原子的脂肪族氨基酸与钙离子络合时,salt-bridge (SB)结构是最稳定的,但是当其他氨基酸与钙离子络合时,charge-solvated(CS)结构是最稳定的(除了谷氨酸、谷氨酰胺、精氨酸、赖氨酸以及色氨酸)。我们选取了谷氨酰胺(Gln)和天冬酰胺(Asn)与钙离子形成络合物的红外光谱进行了详细分析,并与相应的实验光谱进行对比,结果表明我们的理论结果与实验吻合的很好。
     (2)很多的生物反应发生在有水环境中,水分子通过调解静电力场发挥了关键的作用。因此我们还对水溶液中所有20种α-种氨基酸与钙离子的相互作用进行了系统的理论研究。我们利用连续可极化溶剂模型(PCM)对氨基酸-钙离子络合物进行了几何构型优化、单点能计算以及NBO分析,设定介电常数为78.39,即溶剂为水。此外,我们在B3LYP/6-311++G(d,p)水平下应用TDDFT方法,计算了苯丙氨酸(Phe)、色氨酸(Trp)以及酪氨酸(Tyr)等芳香氨基酸与钙离子形成络合物的紫外吸收光谱。结果证明在水溶液中,所有20种氨基酸与钙离子络合的最稳定构型都是二配位的SB结构,在这种结构中Ca~(2+)同时与氨基酸主链羧基负离子中的两个O原子结合。通过对氨基酸-钙离子络合物的最稳定结构进行NBO分析,发现不足0.1e的电荷转移,这表明氨基酸与钙离子间主要为静电相互作用,它们之间的微弱键级也可以证明这一点。通过计算Phe-Ca~(2+)、Trp-Ca~(2+)以及Tyr Ca~(2+)三种络合物的紫外吸收光谱,我们可以发现钙离子的加入导致了Phe和Trp光谱的蓝移,但导致了Tyr的光谱发生了红移。
     (3)相较于全溶剂化的研究,气相中水合团簇的研究可以更好地确定在第一水合层中,每个水分子的逐步加入所引起的改变。我们在MP2/6-31G(d,p)//MP2/6-311++G(d,p)水平下研究了三种水合团簇体系Gly-Ca~(2+)(H_2O)n、Thr-Ca~(2+)(H_2O)n和Phe-Ca~(2+)(H_2O)n,确定了在水合过程中它们结构的改变、稳定性顺序的变化、电荷转移以及最稳定结构的红外光谱。结果表明,不论是对于芳香氨基酸-钙离子络合物的水合团簇Phe-Ca~(2+)(H_2O)n,还是对于脂肪族氨基酸-钙离子络合物的水合团簇Gly-Ca~(2+)(H_2O)n、Thr-Ca~(2+)(H_2O)n,当钙离子周围第一水合层达到八配位时,这种结构的结合能最低,稳定性最好。并且上述构型中的键长与键角都十分接近全溶剂化条件下优化的结果。水分子对络合的稳定性顺序产生了很大影响。气相中它们的稳定性顺序为Phe-Ca~(2+)> Thr-Ca~(2+)> Gly-Ca~(2+),而形成水合团簇后稳定顺序则变为Thr-Ca~(2+)(H_2O)n> Phe-Ca~(2+)(H_2O)n>Gly-Ca~(2+)(H_2O)n。
In living organisms, the complexation of metal cations to amino acid is one ofthe most important processes, especially for Ca~(2+). The binding of amino acid with~(2+)is involved in a large number of different physiological reactions taking place inall forms of life (ie., flagella movement, intracellular signaling, the complementsystem, blood coagulation, muscle contraction, and neurotransmitter release insynapses). The knowledge of the binding interactions of the Ca~(2+)and amino acidsystems is important to predict where the calcium ion attachment occurs preferentiallyin a macromolecule and how strong the binding at a particular site.
     (1) By surveying the possible permutations of metal chelation and hydrogenbonding, a number of initial structures for the calcium–amino acids complexes, eachof them with maximum number of hydrogen bonds, were generated. All the structureswere initially optimized with the Tight-Binding method, and then optimized byhigher-level MP2/6-31G(d,p) method. For the gas-phase low-energy structures, thesingle-point energies were calculated at MP2/6-311++G(d,p). All the calculations atthe MP2level were performed using the Gaussian03package. We showed that in thegas phase the salt-bridge structure is the most preferred Ca~(2+)binding motif foraliphatic amino acids with no heteroatom in the side chain, while for other aminoacids they have charge-solvated structure except for glutamic acid, glutamine,arginine, lysine and tryptophane. IR spectra of Gln-Ca~(2+)and Asn-Ca~(2+)complexeswere calculated and compared well with the available experiments.
     (2) Majority of biological processes occurs in aqueous environments and water molecules play a central role by moderating electrostatic forces. In our present study,NBO analysis, geometry optimizations and single point energies were also conductedin the PCM model at the same level using the Gaussian03package with a dielectricconstant of78.39(water). In addition, the vertical excitation energies were computedusing the time-dependent density functional theory (TDDFT) method at theB3LYP/6-311++G(d,p) level. The bidentate salt-bridge structure was determined tobe the most favorable for all the twenty kinds of amino acids by chelation of Ca~(2+)toboth oxygen atoms of the negatively carboxylate group in the backbone. The muchlower magnitude of charge transfer contribution (about0.1e) in calcium ioncoordinated complexes suggests that the interactions in these complexes areelectrostatic, which can also be shown by the very tiny wiberg bond indices. Thevertical excitation energies of the calcium ion-aromatic amino acid compounds havebeen discussed, the blue-shifts have been found for Phe-Ca~(2+)and Trp-Ca~(2+), but thepeculiar red-shift has been found for Tyr Ca~(2+), possibly because the p-conjugatedegree of hydroxyl with aromatic ring is enhanced by NH3+above the ring.
     (3) Compared with the full solution studies, the gas-phase studies of hydratedclusters can provide much detailed insights into thermochemical and structuralchanges with the stepwise addition of water molecules in the first shell of biologicalmolecules. The structural changes triggered by hydration and the binding energies ofhydrated composites were studied for the three hydrated molecular clusters includingGly-Ca~(2+)(H_2O)n, Thr-Ca~(2+)(H_2O)nand Phe-Ca~(2+)(H_2O)nat the MP2/6-311++G(d,p)level. In the investigation on the hydration of all the three systems, the clusters withthe first hydration shell displaying an octacoordination configuration around calciumion are found to be most competitive in binding energy no matter for aromatic aminoacid clusters Phe-Ca~(2+)(H_2O)nor the aliphatic amino acid clusters Gly-Ca~(2+)(H_2O)nandThr-Ca~(2+)(H_2O)n. The bond lengths and bond angles of the above-mentioned structuresare close to the corresponding values from the PCM calculations. Water moleculeshave a considerable effect on the relative stability of individual complexes, withbinding energy decreasing in the order Phe-Ca~(2+)> Thr-Ca~(2+)> Gly-Ca~(2+)without waterand Thr-Ca~(2+)(H_2O)n> Phe-Ca~(2+)(H_2O)n> Gly-Ca~(2+)(H_2O)nupon hydration, respectively. Owning to the different nature of side chain of Gly, Thr and Phe, variousintermolecular hydrogen bonds appear in the three hydrated composites, which giverise to different vibrational absorption peaks.
引文
[1] FRAúSTO DA SILVA J J R, WILLIAMS R J P, The biological chemistry of theelements [M]. Oxford University Press: Oxford,1991.
    [2] BERTINI I, GRAY H B, LIPPARD S J, VALETINE J S, Principles ofBioinorganic chemistry [M]. University Science Books: Mill Valley, California,1994.
    [3] LIPPARD S J, BERG J M, Principles of bioinorganic chemistry [M]. UniversityScience Books: Mill Valley, California,1994.
    [4] BERTINI L, SIGEL A, SIGEL H, EDS. Handbook on metalloproteins [M]. MarcelDekker:New York,2001.
    [5] HANZLIK R P, Inorganic aspects of biological and organic chemistry [M].Academic: New York,1976.
    [6] FRAúSTO DA SILVA J J R, WILLIAMS R J P, The biological chemistry of theElements [M]. The Inorganic Chemistry of Life; Clarendon Press: Oxford,1994.
    [7] Theophanides T, Metal ions in biological system [J]. Int J Quantum Chem,1984,26:933-941.
    [8] SHIER D, BUTTLER J, LEWIS R, Hole’s Human Anatomy&Physiology [M].eighthed: McGraw-Hill, Boston,1996.
    [9] BRAY A, LEWS J, WALTER R R, Essential cell biology. an introduction to themolecular biology of the cell [M], Garland Publishing, Inc: New York,1998.
    [10] THEOPHANIDES T, ANASTASSOPOULOU J, ANIFANTAKIS B,ANIFANTAKIS Z A, DOVAS A, Magnesium: current status and newDevelopments [M], Kluwer Academic Publishers, Dordrecht,1997.
    [11] POHLMEIER A, KNOCHE W, Kinetics of the complexation of Al3+withaminoacids, IDA and NTA [J],1996,28:125-136.
    [12] CANDY J M, MCARTHUR F K, OAKLEY A E, ET AL. Aluminiumaccumulation in relation to senile plaque and neurofibrillary tangle formation inthe brains of patients with renal failure [J]. Neurol.Sci.,1992,107:210-218.
    [13] MERI H, BANIN E, ROLL M, ROUSSEAU A, Toxic effects of aluminium onnerve cells and synaptic transmission [J]. Prog.Neurobiol.,1993,40:89-121.
    [14] MACDONALD T L, MARTIN R B, Aluminumion in bionlogical systems [J].Biochem.Sci.,1988,13:9-15.
    [15] MERCERO J M, FOWLER J E, UGALDE J M, Aluminum (III) interactionswith the acidic aminoacid chains [J]. J. Phys.Chem.,1998,102:7006-7012.
    [16] GARMER D R, GRESH N, A comprehensive energy component analysis of theinteraction of hard and soft dications with biological ligands [J].J.Am.Chem.Soc.,1994,116:3556-3567.
    [17] MERCERO J M, FOWLER J E, UGALDE J M, Aluminum (III) Interactionswith the acid derivative amino acid chains [J]. J. Phys. Chem. A,2000,104:7053-7060.
    [18] LIEBMAN A, LOEM G., MCLEAN A D, ET AL. Ab initio SCF studies ofinteractions of ithium(+), sodium(+), beryllium(2+), and magnesium(2+) ionswith dihydrogen phosphate(-)ion: model for cation binding to nucleicacids [J].J.Am.Chem.Soc.,1982,104:691-697.
    [19] FLORIAN J, STRAJBL M, WARSHEL A, Conformational flexibility ofphosphate, phosphonate, and phosphorothioate methyl esters in aqueous solution[J]. J.Am.Chem.Soc.,1998,120:7959-7966.
    [20] GELLERT G, LIPSETT M N, DAVIES DR, Helix formation by guanylic acid [J].Natl.Sci.U.S.A.1962,48:2013-2018.
    [21] ZIMMERMAN S B, COHEN G H, DAVIES D R, X-ray fiber diffraction andmodel-building study of polyguanylic acid andpolyinosinic acid [J]. J.Mol.Biol.,1975,92:181-192.
    [22] TOUGARD P, CHANTOT J F, GUSCHLBAUER W, Nucleoside conformationsX. An X-ray fiber diffraction study of the gels of guanine nuclesides [J]. Biochim.Biophys. Aca.,1973,308:9-16.
    [23] WANG L, PATEL D J, Guanine residues in d(T2AG3) and d(T2G4) formparallel-stranded potassium cation stabilized G-quadruplexes with anti glycosidictorsion angles in solution, Biochemistry,1992,31:8112-8119.
    [24] LAUGHLAN G, MURCHIE E H, NORMAN D G, et al. The high-resolutioncrystal structure of a parallel-stranded guanine tetraplex [J]. Science,1994,265:520-524.
    [25]王新莹,纪鸣,李志果,等.金属离子与DNA相互作用的研究进展[J],分析科学学报,2005(5):557-562.
    [26] HOBZA P, PONER J, Structure, energetics, and dynamics of the nucleic acidbase pairs: nonempirical ab initio calculations [J]. Chem. Rev.,1999,99:3247–3276.
    [27] JI L N, HANG J W, MO T H, An introduction to bioinorganic chemistry [J].Zhongshan University Press,Guangzhou2001, p28.
    [28] JI L N, NICOLAS A C, HELMUT S J, An o-amino group inhibits complexationat N1of purines [J]. Chem. Soc. Dalton Trans.,1991,1367–1375.
    [29] GLUSKER J P, Structural aspects of metal liganding to function groups inproteins [J]. Adv. Protein Chem.,1991,42:1–75.
    [30] WALKER-BONE K, DENNISON E. Epidemiology of ostooporoois,[J]. RheumDis. Clin. North Am.,2001,27(1):1-18.
    [31]高爱民.人体必需的营养元素一钙[J].微量元素与健康研究.2005,22(1):66.
    [32] JOCKUSCH R A, PRICE W D, WILLIAMS E R. Structure of cationizedArginine (ArgM+, M=H+, Li+, Na+, K+, Rb+, and Cs+) in the Gas Phase: FurtherEvidence for Zwitterionic Arginin,[J]. J. Phys. Chem. A,1999,103:92669274.
    [33] CARL D R, COOPER T E, OOMENS J, STEILL J D, ARMENTROUT P B,Infrared multiple photon dissociation spectroscopy of cationized methionine:effects of alkali-metal cation size on gas-phase conformation,[J]. Phys. Chem.Chem. Phys.,2010,12:3384–3398.
    [34] ARMENTROUT P B, ARMENTROUT E I, CLARK A A, COOPER T E,STENNETT E M S S, CARL D R. An experimental and theoretical study ofalkali metal cation interactions with cysteine,[J]. J. Phys. Chem. B,2010,114:3927–3937.
    [35] HEATON A L, BOWMAN V N, OOMENS J, STEILL J D, ARMENTROUT PB, Infrared multiple photon dissociation spectroscopy of cationized asparagine:effects of metal cation size on gas-Phase conformation,[J]. J. Phys. Chem. A,2009,113:5519-5530.
    [36] HEATON A L, ARMENTROUT P B, Experimental and theoretical studies ofpotassium cation interactions with the acidic amino acids and their amidederivatives,[J]. J. Phys. Chem. B,2008,112:12056-12065.
    [37] MARINO T, RUSSO N, TOSCANO M. Interaction of Li+, Na+, and K+with theproline amino acid. Complexation modes, potential energy profiles, and metalion affinities,[J]. J. Phys. Chem. B,2003,107:2588-2594.
    [38] POLFER N C, OOMENS J, DUNBAR R C, IRMPD spectroscopy ofmetal-ion/tryptophan complexes,[J]. Phys. Chem. Chem. Phys.,2006,8:2744-2751.
    [39]DUNBAR R C, STEILL J D, OOMENS J. Cationized phenylalanineconformations characterized by IRMPD and computation for singly and doublycharged ions,[J]. Phys. Chem. Chem. Phys.,2010,12:13383–13393.
    [40] BOJESEN G, BREINDAHL T, ANDERSEN U N, On the sodium and lithiumion affinities of some α-amino acids,[J]. Org. Mass Spectrom,1993,28:1448-1452.
    [41] FENG W Y, GRONERT S, LEBRILLA C B, The lithium cation bindingenergies of gaseous amino acids,[J]. J. Phys. Chem. A,2003,107:405-410.
    [42] ANDERSEN U N, BOJESEN G, The order of lithium ion affinities for the20common α-amino acids. Calculation of energy-well depth of ion-bound dimmers,[J]. J. Chem. Soc.,1997,2:323-327.
    [43] KISH M M, OHANESSIAN G, WESDEMIOTIS C, The Na+affinities ofα-amino acids: side-chain substituent effects,[J]. Int. J. Mass Spectrom,2003,227:509-524.
    [44] CONSTANTINO E, TORTAJADA J, SODUPE M, RODRIGUEZ-SANTIAGOL. Coordination properties of lysine interacting with Co(I) and Co(II). Atheoretical and mass spectrometry study,[J]. J. Phys. Chem. A,2008,112:12385–12392
    [45] SPEZIA R, TOURNOIS G, CARTAILLER T, TORTAJADA J, JEANVOINE Y.Co2+binding cysteine and selenocysteine: a DFT study,[J]. J. Phys. Chem. A,2006,110:9727-9735.
    [46] DUNBAR R C, STEILL J D, POLFER N C, OOMENS J. Dimeric complexes oftryptophan with M2+metal ions,[J]. J. Phys. Chem. A,2009,113:845–851.
    [47]CONSTANTINO E, RIMOLA A, SODUPE M, RODRIGUEZ-SANTIAGO L.Coordination of (Glycyl)nglycine (n=1-3) to Co+and Co2+,[J]. J. Phys. Chem. A,2009,113:8883–8892.
    [48] O’BRIEN J T, PRELL J S, STEILL J D, OOMENS J, WILLIAMS E R.Interactions of mono-and divalent metal ions with aspartic and glutamic acidinvestigated with IR photodissociation spectroscopy and theory,[J]. J. Phys.Chem. A,2008,112:10823-10830.
    [49] BUSH M F, OOMENS J, SAYKALLY R J, WILLIAMS E R. Effects of alkalineearth metal ion complexation on amino acid zwitterion stability: results frominfrared action spectroscopy,[J]. J. Am. Chem. Soc.,2008,130:6463-6471.
    [50] DUNBAR R C, POLFER N C, OOMENS J. Gas-phase zwitterion stabilizationby a metal dication,[J]. J. Am. Chem. Soc.,2007,129:14562-14563.
    [51] CORRAL I, LAMSABHI A M, Mó O, YáNEZ M. Infrared spectra ofcharge-solvated versus salt-bridge conformations of glycine-, serine-, andcysteine-Ca2+complexes,[J]. Int. J. Quantum Chem.,2012,112:2126–2134.
    [52] CORRAL I, Mó O, YáNEZ M, SALPIN J Y, TORTAJADA J, MORAN D,RADOM L. An experimental and theoretical investigation of gas-phase reactionsof Ca2+with glycine,[J]. Chem. Eur. J.,2006,12:6787–6796.
    [53] FLEMING G J, MCGILL P R, IDRISH S, Gas phase interaction of L-prolinewith Be2+, Mg2+and Ca2+ions: a computational study,[J]. J. Phys. Org. Chem.,2007,20:1032–1042.
    [54] DUNBAR R C, HOPKINSOM A C, OOMENS J, SIU C K, SIU K W M,STEILL J D, VERKERK U H, ZHAO J f. Conformation switching in gas-phasecomplexes of histidine with alkaline earth ions,[J]. J. Phys. Chem. B,2009,113:10403-10408.
    [55] SHANKAR R, KOLANDAIVEL P, SENTHILKUMAR L. Interaction studies ofcysteine with Li+, Na+, K+, Be2+, Mg2+, and Ca2+metal cation complexes,[J]. J.Phys. Org. Chem.,2011,24:553–567.
    [56] LAMSABHI A M, Mó O, YáNEZ M. Serine–Ca2+versus serine–Cu2+complexes—A theoretical perspective,[J]. Can. J. Chem.,2010,88:759–768.
    [57] DUNBAR R C, STEILL J D, OOMENS J. Encapsulation of metal cations by thePhePhe ligand: A cation-π ion cage,[J]. J. Am. Chem. Soc.,2011,133:9376-9386.
    [58] DUNBAR R C, STEILL J D, OOMENS J. Conformations and vibrationalspectroscopy of metal-ion/polylalanine complexes,[J]. Int. J. Mass spectrum,2010,297:107–115.
    [59] DUNBAR R C, STEILL J D, POLFER N C, OOMENS J. Peptide length, stericeffects, and ion solvation govern zwitterion stabilization in barium-chelated di-and tripeptides,[J]. J. Phys. Chem. B,2009,113:10553-10554.
    [60] MINO W K, SZCZEPANSKI J, PEARSONA W L, POWELL D H, DUNBAR RC, EYLERA J R, POLFERA N C. Vibrational signatures of zwitterionic andcharge-solvated structures for alkaline earth-tryptophan dimer complexes in thegas phase,[J]. Int. J. Mass spectrom,2010,297:131–138.
    [61] XIANG F, BU Y X, AI H, LI P. The coupling character of Ca2+with glutamic aid:implication for the conformational behavior and transformation of Ca2+-ATPasein transmembrane Ca2+channel,[J]. J. Phys. Chem. B,2004,108:17628-17638.
    [62] FERMI E. Eine statistische Methode zur Bestimmung einiger Eigenschaften desAtoms und ihre Anwendung auf die Theorie des periodischen Systems derElemente [J]. Accad. Lincei,1927;6:602.
    [63] THOMAS L H. The calculation of atomic fields [J]. Camb Proc. Phil. Soc.,1927;23:542-548.
    [64] BORN M, OPPENHEIMER R. Zur Quantentheorie der Molekeln Ann Phsik[J].Quantum Theory of the Molecules Ann. Phys,1927;84:457-4834.
    [65] HOHENBERG P, KOHN W; Inhomogeneous electron gas [J]. Phys. Rev. B,1964;136:864-871.
    [66] HEHRE W J, RADOM L; SCHLEYER P V R; et al. Ab initio molecular orbitaltheory [M]. John Wiley&Sons, Inc.,1986.(b) Mcquarrie D A. Quantumchemistry university science books [M]. Mill Vally. CA,1983.
    [67](a)徐光宪,黎乐民,王德民,量子化学基本原理和从头计算法[M]北京:科学出版社,1985(b)唐敖庆,杨忠志,李前树,量子化学[M]北京:科学出版社,1982.
    [68] CARLO A, VINCENZO B. Toward reliable density functional methods withoutadjustable parameters: The PBE0model [J]. J. Chem. Phys.,1999;110:6158-6170.
    [69] LABANOWSKI J K, ANDZELM J W. Density functional methods in chemistry
    [M]. New York: Springer-Verlag,1991.
    [70] FUKUI K. Variational principles in a chemical reaction [J]. Int. J. Quantum.Chem. Quant. Chem. Symp.1981;15:633-642.
    [71] FUKUI K, Tachibana A, Yamashita K. Toward chemodynamics [J]. Int. J.Quantum. Chem. Quant. Chem. Symp.1981;15:621-632.
    [72] HZHAO H M, SUN C K, ZHANG R C, XI H G, LI Z H. Theoretical study on thereaction mechanism of (CH3)3CO+CO [J]. SCIENCE IN CHINA SERIES B:(CHEMISTRY),2005;1:48.
    [73] SLATER J C, KOSTER G F. Simplified LCAO Method for the Periodic PotentialProblem [J]. Phys. Rev.,1954,94:1498-1524.
    [74] CHADI D J. Atomic and Electronic Structures of Reconstructed Si (100)Surfaces [J]. Phys. Rev. Lett.,1979,43:43-47.
    [75] POPLE J A, BEVERIDGE D L. Approximate Molecular Orbital Theory,McGraw-Hill Book Company,1970.
    [76] ELSTNER M, POREZAG D, JUNGNICKEL G, et al. Self-consistent-chargedensity-functional tight-binding method for simulations of complex materialsproperties [J]. Phys. Rev. B,1998,58:7260-7268.
    [77] BODY R G, MCCLURE D S, CLEMENTI E. SCF Wavefunctions for the NH3Molecule. Potential-Energy Surface and Vibrational Force Constants [J]. J. Chem.Phys.,1968,49:4916-4924.
    [78] GARTON D, SUTCHIFFE B T. Theoretical Chemistry, Vol.1(Ed. R. N. Dixon),The Chemical Society, London,1974.
    [79] PULAY P. Ab initio Calculation of Force Constants and Equilibrium Geometries.I. Theory [J]. Mol. Phys.,1969,17:197-204.
    [80] PULAY P. In: Modern Theoretical Chemistry: Applications of ElectronicStructure Theory,(H. F. Schaefer, III, Ed.), Plenum Press, New York,1977,4:153-185.
    [81] FLETCHER R, POWELL M J D. A Rapidly Convergent Method forMinimization [J]. The Computer Journal,1963,6(2):163-168.
    [82] MURTAGH B A, SARGENT R W H. Computational experience withquadratically convergent minimisation methods [J]. The Computer Journal,1970,13:185-194.
    [83] MCIVER JR. J W, KOMORNICKI A. Rapid geometry optimization forsemi-empirical molecular orbital methods [J]. Chem. Phys. Lett.,1971,10:303-306.
    [84] POPPINGER D. Geometry optimization in ab initio molecular orbital theory [J].Chem. Phys. Lett.,1975,34:332-336.
    [85] PANCUI J.[J]. Collect. Czech. Chem. Commun,1975,40:2726-2732.
    [86] BIOT C, WINTJENS R, ROOMAN M, Stair Motifs at Protein-DNA Interfaces:Nonadditivity of H-bond, stacking, and cation-π interactions,[J]. J. Am. Chem.Soc.,2004,126:6220-6221.
    [87] DEVOS A M, ULTSCH M, KOSSSIAKOFF A A, Human growth hormone andextracellular domain of its receptor: crystal structure of the complex,[J]. Science,1992,255:306-312.
    [88] MCFAIL-ISOM L, SHUI X, WIILIAMS L D. Divalent cations stabilizeunstacked conformations of DNA and RNA by interacting with base π systems,[J]. Biochemistry,1998,37:17105.
    [89] FAST J, HAKANSSON M, MURANYI A, GIPPERT G P, THULIN E,EVENAS J, SVENSSON L A, LINSE S. Symmetrical stabilization of boundCa2+ions in a cooperative pair of EF-hands through hydrogen bonding ofcoordinating water molecules in calbindin D9k,[J]. Biochemistry,2001,40:9887.
    [90] KAIM W, SCHWEDERSKI B. Bioinorganic chemistry: inorganic elements inthe chemistry of life [M], John Wiley&Sons: Chichester, U.K.,1994.
    [91] Science Books: Mill Valley, CA,1994.
    [92] COWAN J A.[M]. Inorganic biochemistry; VCH Publishers: New York,1993.
    [93] HUGHES M N. The inorganic chemistry of Biological Processes [M],2nd ed.;John Wiley&Sons: Chichester, U.K.,1981.
    [94] ELLER K. In Organometallic Ion Chemistry; Freiser, B. S., Ed.; Kluwer:Amsterdam,1996,123-155.
    [95] ETIENNE J C, KHASSANOVA Z, MYAMARD I, COLLERY P,KHASSANOVA L, Metal ions in biology and medicine[M], Eurotext: Paris, Vol.7and previous volumes,2002.
    [96] MSISION R M, ARMENTROUT P B, Experimental and theoretical dissectionof sodium cation/glycine interactions,[J]. J. Phys. Chem. A,2002,106:10350-10362.
    [97] RUAN C, RDOGERS M T, Cation-π Interactions: Structures and energetics ofcomplexation of Na+and K+with the aromatic amino acids, phenylalanine,tyrosine, and tryptophan,[J]. J. Am. Chem. Soc.,2004,126:14600-14610.
    [98] YE S J, CLARK A A, ARMENTROUT P B, Experimental and theoreticalinvestigation of alkali metal cation interactions with hydroxyl side-chain aminoacids,[J]. J. Phys. Chem. B,2008,112:10291-10302.
    [99] A L HEATON, MOISION R M, ARMENTROUT P B, Experimental andtheoretical studies of sodium cation interactions with the acidic amino acids andtheir amide derivatives,[J]. J. Phys. Chem. A,2008,112:3319-3327.
    [100] KAPOTA C, LEMAIRE J, MAITRE P, OHANESSIAN G. Vibrationalsignature of charge solvation vs salt bridge isomers of sodiated amino acids inthe gas phase,[J]. J. Am. Chem. Soc.,2004,126:1836-1842.
    [101] ARMENTROUT P B, RODGERS M T, OOMENS J, STEILL J D, Infraredmultiphoton dissociation spectroscopy of cationized serine: effects ofalkali-metal cation size on gas-Phase conformation,[J]. J. Phys. Chem. A,2008,112:2248-2257.
    [102] FORBES M W, Bush M F, POLFER N C, OOMENS J, DUNBAR R C,WILLIAMS E R, JOCKUSCH R A, Infrared spectroscopy of arginine cationcomplexes: direct observation of gas-phase wwitterions,[J]. J. Phys. Chem. A,2007,111:11759-11770.
    [103] POLFER N C, OOMENS J, MOORE D T, HELDEN G von, G MEIJER,DUNBAR R C, Infrared spectroscopy of phenylalanine Ag(I) and Zn(II)complexes in the gas phase,[J]. J. Am. Chem. Soc.,2006,128:517-525.
    [104] HEATON A L, BOWMAN V N, OOMENS J, STEILL J D, ARMENTROUT PB, Infrared multiple photon dissociation spectroscopy of cationized asparagine:effects of metal cation size on gas-Phase conformation,[J]. J. Phys. Chem. A,2009,113:5519-5530.
    [105] RODGERS M T, ARMENTROUT P B, OOMENS J, STEILL J D,Infraredmultiphoton dissociation spectroscopy of cationized threonine: effects ofalkali-metal cation size on Gas-Phase conformation,[J], J. Phys. Chem. A,2008,112:2258-2267.
    [106] CITIR M, HIOTON C S, OOMENS J, STEILL J D, ARMENTROUT P B,Infrared multiple photon dissociation spectroscopy of cationized histidine:effects of metal cation size on gas-phase conformation,[J]. J. Phys. Chem. A,2012,116:1532-1541.
    [107] POLFER N C, PAIZS B, SNOEK L C, COMPAGNON I, SUHAI S, MEIJERG, HELDEN G. von, OOMENS J, Infrared fingerprint spectroscopy andtheoretical studies of potassium ion tagged amino acids and peptides in the gasphase,[J]. J. Am. Chem. Soc.,2005,127:8571-8579.
    [108] MARKSTEINER M, HASLINGER P, ULBRICHT H, M SCLAFNAI,OBERHOFER H, DELLAGO C, ARNDT M, Gas-phase formation of largeneutral alkaline-earth metal tryptophan complexes,[J]. J. Am. Soc. MassSpectrom,2008,19:1021–1026.
    [109] FRISCH M J, TRUCKS G W, SCHLEGEL H B, SCUSERIA G E, ROBB M A,CHEESEMAN J R, MONTGOMERY J A, VREVEN T, KUDIN K N, et al.Gaussian03, revision A.1; Gaussian, Inc.: Wallingford, CT,2004.
    [110] C Z WANG, W C Lu, Y X Yao, Li J, YIP S, HO K M. Tight-bindingHamiltonian from first-principles calculations,[J]. Sci. Model Simul.,2008,15:81-95.
    [111] SLATER J C, KOSTER G F. Simplified LCAO method for the periodicpotential problem,[J]. Phys. Rev.,1954,94:1498.
    [112] RODGERS M T, ARMENTROUT P B. A critical evaluation of theexperimental and theoretical determination of lithium cation affinities,[J]. Int. J.Mass Spectrom.,2007,267:167–182.
    [113] REDDY A S, SASTRY G N. Cation [M=H+, Li+, Na+, K+, Ca2+, Mg2+, NH4+,and NMe4+] Interactions with the Aromatic Motifs of Naturally Occurring AminoAcids: A Theoretical Study,[J]. J. Phys. Chem. A,2005,109:8893-8903.
    [114] Zhu W L, LUO X M, CHUM M P, Tan X J, SHEN J H, Gu J D, CHEN K X,JIANG H L. The multiplicity, strength, and nature of the interaction ofnucleobases with alkaline and alkaline earth metal cations: a density functionaltheory investigation,[J]. J. Phys. Chem. A,2004,108:4008-4018.
    [115] RAISZ L G. Effect of Phosphate, Calcium and Magnesium on Bone Resorptionand Hormonal Responses in Tissue Culture [J]. Endocrinologist,1969,85:446.
    [116] SABOURY A A. Stability, Activity and Binding Properties Study of α-amylase uponInteraction with Ca2+and Co2+,[J]. Bratislava,2002,11:221.
    [117] CAILLIEZ F, LAVERY R. Cadherin Mechanics and Complexation: TheImportance of Calcium Binding,[J]. Biophys. J.,2005,89:3895.
    [118] STEMMER P M, KLEE C B. Dual Calcium Ion Regulation of Calcineurin byCalmodulin and Calcineurin B,[J]. Biochemistry,1994,33:6859.
    [119] SUZUKI K, HATA S, KAWABATA Y, SORIMACHI H. Structure, Activation,and Biology of Calpain,[J]. Diabetes,2004,53: S12
    [120] QIN P H, Lü W C, QIN W, ZHANG W, XIE H. Theoretical Study on theComplexes of Calcium Ion with Amino Acids,[J]. Chem. Res. ChineseUniversities, in press
    [121] J WOUTERS. Cation-r (Na+-Trp) interactions in the crystal structure oftetragonal lysozyme,[J]. Protein Sci.,1998,7:2472-2475.
    [122] CRAMER C J, TRUHLAR, D G. Implicit Solvation Models: Equilibria,Structure, Spectra, and Dynamics,[J]. Chem. Re.,1999,99:2161-2200.
    [123] TOMASI J. Thirty years of continuum solvation chemistry: a review, andprospects for the near future,[J]. Theor. Chem. Acc.,2004,112:184-203.
    [124] TOMASI J, MENNUCCI B, CAMMI R. Quantum mechanical continuumsolvation models,[J]. Chem. Re.,2005,105:2999-3093.
    [125] OROZCO M, LUQUE F J. Theoretical methods for the description of thesolvent effect in biomolecular systems,[J]. Chem. Re.,2000,100:4187-4226.
    [126] TOMASI J, PERSICO M. Molecular interactions in solution: An overview ofmethods based on continuous distributions of the solvent,[J]. Chem. Re.,1994,94:2027-2094.
    [127] CASIDA M E, JAMORASKI C, CASIDA K C, D R SALAHUB. Molecularexcitation energies to high-lying bound states from time-dependentdensity-functional response theory: Characterization and correction of thetime-dependent local density approximation ionization threshold,[J]. J.Chem.Phys.,1998,108:4439-4449.
    [128] ADAMO C, SCUSERIA G E, Accurate excitation energies fromtime-dependent density functional theory: Assessing the PBE0model,[J]. J.Chem. Phys.,1999,111:2889-2899.
    [129] WIBERG K B, STRATMANN R E, FRISCH M J. A time-dependent densityfunctional theory study of the electronically excited states of formaldehyde,acetaldehyde and acetone,[J]. Chem. Phys. Lett.,1998,297:60-64.
    [130] TOZER D J, HANDY N C. Improving virtual Kohn–Sham orbitals andeigenvalues: Application to excitation energies and static polarizabilities,[J]. J.Chem. Phys.,1999,109:10180-10189.
    [131] SHUKLA M K, LESZCZYNSKI J. TDDFT investigation on nucleic acid bases:comparison with experiments and standard approach,[J]. J. Comput.Chem.,2004,25:768-778.
    [132] STRANTMANN R E, SCUSERIA G E, FRISH M J. An efficientimplementation of time-dependent density-functional theory for the calculationof excitation energies of large molecules,[J]. J. Chem. Phys.,1998,109:8218-8224.
    [133] Zhu W L, LUO X M, Chum M P, Tan X J, Shen JH, Gu J D, Chen K X, Jiang HL. The Multiplicity, Strength, and Nature of the Interaction of Nucleobases withAlkaline and Alkaline Earth Metal Cations: A Density Functional TheoryInvestigation,[J]. J. Phys. Chem. A,2004,108:4008-4018.
    [134] EINSPAHR H, BUGG C E, The geometry of calcium carboxylate interactionsin crystalline complexes,[J]. Acta Crystallogr.,1981, B37:1044-1052.
    [135] EINSPAHR H, BUGG C E, The geometry of calcium-water interactions incrystalline hydrates,[J]. Acta Crystallogr.,1980, B36:264-271.
    [136] MARINO T, TOSCANO M, RUSSO N, GRAND A. Structural and ElectronicCharacterization of the Complexes Obtained by the Interaction between Bare andHydrated First-Row Transition-Metal Ions (Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+)and Glycine [J]. J. Phys. Chem. B,2006,110:24666.
    [137] ZHU W L, TAN X J, SHEN J H, LUO X M, CHENG F, MOK P C, JI R Y,CHEN K X, JIANG H L, Differentiation of cation-π bonding from cation-πintermolecular interactions: A quantum chemistry study using density-functionaltheory and morokuma decomposition methods,[J]. J. Phys. Chem. A,2003,107:2296-2303.
    [138] FODOR S P A, COPELAND R A, GRYGN C A, SPRIO T G, Deep-ultravioletraman excitation profiles and vibronic scattering mechanisms of phenylalanine,tyrosine, and tryptophan,[J]. J. Am. Chem. Soc.,1989,111:5509-5518.
    [139] FRICKE H, GERLACH A, UNTERBERG C, RZEPECKI P, SCHRADER T,GERHARDS M. Structure of the tripeptide model Ac-Val-Tyr(Me)-NHMe andits cluster with water investigated by IR/UV double resonance spectroscopy,[J].Phys. Chem. Chem. Phys.,2004,6:4636-4641.
    [140] ZWIER T S. Laser spectroscopy of jet-cooled biomolecules and theirwater-containing clusters: water bridges and molecular conformation,[J]. J. Phys.Chem. A,2001,105:8827-8839.
    [141] SIMONS J P, Getting into shape? The interaction of molecules of biologicalinterest with molecules of water: from simplicity to complexity,[J]. C. R.Chimie.,2003,6:17-31.
    [142] ROBERTSON E G, HOCKRIDGE M R, JELFS P D, SIMONS J P, IR-UVion-depletion and fluorescence spectroscopy of2-phenylacetamide clusters:hydration of a primary amide,[J] Phys. Chem. Chem. Phys.,2001,3:786-795.
    [143] P CARCABAL, KROEMER R T, SNOEK L C, SIMONS J P, BAKKER J M, ICOMPAGNON, MDIJER G, HELDEN G VON. Hydrated complexes oftryptophan: ion dip infrared spectroscopy in the ‘molecular fingerprint’ region,100–2000cm1,[J]. Phys. Chem. Chem. Phys.,2004,6:4546-4552.
    [144] L C SNOEK, KROEMER R T, SIMONS J P, A spectroscopic andcomputational exploration of tryptophan–water cluster structures in the gas phase,[J]. Phys. Chem. Chem. Phys.,2002,4:2130-2139.
    [145] NAGAR B, OVERDUIN M, IKURA M, RINI J M, Structural basis ofcalcium-induced E-cadherin rigidification and dimerization,[J]. Nature,1996,380:360-364.
    [146] TOLOSA S, HIDALGO A, SANSON J A, Amino acid tautomerizationreactions in aqueous solution via concerted and assisted mechanisms using freeenergy curves from MD simulation,[J]. J. Phys. Chem. B,2012,116:1303313044.
    [147] LEUNGA K, REMPE S B, Ab initio molecular dynamics study of glycineintramolecular proton transfer in water,[J]. J. Chem. Phys.,2005,122:184506-1-12.
    [148] TORTONDA F R, PASCUAL-AHUIR J L, SILLA E, I. Tunón, Why is glycinea zwitterion in aqueous solution? A theoretical study of solvent stabilisingfactors,[J]. Chem. Phys. Lett.,1996,260:21-26.
    [149] FEDOTOVA M V, KRUCHININ S E,1D-RISM study of glycine zwitterionhydration and ion-molecular complex formation in aqueous NaCl solutions,[J]. J.Mol. Liq.,2012,169:1–7.
    [150] CAMPOA M G, Molecular dynamics simulation of glycine zwitterion inaqueous solution,[J]. J. Chem. Phys.,2006,125:114511-1-7.!
    [151] HAMM L M, WALLACE A F, DOV P M, Molecular dynamics of ionhydration in the presence of small carboxylated molecules and implications forcalcification,[J]. J. Phys. Chem. B,2010,114:10488-10495.
    [152] JALILEHVAND F, SPANGBERG D, LINDQVIST-REIS P, HERMANSSON K,PERSSON I, SANDSTROM M, Hydration of the calcium ion. An EXAFS,large-angle X-ray scattering, and molecular dynamics simulation study,[J]. J.Am. Chem. Soc.,2001,123:431-441.
    [153] BAKO I, HUTTER J, PALINKAS G, Car–Parrinello molecular dynamicssimulation of the hydrated calcium ion,[J]. J. Chem. Phys.,2002,117:9838-9843.
    [154] FJLTON J L, HEALD S M, Understanding the effects of concentration on thesolvation structure of Ca2+in aqueous solution. I: The perspective on localstructure from EXAFS and XANES,[J]. J. Phys. Chem. A,2003,107:4688-4696.
    [155] TONGRAAR A, R LIEDL K, RODE B M, Solvation of Ca2+in water studiedby born-oppenheimer ab initio QM/MM dynamics,[J.]J. Phys. Chem. A,1997,101:6299-6309.
    [156] NAOR M M, NOSTRAND K V, DELLAGO C, Car–Parrinello moleculardynamics simulation of the calcium ion in liquid water,[J]. Chem, Phys. Lett.,2003,369:159–164.
    [157] LIGHTSTONE F C, E SCHWEGLER, ALLESCH M, GYGI F, GALLI G, Afirst-principles molecular dynamics study of calcium in water,[J]. Chem. Phys.Chem.,2005,6:1745–1749.
    [158] KATZ A K, GLUSKER J P, BEEBE S A, BOCK C W, Calcium ioncoordination: A comparison with that of beryllium, magnesium, and zinc,[J]. J.Am. Chem. Soc.,1996,118:5752-5763.
    [159] WINCEL H, Hydration energies of sodiated amino acids from gas-phaseequilibria determinations,[J]. J. Phys. Chem. A,2007,111:5784-5791.
    [160] RIMOLA A, CONSTANTINO E, SANTIAGO L R, SODUPE M, Bindingproperties of Cu+/2+-(glycyl)nglycine complexes (n=1-3),[J]. J. Phys. Chem. A,2008,112:3444-3453.
    [161] PRELL J S, DEMIREVA M, OOMENS J, WILLIAMS E R, Role of sequencein salt-bridge formation for alkali metal cationized glyarg and arggly investigatedwith IRMPD spectroscopy and theory,[J]. J. Am. Chem. Soc.,2009,131:1232–1242.
    [162] KIM J-Y, IM S, Kim B, DESFRANCOIS C, S LEE, Structures and energeticsof Gly–(H2O)5: Thermodynamic and kinetic stabilities,[J]. Chem. Phys. Lett.,2008,451:198-203.
    [163] MICHAUX C, WOUTERS J, JACQUEMIN D, PPERPETE-CHEM E A, Atheoretical investigation of the hydrated glycine cation energetics and structures,[J]. Chem. Phys. Lett.,2007,445:57-61.
    [164] LARRUCEA J, REZABAL E, MARINO T, RUSSO N, UGALDE J M, Abinitio study of microsolvated Al3+-aromatic amino acid complexes,[J]. J. Phys.Chem. B,2010,114:9017-9022.
    [165] H. Ai, Y. Bu, K. Han, Glycine-Zn+/Zn2+and their hydrates: On the number ofwater molecules necessary to stabilize the switterionic glycine-Zn+/Zn2+over thenonzwitterionic ones, J. Chem. Phys.118(2003)10973-10985.
    [166] BURT M B, DECKER S G A, ATKINS C G, ROWSELL M, A PEREMANS,FRIDGEN T D, Structures of bare and hydrated [Pb(aminoacid-H)]+complexesusing infrared multiple photon dissociation spectroscopy,[J]. J. Phys. Chem. B,2011,115:11506-11518.
    [167] JOCKUSCH R A, LEMOFF A S, WILLIAMS E R, Effect of metal ion andwater coordination on the structure of a gas-phase amino acid,[J]. J. Am. Chem.Soc.,2001,123:12255-12265.
    [168] REMKO M, RALOVA S, Effect of water coordination on competitionbetween π and non-π cation binding sites in aromatic amino acids:L-phenylalanine, L-tyrosine, and L-tryptophan Li+, Na+, and K+complexes,[J]. J.Biol. Inorg. Chem.,2012,17:621-630.
    [169] REMKO M, D FITZ, RODE B M, Effect of metal ions (Li+, Na+, K+, Mg2+,Ca2+, Ni2+, Cu2+, and Zn2+) and water coordination on the structure andproperties of L-arginine and zwitterionic L-arginin,[J]. J. Phys. Chem. A,2008,112:7652-7661.
    [170] REMKO M, FITZ D, RODE B M, Effect of metal ions (Li+, Na+, K+, Mg2+,Ca2+, Ni2+, Cu2+and Zn2+) and water coordination on the structure and propertiesof L-histidine and zwitterionic L-histidine,[J]. Amino Acids,2010,39:1309-1319.
    [171] KAMARIOTIS A, BOYARKIN O V, MERCIER S R, BECK R D, BUSH M F,WILLIAMS E R, RIZZO T R, Infrared spectroscopy of hydrated amino acids inthe gas phase: protonated and lithiated valine,[J]. J. Am. Chem. Soc.,2006,128:905-916.
    [172] LEMOFF A S, WILLIAMS E R, Binding energies of water to lithiated valine:formation of solution-phase structure in vacuo,[J]. J. Am. Soc. Mass. Spectrom,2004,15:1014-1024.
    [173] XU M, DOU X, BU Y X, ZHANG Y, Density functional theory calculations forthe microsolvation of M3+-zwitterionic glycine complexes (M3+=Al3+, Ga3+, In3+),[J]. Chem. Phys. Lett.,2012,537:101-106.
    [174] REMKO M, FITZ D, BROER R, RODE B M, Effect of metal ions (Ni2+, Cu2+and Zn2+) and water coordination on the structure of L-phenylalanine, L-tyrosine,L-tryptophan and their zwitterionic forms,[J]. J. Mol. Model.,2011,17:3117-3128.
    [175] REMKO M, RODE B M, Effect of metal ions (Li+, Na+, K+, Mg2+, Ca2+, Ni2+,Cu2+, and Zn2+) and water coordination on the structure of glycine andzwitterionic glycine,[J]. J. Phys. Chem. A,2006,110:1960-1967.
    [176] REED A E, WEINSTOCK R B, WEINHOLD F A, Natural population analysis,[J]. J. Chem. Phys.,1985,83:735-746.
    [177] A E REED, WEINHOLD F A, Natural localized molecular orbitals,[J]. J.Chem. Phys.,1985,83:1736-1740.
    [178] GLENDENING E D, REED A E, CARPEDNTER J E, WEINHOLD F A, TheNBO program, Version3.1.
    [179] OLSZTYNSKA-JANUS S, SZYMBORSKA K, KOMOROWSKA M,LIPINSKI J, Conformational changes of L-phenylalanine–Nearinfrared-induced mechanism of dimerization: B3LYP studies,[J]. J. Mol. Struct.THEOCHEM,2009,911:1-7.
    [180] COSTANZO F, VALLE R G D, BARONE V, MD simulation of theNa+-phenylalanine complex in water: competition between cation-π interactionand aqueous solvation,[J]. J. Phys. Chem. B,2005,109:23016-23032.
    [181] A L SOBOLEWSKI, D SHEMESH, W DOMCKE, Computational studies ofthe photophysics of neutral and zwitterionic amino acids in an aqueousenvironment: tyrosine-(H2O)2and tryptophan-(H2O)2clusters,[J]. J. Phys. Chem.A,2009,113:542-550.
    [182] BUSH M F, OOMENS J, SAYKALLY R J, WILLIAMS E R. Effects ofalkaline earth metal ion complexation on amino acid zwitterion stability: resultsfrom infrared action spectroscopy,[J]. J. Am. Chem. Soc.,2008,130:6463-6471.
    [183] R JERNIGAN, G RAGHUNATHAN, I BAHAR, Characterization ofinteractions and metal ion binding sites in proteins,[J]. Curr. Opin. Struct. Biol.,1994,4:256-263.
    [184] DUDEV T, LIN Y, DUDEV M, Lim C, First second shell interactions in metalbinding sites in proteins: A PDB survey and DFT/CDM calculations,[J]. J. Am.Chem. Soc.,2003,125:3168-3180.
    [185] Lei X L, PAN B C, Structures, stability, vibration entropy and IR spectra ofhydrated calcium ion clusters [Ca(H2O)n]2+(n=1-20,27): A systematicinvestigation by density functional theory,[J]. J. Phys. Chem. A,2010,114:7595-7603.
    [186] MICHAUX C, WOUTERS J, Microhydration of protonated glycine: An abinitio family tree,[J]. J. Phys. Chem. B,2008,112:2430-2438.
    [187] SCHWENK C F, LOEFFLER H H, RODE B M, Molecular dynamics
    simulations of Ca2+in water: Comparison of a classical simulation including
    three-body corrections and Born–Oppenheimer ab initio and density functional
    theory quantum mechanical/molecular mechanics simulations,[J]. J. Chem.
    Phys.,2001,115:10808-10813.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700