稀土置换型纳米Bi_2Te_3基热电材料的溶剂热合成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热电材料是一种能够实现热能和电能直接相互转换的功能材料,在温差发电和热电制冷等领域具有重要的应用价值和广泛的应用前景。Bi_2Te_3基化合物的最高无量纲热电优值ZT接近于1,是目前室温附近应用的最好的热电材料。制备纳米和低维的热电材料有助于提高材料的热电性能。
     本文采用溶剂热/水热合成方法,以BiCl3、Te粉或Te化物以及稀土元素化合物为反应前驱体,采用不同的合成工艺路线,合成了多种含稀土元素的Bi_2Te_3基合金纳米粉及Bi_2Te_3纳米粉,应用XRD、TEM、SEM等手段对合成粉末进行了物相成分和微观形貌结构的分析;实验研究和具体讨论了Bi_2Te_3水热合成过程中的化学反应机理和形核长大机制。最后采用真空热压技术,对部分Bi_2Te_3基合金纳米粉末进行热压,并测试了其热电性能。本文主要取得以下研究结果。
     1.采用溶剂热合成方法制备了颗粒尺寸在30nm左右的LaxBi_2_xTe3(x≤1)热电材料纳米粉末。并研究了反应温度和反应时间对产物成分和微观结构的影响,研究表明,含稀土元素La的Bi_2Te_3化合物与标准Bi_2Te_3有类似的晶体结构和晶胞常数,晶相La的含量随合成温度升高而明显提高,而反应时间对La_xBi_4Te_6中La含量无显著影响,并初步判断La在Bi_2Te_3相晶格中占据Bi原子的位置。合成产物的几何形态与Bi_2Te_3基化合物的层状晶体结构有关,同时与晶体生长中温度对离子扩散速度的影响有关。在较低温度下合成的产物以不规则多面体纳米颗粒为主,随温度升高合成产物形貌以弯曲的薄片状为主,并存在少量纳米管。
     2.采用水热合成方法,在添加适当含量EDTA和强碱性条件(添加NaOH)下,制备了La_xBi_2_xSe_yTe_3_y四元合金,并主要研究了合成过程中强碱性条件和添加EDTA对反应产物的影响,研究表明,添加足够量的碱性添加剂,是合成单相Bi_2Te_3基合金的必要条件;添加适量EDTA使得溶液中纳米薄片“自组装”连接形成一种纳米片状晶相互平行排列独特的花瓣状组织。但是过量EDTA的加入将抑制合成反应进行,形成颗粒状Bi和杆状TeSe固溶体。
     3.采用水热法,分别合成制备了含稀土元素La的Bi_2Te_3基三元合金和四元合金(另外掺Se)化合物。并主要研究了产物的晶体结构特征和热电性能参数随温度的变化。研究发现,Bi_2Te_3基三元或四元合金其晶体结构同标准的Bi_2Te_3基本相似,均为六面体层状结构,稀土元素La在晶胞中的占位是随机取代了Bi_2Te_3晶格中6c位的Bi原子,四元合金中Se原子取代大部分3a位和少部分6c位的Te原子。根据占位数对其合成产物实际成分进行计算,认为与设计含量基本吻合。通过对Bi_2Te_3基三元或四元合金试样热电性能的分析,发现Bi_2Te_3基三元和四元合金热电材料均为n型半导体,说明置换Bi
Thermoelectric (TE) materials are a kind of semiconductor functional materials, which can be used to convert directly heat energy to electricity or reversely. They are of interest for applications in TE cooling devices and power generators. Bi_2Te_3 and its alloys, which have the highest dimensionless figure of merit close to unity, are known as the best TE materials currently available near room temperature. The figure of merit of TE materials could be significantly improved if the materials were nanostructured, since the thermal conductivity could be decreased more significantly than the electric conductivity of the materials.In the present work, various Bi_2Te_3 based nanopowders have been solvothermally and hydrothermally synthesized from the precursors LaCl_3, BiCl_3 and Te powder or telluride via various chemical routes. The structures and morphologies of the nanopowders were investigated by XRD, SEM and TEM. Chemical reactions, nucleation and crystal growth mechanism during the synthesis of Bi_2Te_3 have been experimentally investigated and detailedly discussed. The bulk materials of Bi_2Te_3 based nanopowders have been prepared by vacuum hot pressing. The TE transport properties of hot pressed samples have been measured. Some important results of the present work are listed as fellows.1. Rare-earth element contained thermoelectric La_xBi_(2-x)Te_3 (x ≤1) nano-sized powders about 30nm have been prepared by solvothermal synthesis using ethanol as the solvent. The temperature and time effect of solvothermal synthesis on the particle sizes and compositions of La_xBi_(2-x)Te_3 nanopowders has been investigated. It was found that the ternary compounds La_xBi_(2-x)Te_3 have the same crystal structure and similar lattice parameters as those of binary Bi_2Te_3. The lanthanum contents in La_xBi_(2-x)Te_3 increase with the synthesis temperature and are independent of the reaction time. This indicates that La atoms would be seated at the substitutional positions of Bi in the Bi_2Te_3 crystal cells.The structures and morphologies of the powerd are related to the layered crystal structure of Bi_2Te_3 based compounds and the temperature effect on the ionic diffusion in the crystal growth. The powders synthesized at low temperatures have an irregular polyhedral morphology, while those synthesized at high temperatures tend to form thin sheets and nanotubes.2. Nanostructured monophase La_xBi_(2-x)Se_yTe_(3-y) alloys have been synthesized with a hydrothermal route, NaOH and ethylenediaminetetraacetic disodium salt (EDTA) as the additives. The NaOH and EDTA effects on the particle sizes and compositions of La_xBi_(2-x)Se_yTe_(3-y), nanopowders during the hydrothermal synthesis have been investigated. It was found that an alkaline additive is necessary for the synthesis of a monophase Bi_2Te_3 based alloys. EDTA acts as a soft template for the lateral growth of the nano-sheets and the self-assembly of the petal-like structure by the parallel side-by-side arrangement of the nano-sheets. It was found, however, that the synthesis reaction could be hindered by excessive EDTA.3. La contained Bi_2Te_3 TE ternary and quarternary compounds have been prepared via the hydrothermal synthesis using BiCl_3, LaCl_3, tellurium and selenium powders as the precursors. The crystal structures and TE properties of Bi_2Te_3 alloy compounds have been
    studied. XRD Rietveld refinement results indicated that the ternary and quarternary compounds have the same crystal structure and similar lattice parameters as those of binary Bi2Te3. Se and La atoms would respectively be seated at substitutional positions of Te (3a and 6c positions) and Bi (6c position) in Bi2Te3 crystal cells. It was found that both ternary and quarternary Bi2Te3 compounds are n-type, suggesting La elements are donors in the semiconductors. The quarternary Bi2Te3 compounds exhibit higher electrical conductivities and Seebeck coefficients than the ternary Bi2Te3 compounds, but its high electrical conductivities and relative density result in the high thermal conductivities. The maximum dimensionless figures of merit of 0.58 and 0.51 have been obtained for ternary and quarternary Bi2Te3 compounds - samples at about 450K.4. Nanostructured thermoelectric Bi2Te3 powders with various morphologies were hydrothermally synthesized in the temperature range between 120°C and 250°C, or using different routes and precursors. The effects of the different conditions of hydrothermal synthesis on the polyhedral morphology and composition of Bi2Te3 nanopowders have been investigated. It was found that the sizes of the polyhedral particles increase with the increase in the synthesis temperature due to particle coarsening, but little growth could be observed for the nanorods or nanosheets, suggesting that the latter originate from the fragments fallen from the tellurium precursor. The formation of various morphologies of Bi2Te3 nanopowders was discussed. Various nucleation mechanisms, including molecule growth model, continuous nucleation model and nucleus saturation model, have been proposed for the different synthesis conditions. It was experimentally found that lateral growth, including "surface-nucleation lateral growth", "spirally lateral growth" and "twin-crystal lateral growth", dominates the Bi2Te3 crystal growth during the hydrothermal synthesis due to the anisotropic lattice structure.
引文
[1] B.C. Sales. Thermoelectric materials - Smaller is cooler. Science, 2002, 295(5558): 1248-1249.
    [2] F. J. DiSalvo. Thermoelectric cooling and power generation. Science, 1999, 285(5428): 703-706.
    [3] M. V. Vedemikov, E. K. Iordanishvili and A.F.Ioffe. Origin of modem semiconductor thermoelectric energy coversion. Proc. 17th Int. Conf on Thermoelectrics. IEEE, 1998: 37-42.
    [4] R. Fettig. A view to recent developments in thermoelectric sensors. Proc.15th lnt. Conf. on Thermoelectrics. IEEE, 1996:315-320.
    [5] 张建中.国外温差电致冷技术发展概况.电源技术,1992,3:41-47.
    [6] 高敏.温差电致冷研究进展.红外技术,1990,12(4):31-35.
    [7] 张景韶,李绍莲,姜烈汉,高敏.温差电器件低温余热发电的实验研究.新能源,1996,18(6):11-16.
    [8] T. Kajikawa. Status and future prospects on the development of thermoelectric power generation systems utilizing combusion heat from municipal solid waste. Proc. 16th Int. Conf. on Thermoelectrics, IEEE, 1997: 28-36.
    [9] 苗俊杰,黄蕙,邹昌钦.中国能源战略走向.瞭望,2004,15:29-31.
    [10] D. Darling, The Complete Book of Spaceflight: From Apollo I to Zero Gravity. 2003, New York: John Wiley & Sons.
    [11] 高敏,张景韶,D.M. ROWE,温差电转换及其应用.1996,北京:兵器工业出版社.
    [12] 刘恩科,朱秉升,罗晋生,半导体物理学.1994,北京:国防工业出版社.286-298.
    [13] G. S. Nolas, G. A. Slack, J. L. Cohn and S. B. Schujman. The next generation of thermoelectric materials. Proc. 17th Int. Conf on Thermoelectrics. 1998: IEEE.
    [14] C. M. Bhandari and D. M. Rowe. The effect of phonoh-grain boundary scattering, doping and alloying on the lattice thermal conductivity of lead telluride. J. Appl. Phys., 1983, 16(4): 75-77.
    [15] D. M. Rowe and C. M. Bhandari. Lattice thermal conductivity of small grain size PbSnTe and PbGeTe thermoelectric material. Appl. Phys. Lett., 1985, 47(3): 255-257.
    [16] G.A. Slack, CRC Handbook of Thermoelectrics, ed. E. D. M. Rowe. 1995: CRC Press, Boca Raton, FL. 47.
    [17] G. S. Nolas, G. Slack, D. T. Morelli, T. M. Tritt and A. C. Ehrlich. The effect of rare-earth filling on the lattice thermal conducting of Skutterudite. J. Appl. Phys., 1996, 79(8): 4002-4008.
    [18] G. S. Nolas, J. L. Cohn, G. A. Slack and S. B. Schujman. Semiconducting Ge cla-thrates: Promising candidates for thermoelectric applications. Appl. Phys. Lett., 1998, 73(2): 178-180.
    [19] D. M. Rowe, CRC Handbook of Thermoelectric. D. M. Rowe, Ed. ed. 1995: CRC Press, Boca Raton, FL.
    [20] B. Lenoir, A. Dauscher, M. Cassart, Y. I. Ravich and H. Scherrer. Effect of antimony content on the thermoelectric figure of merit of Bil-xSbx alloys. J. Phys. Chem. Solids, 1998, 59(1): 129-134.
    [21] J. Yang, T. Aizawa, A. Yarnamoto and T. Ohta. Thermoelectric properties of p-type (Bi_2Te_3)_(x)(Sb_Te_3)_(1-x) prepared via bulk mechanical alloying and hot pressing. Journal of Alloys and Compounds, 2000, 309(1-2): 225-228.
    [22] J. Y. Yang, T. Aizawa, A. Yamamoto and T. Ohta. Thermoelectric properties of n-type (Bi_2Se_3)_(x)(Bi_2Te_3)_(1-x) prepared by bulk mechanical alloying and hot pressing. Journal of Alloys and Compounds, 2000, 312(1-2): 326-330.
    [23] J. Seo, K. Park and C. Lee. Fabrication and Thermoelectric Properties of n-Type SbI_3-Doped Bi_2Te_(2.85)Se_(0.15) Compounds by Hot Extrusion. Mater. Res. Bull., 1998, 33(4): 553-559.
    [24] P. Pierrat, A. Dauscher, B. Lenoir, R. MartinLopez and H. Scherrer. Preparation of the Bi_8Sb_32Te_60 solid solution by mechanical alloying. Journal of Materials Science, 1997, 32(14): 3653-3657.
    [25] Y. Noda, M. Orihashi and I. A. Nishida. Preparation and thermoelectric properties of Ag or K doped PbTe. Mater. Trans., JIM, 1998, 39(5): 602-605.
    [26] J. L. Harringa and B. A. Cook. Application of hot isostatic pressing for consolidation of n-type silicon-germanium alloys prepared by mechanical alloying. Mater. Sci. Eng: B, 1999, 60(2): 137-142.
    [27] D. M. Rowe and N. Savvides. The reversal of precipitation in heavily doped silicon-germanium alloys. J. Appl. Phys., 1979, 12: 1613-1619.
    [28] J. R Dismukes, L. Ekstrom, E. F. Steigmeier, I. Kudman and D. S. Beers. Thermal and Electrical Properties of Heavily Doped Ge-Si Alloys up to 1300K. J. Appl. Phys., 1964, 35(10): 2899-2907.
    [29] C. B. Vining. A model for the high-temperature transport properties of heavily doped n-type silicon-germanium alloys. J. Appl. Phys., 1991, 69(1): 331-341.
    [30] W. M. Yim and A. Amith. Bi-Sb alloys for magneto-thermoelectric and thermoelectric cooling. Solid-state Electrics., 1972, 15(10): 1141-1165.
    [31] W. M. Yim and F. D. Rosi. Compound Tellurides and Their Alloys for Peltier Cooling-A Review. Solid-state Electrics. 1972, 15(15): 1121.
    [32] R. Ionesou, J. Jaklovszky, N. Nistor and A. Chiculita. Grain Size Effects on Thermal electrical Properties of Sintered Solid Solutions Based on Bi_2Te_3. Phys. Star. Sol., 1975, 27(27): 27-33.
    [33] D. B. Hyun, J. S. Hwang, T. S. Oh, J. D. Shim and N. V. Kolomoets. Electrical properties of the 85% Bi_2Te_(3-15%) Bi_2Se_3 thermoelectric material doped with SbI_3 AND CuBr. Journal of Physics and Chemistry of Solids, 1998, 59(6-7): 1039-1044.
    [34] S. Furuseth, L. Brattas and A. Kjekshus. Crystal structure of hafnium pentatelluride. Acta Chem. Scand., 1973, 27(7): 2367-2374.
    [35] T. E. Jones, W. W. Fuller, T. J. Wieting and F. Levy. Thermoelectric power of HfTe_5 and ZrTe_5. Solid State Communications, 1982, 42:793-801.
    [36] F. J. Disalvo, R. M. Fleming and J. V. Waszczak. Possible phase transition in the quasi-one- dimensional materials ZrTe_5 or HfTe_5. Phys. Rev. B, 1981, 24: 2935-2939.
    [37] M. Isumi, K. Uchinokura, E. Matsuura and S. Harada. Hall effect and transverse magneto resistance in a low-dimensional conductor HfTe_5. Solid State Communications, 1982, 42(11): 773-778.
    [38] D. W. Bullett. Absence of a phase transition in ZrTe_5. Solid State Communications, 1982, 42(9): 691-693.
    [39] G. N. Kamm, D. J. Gillespie, A. C. Ehrlich, D. L. Peebles and E Levy. Fermi surface, effective masses, and energy bands of HfTe_5 as derived from the Shubnikovde Haas effect. Phys. Rev. B, 1987, 35: 1223-1229.
    [40] E. R Stillwell, A. C. Ehrlich, G. N. Kamm and D. J. Gillespie. Effect of elastic tension on the electrical resistance of HfTe_5 and ZrTe_5. Phys. Rev. B, 1989, 39: 1626-1632.
    [41] R. T. Littleton, T. M. Tritt, J. W. Kolis and D. R. Ketchum. Transition-metal pentatellurides as potential low-temperature thermoelectric refrigeration materials. Physical Review B, 1999, 60(19): 13453-13457.
    [42] R. T. Littleton-IV, M. L. Wilson, C. Feger, J. Kolis, M. Marone and T. M. Tritt. Effect of isoelectronic substitution of thermopower and resistivity of Hf_(1-x)Zr_xTe_5. Proceedings of the 16th International Conference on Thermoelectrics. 1997. Dresden, Germany: IEEE.
    [43] R. T. Litteton-IV, T. M. Tritt, C. R. Feger, J. W. Kolis, M. L. Wilson, M. Marone, J. Payne, D. Verebeli and F. Levy. Effect of Ti substitution on the thermoelectric properties of the pentatelluride materials M_(1-x)Ti_xTe_5 (M = Hf, Zr). Appl. Phys. Lett., 1998, 72(16): 2056-2058.
    [44] B. M. Zawilski, R. T. Littleton and T. M. Tritt. Investigation of the thermal conductivity of the mixed pentatellurides Hf_(1-x)Zr_xTe_5. Applied Physics Letters, 2000, 77(15): 2319-2321.
    [45] J. W. Sharp, B. C. Sales, D. G. Mandrus and B. C. Chakoumakos. Thermoelectric properties of Tl_2SnTe_5 and Tl_2GeTe_5. Applied Physics Letters, 1999, 74(25): 3794-3796.
    [46] T. S. Oh, J. S. Choi and D. B. Hyun. Formation of PbTe intermetallic compound by mechanical alloying of elemental Pb and Te powders. Scrpita Metallurgica et Materialia, 1995, 32(4): 595-600.
    [47] M. Orihashi, Y. Noda, L. Chen, Y. S. Kang, A. Moro and T. Hirai. Preparation and evaluation of PbTe-FGM by joining melt-grown materials. Proc. 16th Int. Conf. on Thermoelectrics (ICT97). 1998: IEEE.
    [48] F. A. Trumbore and A. A. Tartaglia. Resistivities and hole mobilities in very heavily doped germanium. J. Appl. Phys., 1958, 29: 1511.
    [49] R. K. Pisharody and L. R Gravey. Modified Silicon-Germanium Alloys with Improved Performance. Proc. 13th Intersociety Energy Conversion Engineering Conf. 1978: IEEE.
    [50] J. R Fleurial, A. Borshchevsky and J. W. Vandersomde. Proc. 10th Int. Conf. on Thermoelectrics. 1991. Cardiff UR: IEEE.
    [51] 高敏,D.M. Rowe. SiGe/GaP 合金的高温退火特性.半导体学报,1990,11(9):713-717.
    [52] F. S. Galasso, Structure, Properties, and preparation of Perovskite-type Compounds. 1969: Pergamon Press, Oxford. p.73.
    [53] T. Kobayashi, H. Takizawa, T. Endo, T. Sato, M. Shimada, H. Taguchi and M. Nagao. Metal insulator transition and thermoelectric properties in the (R_(1-x)Ca_x)MnO_3(R:Tb, Ho, V). J. Solid State Chem., 1991, 92: 116-129.
    [54] J. B. Wu, J. Nan, X. S. Zhou, S. L. Chert and C. W. Nan. Preparation and thermoelectric properties of Li-doped Ca_(0.05)Ni_(0.95)O. Proc. 20th Int. Conf on Thermoelectrics. 2001. Beijing, China: IEEE.
    [55] C. G. Fonstad and R. H. Rediker. Electrical properties of high-quality stannic oxide crystals. J. Appl. Phys., 1971, 42(7): 2911-2918.
    [56] K. Fujita, T. Mochida and K. Nakamura. High-temperature thermoelectric properties of Na_xCoO_2 delta single crystals. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 2001, 40(7): 4644-4647.
    [57] I. Matsubara, R. Funahashi and T. Takeuchi. Preparation and thermoelectric properties of grain aligned (Ca, Bi)_3Co_4O_9 ceramics. Proc. 20th Int. Conf on Thermoelectrics. 2001. Beijing, China: IEEE.
    [58] S. Isobe, T. Tani and Y. Masuda. Grain-oriented ceramics of layer-structured n-type oxide for high thermoelectric performance. Proc. 20th Int. Conf on Thermoelectrics. 2001. Beijing, China: IEEE.
    [59] K. Takahata and I. Terasaki. Thermal conductivity of A_(x)BO_(2)-type layered oxides Na_(0.77)MnO_2 and LiCoO_2. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 2002, 41(2A): 763-764.
    [60] R. Funahashi, I. Matsubara and H. Ikuta. Synthesis and thermoelectric properties of Co-based oxide whiskers. Proc. 20th Int. Conf on Thermoelectrics. 2001. Beijing China: IEEE.
    [61] K. Matsubara. Perspectives of new materials research for thermoelectric applications. Proc. 17th Int. Conf.on Thermoelectrics. 1998: IEEE.
    [62] E. Arushanov, H. Lange, E. Arushanov and J. Werner. Hole Mobility in p-Type β-FeSi_2 Single Crystals. Physica status solidi (α), 1998, 166(2): 853-859.
    [63] G. Behr, J. Werner, G. Weise, A. Heinrich, A. Burkov and C. Gladun. Preparation and Properties of High-Purity β-FeSi_2 Single Crystals. Physica status solidi (α), 1997, 160(2): 549-556.
    [64] J. Tani and H. Kido. Hall Effect and Thermoelectric Properties of FeSi_x. Jpn. J. Appl. Phys., 2000, 39(3A): 1054-1057.
    [65] N. E. Christensen. Electronic structure of β-FeSi_2. Phys. Rev. B, 1990, 42(11): 7148-7153.
    [66] E. Arushanov, C. Kloc and E. Bucher. Impurity band in p-type β-FeSi_2. Phys. Rev. B, 1994, 50(4): 2653-2656.
    [67] T. Miki, Y. Matsui, K. Matsubara and K. Kishimoto. Electron paramagnetic resonance of defects in β-iron disilicide ceramics. J Appl. Phys., 1994, 75(3): 1693-1698.
    [68] U. Birkholz and J. Schelm. Mechanism of Electrical Conduction in β-FeSi_2. Phys. Star. Sol., 1968, 27: 413-425.
    [69] H. Nagai, S. Katsuyama, S. Nakayama, H. Kobayashi, K. Majima and M. Ito. Effects of mechanical alloying and copper addition on thermoelectric properties of n-type and p-type β-FeSi_2. Materials Transactions Jim, 1998, 39(4): 515-521.
    [70] H. Nagai, K. Nagai, T. Katsura, S. Katsuyama, K. Majima and M. Ito. Thermoelectric properties of β-FeSi_2 mechanically alloyed with Si and C. Materials Transactions Jim, 1998, 39(11): 1140-1145.
    [71] T. Kokiai, T. Uesugi and K. Koumoto. Thermoelectric properties and 2-5 characteristics of iron-silicon oxidized layer/iron disilicide material. J. Ceramic Society of Japan, 1995, 103(1204): 1270-1274.
    [72] I. Yamauchi, T. Okamoto, H. Ohata and I. Ohnaka. beta-phase transformation and thermoelectric power in FeSi_2 and Fe_2Si_5 based alloys containing small amounts of Cu. Journal of Alloys and Compounds, 1997, 260(1-2): 162-171.
    [73] I. Yamauchi, S. Ueyama and I. Ohnaka. β-FeSi2 phase formation from a unidirectionally solidified rod-type eutectic structure composed of both α and ε phases. Mater. Sci. Eng. A, 1996, 208:108-115.
    [74] I. Yamauchi, A. Suganuma, T. Okamoto and I. Ohnaka. Effect of copper addition on the beta-phase formation rate in FeSi_2 thermoelectric materials. Journal of Materials Science, 1997, 32(17): 4603-4611.
    [75] I. Yamauchi, S. Ueyama and I. Ohanaka. Effects of Mn and Co addition on morphology of unidirectionally solidified FeSi_2 eutectic alloys. Mater. Sci. Eng. A, 1996, 208: 101-107.
    [76] T. Tokiai, T. Uesugi and K. Koumoto. Improvement in thermoelectric characteristics of n-type iron disilicide by local composition modification. J. Am. Ceram. Soc., 1995, 78(4): 1089-1092.
    [77] H. Takizawa, P. F. Mo, T. Endo and M. Shimada. Preparation and thermoelectric properties of β-Fe_(1-x)Ru_xSi_2. J. Mater Sci., 1995, 30(16): 4199-4203.
    [78] Y. Isoda, Y. Shinohara, Y. Imai, I. A. Nishida and O. Ohashi. Thermoelectric propertieo of boron doped iron disilicide. Proc. 17th Int. Conf on Thermoelectrics. 1998: IEEE.
    [79] T. Watanabe, M. Hasaka and T. Miyase. Thermoelectric Properties of FeSi_2-Base Semiconductors with Ag Addition. Journal of the Japan Institute of Metals, 1994, 58(3): 353-358.
    [80] H. Nagai. Effects of mechanical alloying and grinding on the preparation and thermoelectric properties of β-FeSi_2 (overview). Mater. Trans., JIM, 1995, 36(2): 365-372.
    [81] M. Umemoto. Preparation of thermoelectric beta-FeSi_2 doped with Al and Mn by mecηαnical alloying (overview). Mater Trans., JIM, 1995, 36(2): 373-383.
    [82] S. Bose, H. N. Acharya and H. D. Banerjee. Electrocal, Thermal, Thermoelectric and Related Properties of Magnesium Silicide Semiconductor Prepared from Rice Husk. Journal of Materials Science, 1993, 28(20): 5461-5468.
    [83] T.Song, H. L. Lee, C. Pal and T. Mitsuhshi. Thermal conductivity of Fe-Si alloys prepared by the SHS process. J. Mater Sci. Lett., 1995, 14(23): 1715-1717.
    [84] Y. Ohta, S. Miura and Y. Mishima. Thermoelectric semiconductor iron disilicides produced by sintering elemental powders. Intermetallics, 1999, 7(11): 1203-1210.
    [85] Y. Ohta, S. Miura and Y. Mishima. Fabrication of ternary iron disilicides as thermoelectric semiconductors by sintering using elemental powders. Proc. 16th Int. Conf on Thermoelectrics. 1997: IEEE.
    [86] J. Schilz, E. Mueller, K. Schackenberg, H. Ernst, G. Langer and E. Lugscheider. On the thermoelectric performance of plasma spray-formed iron disilicide. J. Mater. Sci. Lett., 1998, 17(17): 1487-1490.
    [87] Y. Kizaki, H. Osada and H. Aoki. Ultrafine-Particle Beam Deposition Applications to Thermoelectric-Materials. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 1993, 32(12A): 5778-5790.
    [88] T. Miki, Y. Matsui, Y. Teraoka, Y. Ebina, K. Matsubara and K. Kishimoto. Point defects and thermoelectric properties of iron disilicide ceramics sintered with SiH4-plasma-processed micrograins. J. AppI. Phys., 1994, 76(4): 2097-2103.
    [89] Y. Nishio and T. Hirano. Thermoelectric properties of multi-layered system. Proceedings of 17th International Conference Thermo- electrics. 1998: IEEE.
    [90] X. B. Zhao, T. J. Zhu, S. H. Hu, B. C. Zhou and Z. T. Wu. Transport properties of rapid solidified Fe-Si-Mn-Cu thermoelectric alloys. Journal of Alloys and Compounds, 2000, 306(1-2): 303-306.
    [91] T. J. Zhu, X. B. Zhao and S. H. Hu. Phase transition of FeSi2 and Fe2Si5 based alloys prepared by melt spinning. Journal of Materials Science Letters, 2001, 20(19): 1831-1833.
    [92] H. Y. Chert, X. B. Zhao, Y. F. Lu, E. Mueller and A. Mrotzek. Microstructures and thermoelectric properties of Fe_(0.92)Mn_(0.08)Si_x alloys prepared by rapid solidification and hot pressing. Journal of Applied Physics, 2003, 94(10): 6621-6626.
    [93] M. Takeda, M. Kuramitsu and M. Yoshio. Anisotropic Seebeck coefficient in beta-FeSi_2 single crystal. Thin Solid Films, 2004, 461(1): 179-181.
    [94] G. S. Nolas, D. T. Morelli and T. M. Tritt. Skutterudites: A phonon-glass-electron crystal approach to advanced thermoelectric energy conversion applications. Annual Review of Materials Science, 1999, 29: 89-116.
    [95] G. A. Slack and V. G. Tsoukala. Some Properties of Semiconducting Ir_sb_3. Journal of Applied Physics, 1994, 76(3): 1665-1671.
    [96] J. P. Fleurial, T. Caillat and A. Borshchevsky. Skutterudites: an update. Proc. 16th lnt. Conf Thermoelectrics. 1997. Dredsden, Germany: IEEE.
    [97] B. C. Sales, D. Mandrus and B. C. Chaoumakos. Filled skutterudite, antimonides electron crystals and phonon glasses. Phys Rev B, 1997, 56(23): 15081-15089.
    [98] D. T. Morelli and G. P. Meisner. Low temperature properties of the filled skutterudites CeFe_4Sb_12. J. Appl. Phys., 1995, 77(8): 3777-3781.
    [99] K. Yoshiyuki, K. Ken, U. Masayoshi and Y. Shinsuke. Thermoelectric properties of CoSb_3. J.Alloy. Comp., 2001, 315: 193-197.
    [100] X. F. Tang, L. D. Chen and T. Goto. Effect of Ce filling frac tion and Fe content on the thermoelectric properties of Co-rich Ce_yFe_xCo_(4-x)Sb_(12). J. Mater Res., 2001, 16(3): 837-843.
    [101] B. C. Chakoumakos, B. C. Sales, D. Mandrus and V. Keppens. Disparate atomic displacements in skutterudite-type LaFe_3CoSb_(12), a model for thermoelectric behavior. Acta Crystallographica Section B-Structural Science, 1999, 55: 341-347.
    [102] B. C. Sales, D. Mandrus and R. K. Williams. Filled skutterudite antimonides: A new class of thermoelectric materials. Science, 1996, 272(5266): 1325-1328.
    [103] L. D. Chen, T. Kawahara, X. F. Tang, T. Goto, T. Hirai, J. S. Dyck, W. Chen and C. Uher. Anomalous barium filling fraction and n-type thermoelectric performance of BayCo_4Sb_(12). J. Appl. Phys., 2001, 90(4): 1864-1868.
    [104] J. S. Dyck, W. Chert, J. H. Yang, G. P. Meisner and C. Uher. Effect of Ni on the transport and magnetic properties of CO_(1-x)Ni_xSb_3. Physical Review B, 2002, 65(11).
    [105] W. Chen, J. S. Dyck and C. Uher. Low temperature thermoelectric properties of Ni doped n-type filled skutterudites Ba_(0.3)Co_4Sb(12). Proc. 20th Int ConfThermoelectrics. 2001. Beijing, China: IEEE.
    [106] J. S. Dyck, W. Chen, C. Uher, L. D. Chen, X. F. Tang and T. Hirai. Thermoelectric properties of the n-type filled skutterudites Ba_(0.3)Co_4Sb(12) doped with Ni. J. Appl. Phys., 2002, 91(6): 3698-3705.
    [107] H. Liu, J. Y. Wang, X. B. Hu, L. X. Li, F. Gu, S. R. Zhao, M. Y. Gu, R. I. Boughton and M. H. Jiang. Preparation of filled skutterudite nanowire by a hydrothermal method. Journal of Alloys and Compounds, 2002, 334:313-316.
    [108] J. Xie, X. B. Zhao, J. L. Mi, G. S. Cao and J. P. Tu. Solvothermal synthesis of nanosized CoSb_3 skutterudite. J. Zhejiang Uni. SCI, 2004, 5(12): 1504-1508.
    [109] B. C. Sales, B. C. Chakoumakos, D. Mandrus and J. W. Sharp. Atomic displacement parameters and the lattice thermal conductivity of clathrate-like thermoelectric compounds. Journal of Solid State Chemistry, 1999, 146(2): 528-532.
    [110] S. Bobev and S. C. Sevov. Clathrate Ⅲ of group 14 exists after all. J. Am. Chem. Soc., 2001, 123(14): 3389-3390
    [111] J. L. Cohn, G. S. Nolas, V. Fesstidis, T. H. Metcalf and G. A. Slack. Glasslike Heat Conduction in High-Mobility Crystalline Semiconductors. Phys. Rev. Lett., 1999, 82(4): 779-782.
    [112] V. L. Kuznetsova, L. A. Kuznetsova, A. E. Kaliazin and D. M. Rowe. Preparation and thermoelectric properties ofA_8B_(16)B_(30) clathrate compounds. J. Appl. Phys., 2000, 82(4): 7871-7875.
    [113] K. A. Kovnir and A. V. Shevelkov. Semiconducting clathrates: Synthesis, structure and properties. Uspekhi Khimii, 2004, 73(9): 999-1015.
    [114] J. J. Dong, O. F. Sankey and C. W. Myles. Theoretical study of the lattice thermal conductivity in Ge framework semiconductors. Physical Review Letters, 2001, 86(11): 2361-2364.
    [115] G. S. Nolas, J. Yang and R. W. Ertenberg. Transport properties of CoGe_(1.5)Se_(1.5). Physical Review B, 2003, 68(19).
    [116] B. C. Sales, B. C. Chakoumakos, R. Jin, J. R. Thompson and D. Mandrus. Structural, magnetic, thermal, and transport properties of X_8Ga_(16)Ge_(30) (X = Eu, Sr, Ba) single crystals. Physical Review B, 2001, 6324(24).
    [117] C. W. Myles, J. Dong, O. F. Sankey, C. A. Kendziora and G. S. Nolas. Vibrational properties of tin clathrate materials. Physical Review B, 2002, 65(23).
    [118] G. J. Snyder, M. Christensen, E. Nishibori, T. Caillat and B. B. Iversen. Disordered zinc in Zn_4Sb_3 with phonon-glass and electron-crystal thermoelectric properties. Nature Materials, 2004, 3(7): 458-463.
    [119] T. Caillat, J. P. Fleurial and A. Borshchevsky. Preparation and thermoelectric properties of semiconducting Zn_4Sb_3. Journal of Physics and Chemistry of Solids, 1997, 58(7): 1119-1125.
    [120] T. Caillat, J. P. Fleurial and A. Borshchevsky. Thermal conductivity of Zn_(4-x)Cd_xSb_3 solid solutions. MRS Symp. Proc. 1997. Warrendale, PA,USA: Materials Research Society.
    [121] T. Caillat, J. P. Fleurial, G. J. Snyder, A. Zoltan, L. D. Zoltan, G. J. Snyder and A. Borshchevsky. Development of a high efficiency thermoelectric unicouple for power generation applications. Proc. 17th Int. Conf. Thermoelectrics. 1996: IEEE.
    [122] L. D. Hicks, T. C. Harman and M. S. Dresselhaus. Use of Quantum-Well Superlattices to Obtain a High Figure of Merit from Nonconventional Thermoelectric-Materials. Applied Physics Letters, 1993, 63(23): 3230-3232.
    [123] L. D. Hicks and M. S. Dresselhaus. Effect of Quantum-Well Structures on the Thermoelectric Figure of Merit. Physical Review B, 1993, 47(19): 12727-12731.
    [124] 夏建白 朱邦芬,半导体超晶格物理,ed.黄昆.1995,上海:上海科学技术出版社.
    [125] D.A. Broido and T. L. Reinecke. Use of Quantum-Well Superlattices to Obtain High Figure of Merit from Nonconventional Thermoelectric-Materials - Comment. Applied Physics Letters, 1995, 67(8): 1170-1171.
    [126] A. Balandin and K. L. Wang. Effect of phonon confinement on the thermoelectric figure of merit of quantum wells. J. Appl. Phys., 1998, 84: 6149-6153.
    [127] T. Koga, X. Sun, S. B. Cronin and M. S. Dresselhaus. Carrier pocket engineering to design superior thermoelectric materials using GaAs/AlAs superlattices. Applied Physics Letters, 1998, 73(20): 2950-2952.
    [128] T. Yao. Thermal properties ofAlAs/GaAs superlattices. Appl. Phys. Lett., 1987, 51: 1798-1800.
    [129] T. C. Harman, P. J. Taylor, D. L. Spears and M. P. Walsh. Thermoelectric quantum-dot superlattices with high ZT. Journal of Electronic Materials, 2000, 29(1): L1-L4.
    [130] L. D. Hicks and M. S. Dresselhaus. Thermoelectric Figure of Merit of a One-Dimensional Conductor. Phys. Rev. B, 1993, 47: 16631-16634.
    [131] X. Sun, J. Liu, S. B. Cronin, K. L. Wang, G. Chen, T. Koga and M. S. Dresselhaus. Experimental study of the effect of the quantum well structures on the thermoelectric figure of merit in the Si/Si_(1-x)Ge_x system. Mat. Res. Soc. Symp. Proc., 1999, 545: 369.
    [132] R. Venkatasubramanian, E. Siivola, T. Colpitts and B. O′Quinn. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature, 2001, 413(6856): 597-602.
    [133] E. Macia. May quasicrystals be good thermoelectric materials Applied Physics Letters, 2000, 77(19): 3045-3047.
    [134] T. M. Tritt, M. L. Wilson, A. L. Johnson, S. Legault and R. Stroud. Potential of quasicrystals and quasicrystal approximants for new and improved thermoelectric materials. Proc. 16th int. conf. Thermoelectrics. 1997: IEEE.
    [135] T. M. Tritt, A. L. Pope, M. J. Marone, M. Chernikov, M. Feuerbacher, S. Legault, R. Gagnon and J. Strom-Olsen. Potential of quasicrystals and quasicrystalline approximants for utilization. Mat. Res. Soc. Symp. Proc., 1999, 553: 325-330.
    [136] T. M. Tritt, R. T. L. IV and A. L. Pope. Strategies for the investgation of new bulk materials for thermoelectric applications. Proc 19th Inter. Conf ThermoeIectrics. 2000. Cardiff, UK: IEEE.
    [137] K. J. Proctor, C. D. W. Jones and F. J. DiSalvo. Modification of the Thermoelectric Properties of CePd_3 by the Substitution of Neodymium and Thorium. J. Phys. Chem. Solid., 1999, 60:663-671.
    [138] H. Littman and B. Davidson. Theoretical bound on the thermoelectric figure of merit from irreversible thermodynamics. J. Appl. Phys., 1961, 32(45): 217-219.
    [139] T. C. Harman, P. J. Taylor, M. P. Walsh and B. E. LaForge. Quantum dot superlatfice thermoelectric materials and devices. Science, 2002, 297(5590): 2229-2232.
    [140] J. Jortner and C. N. R. Rao. Nanostructured advanced materials. Perspectives and directions. Pure andApplied Chemistry, 2002, 74(9): 1491-1506.
    [141] P. S. Reseborough. Theory of the Dynamic Magnetic Response of Ce_3Bi_4Pt_3: A Heavy Fermion Semiconductor. J. Phys. Rev., 1992, B45: 13984-13995.
    [142] J. F. Meng, D. A. Polvani, C. D. W. Jones, F. J. DiSalvo, Y. Fei and J. V. Badding. Pressure tuning in the chemical search for improved thermoelectric materials: Nd_xCe_(3-x)Pt_3Sb_4. Chemistry of Materials, 2000, 12(1): 197-201.
    [143] B. Louie and R. Radebaugh. Survey of Heavy Fermions for Thermoelectric Refrigeration. Proc 1st National Thermogenic Cooler Conference. 1992. Virginia, USA.
    [144] P. R. Lowhorn N D, Kanatzidis M G, Tritt Terry M. Measurement of physics properties of the copper-polytellurides. 18th lntern. Conf. Thermoelectrics, 1999: 424-427.
    [145] D. Y. Chung, T. Hogan, J. Schindler, L. Iordanidis, P. and C. R. K. Brazis, B. Chen, C. Uher, M. G.Kanatzidi. Thermoelectric materials-new directions and approaches. Mat. Res. Soc. Symp. Proc., 1997, 478: 333-344.
    [146] D. Y. Chung, T. Hogan, P. Brazis, M. Rocci-Lane, C. Kannewurf, M. Bastea, C. Uher and M. G. Kanatzidis. CsBi_4Te_6: A high-performance thermoelectric material for low-temperature applications. Science, 2000, 287(5455): 1024-1027.
    [147] 苏锵.稀土元素-您身边的大家族,2000.
    [148] S. H. Yu, J. Yang, Y. S. Wu, Z. H. Han, J. Lu, Y. Xie and Y. T. Qian. A New Low Temperature One-Step Route to Metal Chalcogenide Semiconductors: Pbe, Bi_2E_3 (E = S, Se, Te). Journal of Materials Chemistry, 1998, 8: 1949-1951.
    [149] Y. T. Qian. Solvothermal synthesis of nanocrystalline Ⅲ-Ⅴ semicondutors. Advanced Materials, 1999, 11: 1101-1102.
    [150] Y. Deng, X. S. Zhou, G. D. Wei, J. Liu, C. W. Nan and S. J. Zhao. Solvothermal preparation and characterization of nanocrystalline Bi_2Te_3 powder with different morphology. Journal of Physics and Chemistry of Solids, 2002, 63(11): 2119-2121.
    [151] X. B. Zhao, X. H. Ji, Y. H. Zhang and B. H. Lu. Effect of solvent on the microstructures of nanostructured Bi_2Te_3 prepared by solvothermal synthesis. Journal of Alloys and Compounds, 2004, 368(1-2): 349-352.
    [152] X. B. Zhao, X. H. Ji, Y. H. Zhang, G. S. Can and J. E Tu. Hydrothermal synthesis and microstructure investigation of nanostructured bismuth telluride powder. Applied Physics A: Materials Science and Processing, 2005, 8:1567-1571
    [153] C. Y. Tung, J. M. Gu, H.-M. Lin, Y. Hwu and N.-F. Cheng. X-ray Absorption Spectroscopy Study of Ag_xNi_(1-x) Nanocrystalline Solid Solutions. NanoStructured Materials, 1997, (1/8): 351-354.
    [154] 刘科高,张久兴,路清梅,张隆,周美玲.CoSb_3纳米晶块体热电材料的制备研究.稀有金属材 料与工程,2004,33(3):329-332.
    [155] O. Rabin, Y. M. Lin and M. S. Dresselhaus. Anomalously High Thermoelectric Figure of Merit in Bi_(1-x)Sb_x Nanowires by Carrier Pocket Alignment. Appl. Phys. Lett., 2001, 19: 81.
    [156] W. Z. Wang, Y. Geng, Y. T. Qian, Y. Xie and X. M. Liu. Synthesis and chracterization of nanocrystalline Bi_2Se_3 by solvothermal method. Materials reasearch bulletein, 1999, 34(1): 131-134.
    [157] S. H. Yu, L. Shu, J. Yang, Z. H. Han, Y. T. Qian and Y. H. Zhang. A solvothermal decomposition process for fabrication and particle sizes control of Bi2_S_3 nanowires. Journal of Materials Reasearch, 1999, 14(11): 4157-4162.
    [158] R Larson, S. D. Mahanti, S. Sportouch and M. G. Kanatzidis. Electronic structure of rare-earth nickel pnictides: Narrow-gap thermoelectric materials. Physical Review B, 1999, 59(24): 15660-15668.
    [159] J. W. Sharp. Selection and evaluation of materials for thermoelectric applications Ⅱ. MSR 1997 Spring Meeting. 1997. San Francisco, CA, USA: Materials Research Society.
    [160] 王敦青.溶剂热合成纳米功能材料的研究进展.德州学院学报,2002,18(2):61—64.
    [161] X. B. Zhao, Y. H. Zhang and X. H. Ji. Solvothermal synthesis of nano-sized La_xBi_(2-x)Te_3 thermoelectric powders. Inorganic Chemistry Communications, 2004, 7(3): 386-388.
    [162] 嵇罡,季颖斐,马学鸣.大块非晶合金的形成能力.材料科学与工程,1999,17(3):55-58.
    [163] 季颖斐,嵇罡,肖学山.水淬法制备 Zr_(41)Ti_(14)Ni_8Cu_(12.5)Be_(22.5)Fe_2大块非晶合金.科学通报,1999,44(16):1707-1710.
    [164] Y. Horio and T. Hoshi. Amorphous Thermoelectric Alloys and Thermoelectric Couple Using Same. U. S. Patent, 1999, Mar.10: 5,726,381.
    [165] D. B. Wiles and R. A. Young. A new computer program for Rietveld analysis of X-ray powder diffraction patterns. J. Appl. Cryst., 1981, 14: 149-151.
    [166] R.A. Young. The Rietveld Method. Oxford Science Publication, London, 1993: 22.
    [167] L. A. Kuznetsova, V. L. Kuznetsov and D. M. Rowe. Thermoelectric properties and crystal structure of ternary compounds in the Ge(Sn,Pb)Te-Bi_2Te_3 systems. J Phys. Chem. Solids, 2000, 61(8): 1269-1274.
    [168] C. H. Champness, W. B. Muir and P. T. Chiang. Can. J Phys., 1967, 45: 3611.
    [169] D.A. Porter and K. E. Eastering, Phase Transformations in Metals and Alloys. 2nd ed. 1992, London: Chapman & Hall. p. 199-200.
    [170] Y. Deng, C. W. Nan, G. D. Wei, L. Guo and Y. H. Lin. Organic-assisted growth of bismuth telluride nanocrystals. Chem. Phys. Lett., 2003, 374(3-4): 410.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700