纳米氮化硼的可控合成及其在液态环境中的相变
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过借鉴溶剂方法合成纳米氮化硼的经验,我们首次利用溶剂对氮化硼的粒径和结晶质量进行了调控,并进一步将恒压溶剂热方法应用于纳米氮化硼的可控制备,初步探讨了合成tBN过程中的关键影响因素和机理。在实现可控制备氮化硼纳米颗粒的基础上,系统研究了在液态环境中纳米氮化硼的相变过程,探索了这个过程中的基本规律及影响因素。另一方面,我们首次研究了水热热压过程中纳米氮化硼的相变规律,为以工业品hBN纳米晶为原料低成本制备wBN和cBN奠定了基础。
     在前期优化实验条件的基础上,采用溶剂热方法,以BCl3和Li3N为原料合成了氮化硼纳米颗粒。利用苯和吡啶性质的差异,在250℃制备了具有不同粒径和结晶质量的两种aBN;进一步地,我们首次将恒压溶剂热方法应用于BCl3和Li3N的反应,在相对独立地调控温度和压力条件下,高产率制备了tBN(最高产率为63%)。系统研究了实验过程中各项参数对制备tBN的影响,初步提出了恒压溶剂热条件下tBN的生成机理。
     为了实现温和条件下cBN纳米颗粒的制备,我们系统研究了氮化硼纳米颗粒在液态环境中的相变规律及其影响因素。结果表明,氮化硼纳米颗粒在液态环境中相变为wBN和cBN时所需的温度和压力与固态环境下相比明显降低,相变过程在温和条件下就可以完成。另外,通过优选溶剂和降低原料的颗粒尺寸及结晶度可以进一步降低相变温度和压力。以SM-Ⅰ(主要物相为aBN,颗粒粒度不均匀)为原料时,氮化硼纳米颗粒在吡啶、苯胺和氯苯中热压后得到的样品中wBN和cBN的相对含量之和的最大值分别为34.7%、37.1%和45%,表明吡啶、苯胺和氯苯对氮化硼sp2→sp3相变的促进能力依次增强。此外,纳米氮化硼的起始状态对wBN和cBN的生成至关重要,在三种原料SM-Ⅰ、SM-Ⅱ和SM-Ⅲ中,原料SM-Ⅱ(主相为aBN,粒度均匀、结晶质量较差)中的纳米颗粒更容易发生向wBN和cBN的转变,在260℃和150 MPa下热压15 h后,wBN和cBN的相对含量之和达到91.3%;相比之下,原料SM-Ⅲ(主相为tBN,结晶质量较高)中的tBN向wBN和cBN的转变最为困难,样品中wBN和cBN的相对含量之和最大值仅为13.5%。
     为了探索更有利于wBN和cBN生成的途径,降低液态相变方法制备cBN的成本,我们首次以工业品hBN纳米晶(平均粒径~50 nm)为原料,研究了水热热压过程中hBN纳米晶与H2O的反应性质,以及该过程中BN样品中的相变规律。结果表明,由于颗粒尺寸减小,hBN纳米晶与H2O在温和条件下即可发生反应,而且反应程度随温度、压力及反应时间的变化发生显著变化。此外,在水热热压过程中存在hBN→tBN→aBN的相变:hBN纳米晶在270℃以上热压时转变为tBN,并随着热压温度升高到310℃进一步转变成aBN。与此同时,在aBN样品中出现了少量cBN晶核。为了进一步提高样品中cBN的相对含量,我们用LiCl/NaF饱和水溶液取代水,结果发现卤离子的加入可促进sp2态BN向sp3态BN转变。
     在温和条件下实现纯cBN纳米颗粒的低成本制备具有很大的实际应用价值,为此我们提出了新的液态相变方法和水热热压相变方法,并利用它们开展了纳米氮化硼相变规律的初步探索。尽管这些方法还远未达到完善的程度,但是它们为立方氮化硼等超硬材料的制备提供了一种温和、经济且更为可控的途径。
On the basis of analyzing the previous results of synthesizing BN nanoparticles by solvothermal method, we have prepared BN nanoparticles with specific particle size and crystallinity by using different solvents. Besides, a new constant-pressure solvothermal method was applied to the synthesis of tBN, and the key factors in the synthesis procedure were investigated. Furthermore, the phase transformation of BN nanoparticles when being hot-pressed in solvents was systematically studied, and the key affecting factors have been explored. On the other hand, the phase transformation of hBN induced by hydrothermal hot-pressing process was firstly studied. The detailed results are as following:
     By optimizing the preparation parameters, two kinds of aBN with different particle size and crystallinity were synthesized at 250℃by solvothermal method, using BCl3 and Li3N as the starting materials. After that, a constant-pressure solvothermal method was firstly used in the reaction of BCl3 and Li3N. By using this route, tBN was synthesized in a controllable way, and the yield was as high as 63%. Based on the experimental results, a preliminary model for explaining the reaction mechanism was proposed.
     In order to synthesize pure cBN nanoparticles under mild conditions, the phase transformation of boron nitride nanoparticles in solvents was investigated, and the key factors were comprehensively explored. The results indicate that the required temperature and pressure for the formation of wBN and cBN were greatly decreased in solvents, and the phase transformation completed at rather moderate conditions. Besides, the temperature and pressure for BN transformation could be further decreased by optimizing solvent and decreasing the particle size and crystallinity of BN nanoparticles. When sample SM-II was used as the starting material, the content of wBN and cBN in the sample prepared by hot-pressing in pyridine, aniline and chlorobenzene 34.7%,37.1% and 45%, respectively. This result reveals that the induction effects on the transformation from sp2 to sp3 BN was as follows: chlorobenzene> aniline> pyridine. Additionally, the initial state of starting material also played a key role on the formation of wBN and cBN. Among the three starting materials SM-Ⅰ, SM-Ⅱand SM-Ⅲ, BN in SM-Ⅱtransformed into wBN and cBN under the modest conditions, and the content of wBN and cBN in the sample obtained by hot-pressing SM-II at 260℃and 150 MPa was as high as 91.3%. In comparison, the transformation from tBN to wBN and cBN in SM-III was rather difficult, and the maximum content of wBN and cBN was only 13.5%.
     On the purpose of synthesizing wBN and cBN at more moderate conditions, the reaction between hBN nanocrystals and H2O, as well as the phase transformation induced by hydrothermal hot-pressing process, were firstly studied by using commercial hBN nanocrystals as the starting material. The results indicate that hBN reacted with H2O and ammonium borate formed under very mild condition. Due to the decrease of the particle size, this reaction was greatly accelerated with the increase of temperature and pressure, as well as the prolonging of hot-pressing duration. Furthermore, a phase transformation of hBN→tBN→aBN occurred during the hydrothermal hot-pressing of hBN nanocrystals, which was transformed into tBN at the temperature above 270℃, and then transformed into aBN as the temperature further increased to 310℃. Meanwhile, a small amount of cBN nucleus was observed in the BN sample. In order to increase the content of cBN, LiCl/NaF aqueous solution was used as the liquid medium, which resulting in the formation of relative large amount of sp3-bonded BN.
     With the purpose of synthesizing pure cBN using commercial hBN nanocrystals under mild conditions, we developed a new constant-pressure solvothermal synthesis method and a hydrothermal hot-pressing method, the phase transformation of BN nanoparticles under moderate conditions was also explored. Although these methods are still far from being perfect, at least they provided us the possibility of synthesizing cBN in a moderate and controllable way.
引文
[1]吕孟凯,《固态化学》,山东大学出版社,1996,p276
    [2]陆学善,《相图与相变》,中国科技大学出版社,1990,p175
    [3]靳正国,《材料科学基础》,天津大学出版社,2005,p525
    [4]J.M. McHale, A. Auroux, A.J. Perotta, A. Navrotsky, Surface energies and thermodynamic phase stability on nanocrystalline aluminas, Science,1997, 277(5327):788-791
    [5]A.N. Goldstein, C.M. Echer, A.P. Alivisatos, Melting in Semiconductor Nanocrystals, Science,1992,256(5062),1425-1427
    [6]H.Z. Zhang, J.F. Banfield, Thermodynamic analysis of phase stability of nanocrystalline titania, J. Mater. Chem.,1998,8(9):2073-2076
    [7]F. Huang, J.F. Banfield, Size-dependent phase transformation kinetics in nanocrystalline ZnS, J. Am. Chem. Soc.,2005,27 (12):4523-4529
    [8]H.Z. Zhang, F. Huang, B. Gilbert, J. F. Banfield, Molecular dynamics simulations, thermodynamic analysis, and experimental study of phase stability of zinc sulfide nanoparticles, J. Phys. Chem. B,2003,107(47):13051-13060
    [9]H.Z. Zhang, B. Gillbert, F. Huang, J.F. Banfield, Water-driven structure transformation in nanoparticles at room temperature, nature,2003,424 (6952): 1025-1029
    [10]K. Murakoshi, H. Hosokawa, N. Tanaka, M. Saito, Y. Wada, T. Sakata, H. Mori, S. Yanagida, Chem. Commun.,1998:321-322
    [11]Y.S. Xiong, J. Zhang, F. Huang, GQ. Ren, W.Z. Liu, D.G Li, C. Wang, Z. Lin, Growth and phase-transformation mechanisms of nanocrystalline CdS in Na2S solution,J. Phys. Chem..,2008,112(25):9229-9233
    [12]F. Huang, H.Z. Zhang, J.F. Banfield, The Role of Oriented Attachment Crystal Growth in Hydrothermal Coarsening of Nanocrystalline ZnS, J. Phys. Chem. B, 2003,107(38):10470-10475
    [13]Huang, F., Zhang, H., Gilbert, B. Banfield, J. F. Reversible, surface-controlled structure transformation in nanoparticles induced by aggregation-disaggregation, Phys. Rev. Lett.,2004,92(15):155501-155503
    [14]Z.J. Jiang, S.J. Olsen, and L. Gerward et al, Enhanced bulk modulus and reduced transition pressure in γ-Fe2O nanocrystals, Eumphys. Lett,1998,44(5):620-626
    [15]S.J. Olsen, L. Gerward, J.Z. Jiang, On the rutile/α-PbO2-type phase boundary of TiO2, J. Phys. Chem. Solids.,1999,60:229-233
    [16]A. Rekhi, K.S. Saxena, P. Lagor, High-pressure Raman study on nanocrystalline CeO2, J. Appl. Phys.,2001,89(5):2968-2991
    [17]A.Y. Liu, M.L. Cohen, Prediction of new low compressibility solids, Science, 1989,245(4920):841-842
    [18]A. Y. Liu, M. L. Cohen, Structural properties and electronic structure of low compressibility materials:β-Si3N4, and hypotheticalβ-C3N4, Phys. Rev. B,1990, B41(15):10727-10734
    [19]M.R. Wixom, Chemical preparation and shock wave compression of carbon nitride precursors, J. Am. Ceram. Soc.,1990,73(7):1973-1978.
    [20]P. Kouakou, V. Brien, and B. Assouar et al, Preliminary synthesis of carbon nitride thin films by N2/CH4 microwave plasma assisted chemical vapour deposition:characterisation of the discharge and the obtained films, Plasma Process. Polym.,2007,4(S1):S210-S214
    [21]N. Hellgren, K. Macak, and E. Broitman et al., Influence of plasma parameters on the growth and properties of magnetron sputtered CNx thin films, J. Appl. Phys.,2000,88(1):524-532
    [22]R. Gago, I. Jimenez, and D. Caceres et al., Hardening mechanisms in graphitic carbon nitride films grown with N2/Ar ion assistance, Chem. Mater.,2001,13(1): 129-135.
    [23]H. V. Huynh, M. A. Hiskey, J. G. Archuleta et al.,3,6-di(azido)-1,2,4,5-tetrazine: a precursor for the preparation of carbon nanospheres and nitrogen-rich carbon nitrides, Angew. Chem. Int. Ed.,2004,116(42):5776-5779
    [24]M. Aono, S. Aizawa, and N. Kitazawa et al., XPS study of carbon nitride films deposited by hot filament chemical vapor deposition using carbon filament, Thin Solid Films,2008,516(5):648-651
    [25]E.H. Bordon, R. Riedel, and P.F. McMillan et al., High-pressure synthesis of crystalline carbon nitride imide, C2N2(NH), Angew. Chem. Int. Ed.,2007,46(9): 1476-1480
    [26]A. Vinu, K. Ariga, and T. Mori et al., Preparation and characterization of well-ordered hexagonal mesoporous carbon nitride, Adv. Mater.,2005,17(13): 1648-1652.
    [27]K.M. Leung, C.Y. Chan, Y.M. Chong, Studying the growth of cubic boron nitride on amorphous tetrahedral carbon interlayers, J. Phys. Client. B,2005,109(34): 16272-16277
    [28]T. Ishii, T. Sato, Y. Sekikawa, M. Iwata, Growth of whiskers of hexagonal boron nitride,J. Cryst. Growth,1981,52(1):285-289
    [29]R.R. Wills, Wurtzitic boron nitride—a review, Int. J. High Technology Ceramics., 1985,1(2):139-153
    [30]L. Vel, G. Demazeau, J. Etourneau, Cubic boron nitride:synthesis, physicochemical properties and applications, Mater. Set Engin. B,1991,10(2): 149-164
    [31]T. Akashi, H.R. Pak, A.B. Sawaoka, Structural Changes of Wurtzite-type and Zincblende-type Boron Nitrides by Shock Treatments, J. Mater. Sci.,1986, 21(11):4060-4066
    [32]S.S. Botsanov, Zh. Neorg, Khimii,1983,28:2723-2731
    [33]S.S. Batsanov, L.J. Kopaneva, E.V.Lazareva. On the Nature of Boron Nitride e-Phase, Propellants, Explosives, Pyrotechnics,1993,18(6):352-355
    [34]R.H. Wentorf, Cubic Form of Boron Nitride J. Chem. Phys.,1957,26(4): 956-957
    [35]F.P. Bundy and R.H. Wentorf, Direct Transformation of Hexagonal Boron Nitride to Denser Forms, J. Chem. Phys.,1963,38(5):1144-1149
    [36]R.H. Wentorf, Synthesis of the Cubic Form of Boron Nitride, J. Chem. Phys., 1961,34(3):809-812
    [37]R.H. Wentorf, H. P. Bovenkerk, Preparation of Semiconducting Diamonds, J. Chem. Phys.,1962,36(8):1987-1990
    [38]R.H. Wentorf, Solvation process of the trapped electron in polar liquids, J. Chem. Phys.,1959,63(5):1934-1937
    [39]F.R. Corrigan and F.P. Bundy, Direct transitions among the allotropic forms of boron nitride at high pressures and temperatures,J. Chem. Phys.,1975,63(9): 3812-3820
    [40]K. Nassau and J. Nassau, The history and present status of synthetic diamond, J. Cryst. Growth.,1979,46(2):157-172
    [41]V.L. Solozhenko, Y. Leonidov, Russ. J. Phy. Chem.,62(11),1988,1646
    [42]B.P. Singh, G. Nover, G. Will, High pressure phase transformations of cubic boron nitride from amorphous boron nitride using magnesium boron nitride as the catalyst, J. Cryst. Growth.,1995,152(1):143-149
    [43]H. Sachdev, R. Haubner, H. N'oth, and B. Lux, Investigation of the c-BN/h-BN phase transformation at normal pressure, Diamond Relat Mater.,1997,6(2-4): 286-292
    [44]G. Will, G. Nover, and J. von der G''onna, New Experimental Results on the Phase Diagram of Boron Nitride, J. Solid State Chem.,2000,154(1):280-285
    [45]K. Albe, Theoretical study of boron nitride modifications at hydrostatic pressures, Phys. Rev. B,1991,55(10):6203-6210
    [46]K. Albe, W. M''oller, and K.H. Heinig, Computer simulation and boron nitride, Radiat Eff. Defects Solids,1997,141(1-4):85-97
    [47]G Kern, G Kresse, and J. Hafner, Ab initio calculation of the lattice dynamics and phase diagram of boron nitride, Phys. Rev. B,1999,59(13),8551-8559
    [48]A. Bartl, S. Bohr, R. Haubner, B. Flux, A comparison of low-pressure CVD synthesis of diamond and c-BN, Int.J. Refract. Met. Hard Mater.,1996, 14(1-3):145-157
    [49]L. Vel, G Demazeau, J. Etourneau, Cubic boron nitride:synthesis, physicochemical properties and applications, Mater. Sci. Eng. B,1991,10(2): 149-164
    [50]G Fanchini, J.W. McCauley, M, Chhowalla, Behavior of disordered boron carbide under stress, Phys. Rev. Lett,97(3):035502-035505
    [51]S. Bohr, R. Haubner, B. Lux, Comparative aspects of cBN and diamond CVD, Diamond Rela.. Mater.,1995,4(5-6):714-719
    [52]T. Endo, O. Fukunaga, M. Iwata, Growth pressure-temperature region of cubic BN in the system BN-Mg, J. Mater. Sci.,1979,14(6):1375-1380
    [53]M. Kagamida, H. Kanda, M. Akaishi, A. Nukui, T. Osawa, S. Yamaoka, Crystal growth of cubic boron nitride using Li3BN2 solvent under high temperature and pressure,J. Cryst. Growth.,1989,94(1):261-269
    [54]R.C. DeVries, J.F. Fliescher, Phase equilibria pertinent to the growth of cubic boron nitride,J. Cryst. Growth.,1972,13-14:88-92.
    [55]T. Sato, T. Endo, S. Kashima, S. Kashima, O. Fukunaga, M. Iwata, Formation mechanism of cBN crystals under isothermal conditions in the system BN-Ca3B2N4, J. Mater. Sci.,1983,18(10):3054-30620
    [56]O. Fukunaga, S. Nakano, T. Taniguchi, Nucleation and growth of cubic boron nitride using a Ca-B-N solvent, Diamond Relat. Mater.,2004,13(9):1709-1731
    [57]Y. Kubota, T. Taniguchi, Synthesis of cubic boron nitride using Ni-Mo alloy as a solvent, Jpn. J. AppL Phys.2008,47(11):8375-8378
    [58]T. Kobayashi, High pressure synthesis of cubic boron nitride using water, urea, and boric acid catalysts, J. Chem. Phys.1979,70(12):5898-5905
    [59]H. Lorenz, I. Orgzall, In situ observation of the crystallization of amorphous boron nitride at high pressures and temperatures, Scripta Mater.,2005,52(7): 537-540
    [60]T. Kobayashi, High pressure syntheses of cubic BN using water, urea, and boric acid catalysts, J. Chem. Phys.,1979,70(12):5898-5905
    [61]T. Taniguchi, K. Kimoto, M. Tansho, Shigeo Horiuchi, etal., Phase transformation of amorphous boron nitride under high pressure, Chem. Mater., 2003,15(14):2744-2751
    [62]Y.H. Du, X.R. Ji, X.X. Yang, X.L. Gong, D.P Yang, Z.P. Su, T.C. Zhang, The influence of hBN crystallinity and additive Lithium hydride on cBN synthesis in Li3N-hBN system, Diamond Relat. Mater.,2007,16(8):1475-1478
    [63]H. Sumiya, T. Iseki, A. Onodera, High pressure synthesis of cubic boron nitride from amorphous state, Mater. Res. Bull,198318(10):1203-1207
    [64]S.K. Singhala, J.K. Park, Synthesis of cubic boron nitride from amorphous boron nitride containing oxide impurity using Mg-Al alloy catalyst solvent,J. Cryst. Growth.,2004,260(1-2):217-222
    [65]X.K. Zhang, J.X. Deng, L. Wang, X.Y. Wang, Q. Yao, GH. Chen, D.Y. He. Phase transformation in BN films by nitrogen-protected annealing at atmospheric pressure, Appl Surf. Sci.,2008,254(21):7109-7113
    [66]H. Sachdev, R. Haubner, H. Noth, B. Lux, Investigation of the c-BN/h-BN phase transformation at normal pressure, Diamond Relat Mater.,1997,6(2-4): 286-292
    [67]万隆,陈石林,刘小磐,《超硬材料与工具》,化学工业出版社,2006,p171
    [68]方啸虎,《超硬材料科学与技术》,中国建材工业出版社,1997,p109
    [69]W. J. Yu, W. M. Lau, S. P. Chan, Z. F. Liu, Q. Q. Zheng, Ab initio study of phase transformations in boron nitride, Phys. Rew. B,2003,67(1):014108-01416
    [70]陈浩,邓金祥,刘钧锴,周涛,张岩,陈光华,立方氮化硼薄膜沉积过程的相变研究,物理学报,2007,56(6):3418-3427
    [71]T.K. Harris, E.J. Brookes, C.J. Taylor, The effect of temperature on the hardness of polycrystalline cubic boron nitride cutting tool materials, Int. J. Refract Met. Hard Mater.,2004,22(2-3):105-110
    [72]C. Fitz, A. Kolitsch, W. Fukarek. Stress relaxation during annealing of boron nitride films, Thin Solid Films,2001,389(1-2):173-179
    [73]L.A. Koukab, A. Bath, P. Thevenin, Improved bias-thermal-stress method for the insulator charge measurement of BN/InP MIS structures, Microelectron. J.,2000, 31(8):647-651
    [74]G. Satta, G. Cappellini, et al., Ab initio optical properties of BN in the cubic and in the layered hexagonal phase, Comput Mater. Sci.,2001,22(1-2):78-80
    [75]Z.Z. Liu, X. Ai, Cutting tool materials for high speed machining, Process for natural science,2005,15(9):777-783
    [76]M.Y. Yu, K. Li, Z.F. Lai, D.L. Cui, X.P. Hao, M.H. Jiang, Q.L. Wang, Phase-selective synthesis of cubic boron nitride in hydrothermal solutions,J. Cryst. Growth,2004,269(2-4):570-574
    [77]X.P. Hao, D.L. Cui, GX. Shi, Y.Q. Yin, X.G. Xu, J.Y. Wang, M.H. Jiang, X.W. Xu, Y.P. Li, B.Q. Sun, Synthesis of cubic boron nitride at low-temperature and low-pressure conditions, Chem. Mater.,2001,13(8):2457-2459
    [78]L.L. Yu, B. Gao, Z. Chen, C.T. Sun, D.L. Cui et al., In situ FTIR investigation on phase transformations in BN nanoparticles, Chin. Sci. Bull,2005,50(24): 2827-2831
    [79]Z. Chen, Z.F. Lai, K. Li, D.L. Cui et al., Phase transformation of BN nanoparticles under high pressure low temperature conditions. Int. J. Modern Phys. B,2005,19(15-17):2663-2668
    [80]Z.F. Lai, L.L. Zhu, D.L. Cui etal., Structural and phase transformation of boron nitride nanoparticles in benzene moderate conditions, Z. Naturforsch B,2006, 61b:1555-1560
    [1]J.B. Condon, C.E. Holcombe, D.H.Tohnson et al., The Kinetics of the Boron Plus Nitrogen Reaction, Inorg. Chem.,1976,15(9):2173-2179
    [2]J.Q. Hu, Q.Y. Lu, K.B. Tang, S.H. Yu, Y.T. Qian, G.E. Zhou, X.M. Liu, X.J. Wu, Synthesis and Characterization of Nanocrystalline Boron Nitride, J. Solid State Chem.,1999,148(2):325-328
    [3]X.P. Hao, D.L. Cui, G.X. Xu, M.Y. Yu, Y.J. Bai, Z.G. Liu, M.H. Jiang, A novel synthetic route to prepare cubic BN nanorods, Mater. Res. Bull.,2002,37(13): 2085-2091
    [4]M.Y. Yu, K. Li, Z.F. Lai, D.L. Cui, X.P. Hao, M.H. Jiang, Q.L. Wang, Phase-selective synthesis of cubic boron nitride in hydrothermal solutions, J. Ctyst. Growth.,2004,269(2-4):570-574
    [5]X.P. Hao, D.L. Cui, G.X. Shi, Y.Q. Yin, X.G. Xu, M.H. Jiang, X.W. Xu, YP. Li, Low temperature benzene thermal synthesis and characterization of boron nitride nanocrystals, Mater. Lett.,2001,51(6):509-513
    [6]K. Li, H.H. Jiang, G. Lian, Q.L. Wang, X. Zhao, D.L. Cui, X.T. Tao, Investigation on the key factors in the hydrothermal synthesis of BN:The way of introducing sodium azide, Chin. Sci. Bull.,2007,52 (13):1785-1790
    [7]W. Pfleging, T. Klotzbucher, D. A. Wesner, E. W. Kreutz, Structure and chemical composition of BN thin films grown by pulsed-laser deposition, Diamond Relat Mater.,1995,4(4):370-374
    [8]T. Usamia, T. Asaji, S. Matsumoto, H. Kanda, K. Nakamura, Deposition of BN films on metal substrates from a fluorine-containing plasma, Surf. Coat. TechnoL,2009,203(8):929-933
    [9]J.L. Huang, C.H. Pan, D.F. Lii, Investigation of the BN films prepared by low pressure chemical vapor deposition, Surf. Coat. Technol.,1999,122(2-3): 166-175
    [10]S. Bernard, F. Chassagneux, M.-P. Berthet, H. Vincent, J. Bouix, Structure and mechanical properties of a high-performance BN fibre, J. Eur. Ceram. Soc., 2002,22(12):2047-2059
    [11]N. Venkatasubramanian, Bruce Wade, P. Desai, A.S. Abhiraman, L.T. Gelbaum, Synthesis and characterization of spinnable sol-gel derived polyborates,J. Non-cryst Solids.,1991,130(2):144-156
    [12]Paine R T, Narula C K. Synthetic routes to boron nitride, Chem Rev.,1990,90(1): 73-91
    [13]R.T. Paine, C.K. Narula, O. Schaeffer, Precursors for boron nitride ceramic coatings. U S Patent:5188757,1993-02-23
    [14]P. Dibandjo, F. Chassagneux, L. Bois, C. Sigala, P. Miele, Synthesis of boron nitride with a cubic mesostructure, Microporous Mesoporous. Mater.,2006, 92(1-3):286-291
    [15]M. Bechelany, S. Bernard, A. Brioude, D. Cornu, P. Stadelmann, C. Charcosset, K. Fiaty, P. Miele, Synthesis of Boron Nitride Nanotubes by a Template-Assisted Polymer Thermolysis Process, J. Phys. Chem. C,2007,111(36):13378-13384
    [16]A. Aydogdu, N. Seving, Carbothermic formation of boron nitride, J. Eur. Ceram. Soc.,2003,23(16):3153-3161
    [17]B.B. Nayak, Growth of BN film on Si substrate by carbothermic reduction of boric acid in nitrogen glow discharge plasma, J. Mater. Sei. Lett.,1995,14(5): 337-339
    [18]H. S. Yang, J.Y. Zhang, A.M. Nie, X.B. Zhang, In situ infrared spectroscopic study of cubic boron nitride thin film delamination, Chinese Phys. B.,2008, 17(9):3453-3458
    [19]H.S. Yang, C. Iwamoto, T. Yoshida, Direct growth of c-BN on a mono-structured transition layer by plasma-enchanced chemical vapor deposition,J. Appl. Phys., 2002,91(10):6695-6699
    [20]S. Watanabe, S. Miyake, W. Zhou, Y. Ikuhara, M. Murakawa, Transmission electron microscopic study of c-BN films deposited on a Si substrate, Appl. Phys. Lett.,1995,66(12):1478-1480
    [21]Z.H. Ding, B. Yao, L.X. Qiu, S.Z. Bai, X.Y. Guo, Y.F. Xue, W.R. Wang, X.D. Zhou, W.H. Su, Formation of titanium nitride by mechanical milling and isothermal annealing of titanium and boron nitride,J. Alloy. Compd.,2005, 391(1-2):77-81
    [22]J.G. Tao, B. Yao, J.H. Yang, S.J. Zhang, K. Zhang, S.Z. Bai, Z.H. Ding, W.R. Wang, Mechanism of formation of Fe-N alloy in the solid-state reaction process between iron and boron nitride, J. Alloy. Compd,2004,384(1-2):268-273
    [23]L.L. Ye, Z.G. Liu, M.X. Quan, Z.Q. Hu, Determination of the spatial distribution of a physical parameter from the distribution of another physical variable-a differential inverse problem, J. Appl. Phys.,1996,80:1-7
    [24]Z.P. Xia, Z.Q. Li, Structural evolution of hexagonal BN and cubic BN during ball milling, J. Alloy. Compd.,2007,436(1-2):170-173
    [25]X.W. Zhang, H.-G. Boyen, H. Yin, P. Ziemann, F. Banhart, Microstructure of the intermediate turbostratic boron nitride layer, Diamond Relat. Mater.,2005,14(9) 1474-1481
    [26]R. Zedlitz, M. Heintze, M.B. Schubert, Properties of amorphous boron nitride thin films, J. Non-Cryst. Solids.,1996,198-200(1-2):403-406
    [27]J.Y. Huang, H. Yasuda, H. Mori, HRTEM and EELS Studies on the Amorphization of Hexagonal Boron Nitride Induced by Ball Milling, J. Am. Ceram. Soc.,2000,83(2):403-409
    [28]Y. Yamada-Takamura, O. Tsuda, H. Ichinose, T. Yoshida, Atomic-scale structure at the nucleation site of cubic boron nitride deposited from the vapor phase, Phys. Rev. B,1999,59(15):10351-10355
    [29]R. Komm, R.A. Geanangel, R. Liepins, Synthesis and studies of poly(aminoborane), (H2NBH2)x, Inorg. Chem.,1983,22(11):1684-1686
    [30]Y. Tang, J. Wang, X.D. Li, H. Wang, W.H. Li, X.Z. Wang, Preceramic Polymer for Si-B-N-C Fiber Via One-Step Condensation of Silane, BCl3, and Silazane, J. AppL Polym. Sci.,2008,110 (2),921-928
    [31]Q.B. Zeng, Synthesis of Poly(borazinylamine),J. Appl. Polym. Sci.,1999,73(6): 863-868.
    [32]S. Reinhardt, M. Gastreich, C.M. Marian, Simulation of the Solid State Vibrational Spectra of Aminodichloroborane and Ammonia Boron Trichloride, Z. Anorg.Allg. Chem.,2000,626(9):1871-1880
    [33]B. Toury, P. Miele, A new polyborazine-based route to boron nitride fibres, J. Mater. Chem.,2004,14(17):2609-2611
    [34]C. T. Kwon, H. A. McGee Jr., Aminodichloroborane, Inorg. Chem.,1973,12(3): 696-697
    [35]H.A. McGee Jr, C.T. Kwon, Cryochemical preparation of monomeric aminoborane, Inorg. Chem.,1970,9(11):2458-2461
    [36]A.H. McDaniel, M.D. Allendorf, Flow-Tube Investigation of the High-Temperature Reaction between BCl3 and NH3, J. Phys. Chem. A,1998, 102(40):7804-7812
    [37]E.J.M. Hamilton, S.E. Dolan, C.M. Mann, H.O. Colijn, S.G. Shore, Preparation of Amorphous Boron Nitride from the Reaction of Haloborazines with Alkali Metals and Formation of a Novel Tubular Morphology by Thermal Annealing, Chem. Mater.,1995,7(1):111-117
    [38]Q. X. Guo, Y. Xie, Ch. Q. Yi. L. Zhu, P. Gao, Synthesis of ultraviolet luminescent turbostratic boron nitride powders via a novel low-temperature, low-cast, and high-yield chemical route, J.Solid Stat. Chem.,2005,178(5):1925-1928.
    [39]S. S. Botsanova, G. E. Blokhina, A. A. Deribas, Strukturnyeizme-neniya nitrida bira, Zh. Strukt. Khimii.,1965,6:227-232
    [40]P.B. Mirkarimi, K.F. McCarty, D.L. Medlin, Review of advances in cubic boron nitride film synthesis, Mater. Sci. Eng. R,1997,21(2) 47-100
    [41]J. Biscoe, B. E. Warren, An X-ray study of carbon black,J. Appl. Phys.,1942, 13:364-371
    [42]J. Thomas, Jr.N.E. Weston, T.E. O'Conner, Turbostratic boron nitride thermal transformation to ordered layer boron nitride, J. Am. Chem. Soc.,1963,84(24): 4619-4622
    [43]Z.P. Xia, Z.Q. Li, Structural evolution of hexagonal BN and cubic BN during ball milling, J. Alloy. Compd.,2007,436(1-2):170-173
    [44]A.S. Rozenberg, Yu.A. Sinenko, N.V. Chukanov, Regularities of pyrolytic boron nitride coating formation on a graphite matrix,J. Mater. Sci.,1993,28(20): 5528-5533
    [45]A.S. Rozenberg, Yu.A. Sinenko, N.V. Chukanov, I.r.spectroscopy characterization of various types of structural irregularities in pyrolytic boron nitride,J. Mater. Sci.,1993,28(20):5675-5678
    [46]P. Widmayer, H.G. Boyen, P. Ziemann, Electroscopy on boron nitride thin films: Comparision of near-surface to bulk electronic properties, Phys. Rew. B,1999, 59(7):5223-5241
    [47]X.J. Wang, Y. Xie, Q.X. Guo, Synthesis of high quality inorganic fullerene-like BN hollow spheres via a simple chemical route, Chem. Commun.,2003: 2688-2689
    [1]H.Z. Zhang, J.F. Banfield, Thermodynamic analysis of phase stability of nanocrystalline titania, J. Mater. Chem.,1998,8(9):2073-2076
    [2]F. Huang, J.F. Banfield, Size-dependent phase transformation kinetics in nanocrystalline ZnS,J. Am. Chem. Soc.,2005,27 (12),:4523-4529
    [3]H.Z. Zhang, F. Huang, B. Gilbert, J. F. Banfield, Molecular dynamics simulations, thermodynamic analysis, and experimental study of phase stability of zinc sulfide nanoparticles,J. Phys. Chem. B,2003,107(47):13051-13060
    [4]H.Z. Zhang, B. Gillbert, F. Huang, J.F. Banfield, Water-driven structure transformation in nanoparticles at room temperature, nature,2003,424 (6952): 1025-1029
    [5]K. Murakoshi, H. Hosokawa, N. Tanaka, M. Saito, Y. Wada, T. Sakata, H. Mori, S. Yanagida, Chem. Commun.,1998:321-322
    [6]P.B. Mirkarimi, K.F. McCarty, D.L. Medlin, Review of advances in cubic boron nitride film synthesis, Mater. Sci. Eng. R,1997,21(2):47-100
    [7]X.K. Zhang, J.X. Deng, L. Wang, X.Y. Wang, Q. Y, G.H. Chen, D.Y He, Phase transformation in BN films by nitrogen-protected annealing at atmospheric pressure,Appl.Surf. Sci.,2008,254(21):7109-7113
    [8]M.Ben el Mekki, M.A. Djouadi, E. Guiot, V. Mortet, J. Pascallon,V. Stambouli, D. Bouchier, N. Mestres, G. Nouet, Structure investigation of BN films grown by ion-beam-assisted deposition by means of polarised IR and Raman spectroscopy, Surf. Coat Technol.,1999,116-119:93-99
    [9]P.J. Gielisse, S.S. Mitra, J.N. Plendl, R.D. Griffis, Lattice infrared spectra of boron nitride and boron monophosphide, Phys. Rev.,1967,155(3):1039-1046
    [10]Y.X. Su, X. Ju, K. Wei, C.S. Shi, Z.F. Han, J.Y. Shi, J. Deng, S. Zhu, Y.B. Chi, Vacuum-ultraviolet reflectance spectra and optical properties of nanoscale wurtzite boron nitrid, Phys. Rev. B,1994,50(24):18637(3 pages)
    [11]S. Fahy, Calculation of the strain-induced shifts in the infrared-absorption peaks of cubic boron nitride, Phys. Rev. B,1995,51(18):12873(3 pages)
    [12]Z. Chen, Z.F. Lai, K.Li, D.L. Cui, N. Lun, Q.L. Wang, M.H. Jiang, Phase transformation under high pressure low temperature conditions, Int. J. Modern Phys. B,2005,19(15-17):2663-2668
    [13]W. J. Yu, W. M. Lau, S. P. Chan, Z. F. Liu, Q. Q. Zheng, Ab initio study of phase transformations in boron nitride, Phys. Rew. B,2003,67(1):014108(9 pages)
    [14]F.R. Corrigan, F. Bundy, Direct transitions among the allotropic forms of boron nitride at high pressures and temperatures, J. Chem. Phys.,1975,63(9): 3812-3820
    [15]Y.H. Du, X.R. Ji, X.X. Yang, X.L. Gong, D.P Yang, Z.P. Su, T.C. Zhang, The influence of hBN crystallinity and additive Lithium hydride on cBN synthesis in Li3N-hBN system, Diamond Relal. Mater.,2007,16(8):1475-1478
    [16]L.L. Zhu, G. Lian, M. Tan, Q.L. Wang, X. Zhao, D.L. Cui, X.T. Tao, Reaction of Hexagonal Boron Nitride Nano-crystals under Mild Hydrothermal Conditions, Z. Naturforsch.,2008,63(6):742-746
    [17]Q.X. Liu, C.X. Wang, G.W. Yang, Nucleation thermodynamics of cubic boron nitride in pulsed-laser ablation in liquid, Phys. Rev. B,2005,71(15):155422(6 pages)
    [18]H.Z. Zhang, J.F. Banfield, Aggregation, coarsening, and phase transformation in ZnS nanoparticles studied by molecular dynamics simulations, Nano Lett.,2004, 4(4):713-718
    [19]A.S. Rozenberg, Yu.A. Sinenko, N.V. Chukanov, I.r.spectroscopy characterization of various types of structural irregularities in pyrolytic boron nitride, J. Mater. Sci.,1993,28(20):5675-5678
    [20]A.S. Rozenberg, Yu.A. Sinenko, N.V. Chukanov, Regularities of pyrolytic boron nitride coating formation on a graphite matrix, J. Mater. Sci.,1993,28(20): 5528-5533
    [21]V.L. Solozhenko, Inverse drop-calorimetry. A study of metastable and nonequilibrium phases, Thermochim. Acta.,1993,218:395-400
    [22]H. Sachdev, R. Haubner, H. Noth, B. Lux, Investigation of the c-BN/h-BN phase transformation at normal pressure, Diamond Relat. Mater.,1997,6(2):286-292
    [23]S. Bohr, R. Haubner, B. Lux, Comparative aspects of cBN and diamond CVD, Diamond Rela.. Mater.,1995,4(5-6):714-719
    [24]G. Kern, G. Kresse, and J. Hafner, Ab initio calculation of the lattice dynamics and phase diagram of boron nitride, Phys. Rev. B,1999,59(13),8551-8559
    [25]C.X. Wang, G.W. Yang, Thermodynamics of metastable phase nucleation at the nanoscale, Mater. Sci. Eng., R,2005,49(6):157-202
    [26]N. Ohba, K. Miwa, N. Nagasako, A. Fukumoto, First-principles study on structural, dielectric, and dynamical properties for three BN polytypes. Phy. Rev. B,2001,63(11):115207(9 pages)
    [27]T. E. Mosuang, J. E. Lowther, Influence of defects on the h-BN to c-BN transformation, Phys. Rew. B,2002,66(1):014112(5 pages)
    [28]L. Nistora, V. Teodorescu, C. Ghica, J. Van Landuyt, G. Dinca, Georgeoni, The influence of the h-BN morphology and structure on the c-BN growth, Diamond Relat. Mater.,2001,10(3-7):1352-1356
    [29]J.B. Wang, G.W. Yang, C.Y. Zhang, X.L. Zhong, ZH.A. Ren, Cubic-BN nanocrystals synthesis by pulsed laser induced liquid-solid interfacial reaction, Chem. Phys. Lett,2003,367(1-2):10-14
    [30]S.K. Singhala, J.K. Park, Synthesis of cubic boron nitride from amorphous boron nitride containing oxide impurity using Mg-Al alloy catalyst solvent, J. Cryst Growth.,2004,260(1-2):217-222
    [31]K. Larsson, J.-O. Carlsson, Surface processes in cubic boron nitride growth:a theoretical study,J. Phys. Chem. B,1999,103(31):6533-6538
    [32]V. L. Solozhenko, Thermodynamics of dense boron nitride modifications and a new phase P, T diagram for BN, Thermochim. Acta.,1993,218:221-227
    [33]K. Albe, Theoretical study of boron nitride modifications at hydrostatic pressures, Phys. Rev. B,1997,55(10):6203-6210
    [34]J. Furthmuller, J. Hafner, G. Kresse, Ab initio calculation of the structural and electronic properties of carbon and boron nitride using ultrasoft pseudopotentials, Phys. Rev. B,1994,50(21):15606-15622
    [35]V. L. Solozhenko, New concept of BN phase diagram:an applied aspect, Diamond Relat. Mater.,1994,4(1):1-4
    [36]D.R. McKenzie, W.D. McFall, W.G. Sainty, C.A. Davis, R.E. Collins, Compressive stress induced formation of cubic boron nitride, Diamond Relat Mater.,1993,2 (5-7):970-976
    [37]A.V. Pokropivny, Structure of the boron nitride E-phase:Diamond lattice of B12N12 fullerenes, Diamond Relat Mater.,2006,15(9):1492-1495
    [38]D. V. Shtansky, Y. Yamada-Takamura, T. Yoshida, Y. Ikuhara, Mechanism of nucleation and growth of cubic boron nitride thin films, Sci. Technol. Adv. Mater.,2000,1(4):219-225
    [39]F. Oba, A. Togo, I. Tanaka, K. Watanabe, T. Taniguchi, Doping of hexagonal boron nitride via intercalation:A theoretical prediction, Phys. Rev. B,2010, 81(7):075125(6 pages)
    [40]J. Ma, D. Alfe, A. Michaelides, E. Wang, Stone-Wales defects in graphene and other planar sp2-bonded materials, Phys. Rev. B,2009,80(3):033407(4 pages)
    [41]S.G. Hao, G. Zhou, W.H. Duan, J. Wu, B.-L. Gu, Transverse pressure induced phase transitions in boron nitride nanotube bundles and the lightest boron Nitride crystal, J.Am. Chem. Soc.,2008,130 (15):5257-5261
    [42]B. Marlid, K. Larsson, J.-O. Carlsson, Hydrogen and fluorine adsorption on the h-BN (001) plane, J. Phys. Chem. B,1999,103(36):7637-7642
    [1]Z.H. Ding, B. Yao, L.X. Qiu, S.Z. Bai, X.Y. Guo, Y.F. Xue, W.R. Wang, X.D. Zhou, W.H. Su, Formation of titanium nitride by mechanical milling and isothermal annealing of titanium and boron nitride, J. Alloy. Compd.,2005, 391(1-2):77-81
    [2]Z.P. Xia, Z.Q. Li, Structural evolution of hexagonal BN and cubic BN during ball milling, J. Alloy. Compd.,2007,436(1-2):170-173
    [3]J.G. Tao, B. Yao, J.H. Yang, S.J. Zhang, K. Zhang, S.Z. Bai, Z.H. Ding, W.R. Wang, Mechanism of formation of Fe-N alloy in the solid-state reaction process between iron and boron nitride, J. Alloy. Compd.,2004,384(1-2):268-273
    [4]T. Kobayashi, K. Sura, S. Taniguchi, New catalysts for the high pressure synthesis of cubic BN, Mater. Res. Bull.,1975,10(11):1231-1236
    [5]JCPDS 76-0795
    [6]JCPDS 31-0043
    [7]JCPDS 34-0421
    [8]JCPDS 77-0425
    [9]Y. Panayiotatos, S. Logothetidis, M. Handrea, W. Kautek, Homogeneous and amorphous sputtered sp3-bonded BN films at RT:a stress, spectroscopic ellipsometry and XPS study, Diamond Relat Mater.,2003,12(3-7),1151-1156
    [10]J. Thomas, Jr.N.E. Weston, T.E. O'Conner, Turbostratic boron nitride thermal transformation to ordered layer boron nitride, J. Am. Chem. Soc.,1963,84(24): 4619-4622
    [11]P.B. Mirkarimi, K.F. McCarty, D.L. Medlin, Review of advances in cubic boron nitride film synthesis, Mater. Sci. Eng. R,1997,21(2) 47-100
    [12]J.Y. Huang, H. Yasuda, H. Mori, HRTEM and EELS Studies on the amorphization of hexagonal boron Nitride induced by ball milling, J. Am. Ceram. Soc.,2000,83(2):403-409
    [13]P.B. Wheelock, B.C. Cook, L. Harringa, A.M. Russell, Phase changes induced in hexagonal boron nitride by high energy mechanical milling,J. Mater. Sci.,2004, 39(1):343-347
    [14]P.J. Gielisse, S.S. Mitra, J.N. Plendl, Lattice Infrared Spectra of Boron Nitride and Boron Monophosphide, Phys. Rev.,1967,155(3):1039-1046
    [15]S. Fahy, Calculation of the strain-induced shifts in the infrared-absorption peaks of cubic boron nitride, Phys. Rev. B,1995,51(18):12873-12875
    [16]A.S. Rozenberg, Yu.A. Sinenko, N.V. Chukanov, Regularities of pyrolytic boron nitride coating formation on a graphite matrix, J. Mater. Sci.,1993,28(20): 5528-5533
    [17]A.S. Rozenberg, Yu.A. Sinenko, N.V. Chukanov, I.r.spectroscopy characterization of various types of structural irregularities in pyrolytic boron nitride,J. Mater. Sci.,1993,28(20):5675-5678
    [18]T.J. Kobayashi, High pressure syntheses of cubic BN using water, urea, and boric acid catalysts, Chem. Phys.,1979,70(12); 5898-5896
    [19]M. Gasgnier, H. Szwarc, A. Ronez, Low-energy ball-milling:Transformations of boron nitride powders. Crystallographic and chemical characterizations,J. Mater. Sci.,2000,35(12):3003-3009
    [20]J.Y. Huang, Yuntian T. Zhu, Atomic-Scale Structural Investigations on the Nucleation of Cubic Boron Nitride from Amorphous Boron Nitride under High Pressures and Temperatures, Chem. Mater.,2002,14(2):1873-1879
    [21]Y. Yamada-Takamura, O. Tsuda, H. Ichinose, T. Yoshida, Atomic-scale structure at the nucleation site of cubic boron nitride deposited from the vapor phase, Phys. Rev. B,1999,59(15):10351-10355
    [22]T. Kobayashi, Solvent effects of fluorides in cubic BN high pressure synthesis, Mat Res. Bull.,1979,14(12):1541-1551
    [23]W. Kalss, R. Haubner, B. Lux, Preparation of BN films in the B-N-F system, Diamond Relat Mater.,1998,7(2):369-375
    [24]S. Matsumoto, N. Nishida, K. Akashi and K. Sugai, Preparation of BN films by r.f. thermal plasma chemical vapour deposition,J. Mater. Sci.,1996,31(3), 713-720
    [25]W.J. Zhang, S. Matsumoto, The roles of hydrogen and fluorine in the deposition of cubic boron nitride films in the Ar-N2-BF3-H2 system, Chem. Phys. Lett., 2000,330(3-4):243-248
    [26]W.J. Zhang, S. Matsumoto, K. Kurashima and Y. Bando, Structure analysis of cBN films prepared by DC jet plasma CVD from an Ar-N2-BF3-H2 gas system, Diamond Relat Mater.,2001,10(9-10):1881-1885
    [27]R.Q. Zhang, D.J. Zhang, Y.L. Zhao and S.T. Lee, Fluorination induced etching selectivity of boron nitride phases, J. Phys. Chem. B,2004,108(32):7597-7602
    [28]K. Larsson, J.O. Carlsson, Surface processes in cubic boron nitride growth:A theoretical study,J. Phys. Chem. B,1999,103(31):6533-6538
    [29]A.V. Pokropivny, Structure of the boron nitride E-phase:Diamond lattice of B12N12 fullerenes, Diamond Relat Mater.,2006,15(9):1492-1495
    [30]Y.X. Su, X. Ju, K. Wei, C.S. Shi, Z.F. Han, J.Y. Shi, J. Deng, S. Zhu, Y.B. Chi, Vacuum-ultraviolet reflectance spectra and optical properties of nanoscale wurtzite boron nitride, Phys. Rev. B,1994,50(24):18637-18639
    [31]W.J. Yu, W.M. Lau, S.P. Chan, Z.F. Liu, Q.Q. Zheng, Ab initio study of phase transformations in boron nitride, Phys. Rev. B,2003 67(1):014108-01416
    [32]O. Fukunaga, S. Nakano, T. Taniguchi, Nucleation and growth of cubic boron nitride using a Ca-B-N solvent, Diamond Relat Mater.,2004,13(9):1709-1713
    [33]H. Sumiya, T. Iseki, A. Onodera, High pressure synthesis of cubic boron nitride from amorphous state, Mater. Res. Bull.,1983,18(10):1203-1207
    [34]T. Kobayashi, S. Tashiro, T. Sekine, T. Sato, Phase transformation of turbostratic BN by shock compression, Chem. Mater.,1997,9(1):233-236
    [35]K. Murakoshi, H. Hosokawa, N. Tanaka, M. Saito, Y. Wada, T. Sakata, H. Mori, S. Yanagida, Phase transition of ZnS nanocrystallites induced by surface modification at ambient temperature and pressure confirmed by electron diffraction, Chem. Commun.,1998:321-322
    [36]Y.S. Xiong, J. Zhang, F. Huang, G.Q. Ren, W.Z. Liu, D.S Li, C. Wang, Z. Lin, Growth and phase-transformation mechanisms of nanocrystalline CdS in Na2S solution,J. Phys. Chem. C,2008,112 (25):9229-9233
    [1]L. Liu, Y.P. Feng, Z.X. Shen, Phys. Rev. B 68 (2003) 104102.
    [2]T.E. Mosuang, J.E. Lowther, J. Phys. Chem. Solids 63 (2002) 363.
    [3]K. Watanabe, T. Taniguchi, H. Kanda, Nat. Mater.3 (2004) 404.
    [4]Yamoto, Osamu, Crystalline turbostratic boron nitride powder and method for producing same. US Patent 6306358.2001.
    [5]J. Thomas, N.E. Weston, T.E. O'Connor, J. Am. Chem. Soc.84 (1962) 4619.
    [6]K.P. Loh, I. Sakaguchi, M.N. Gamo, S. Tagawa, T. Sugino, T. Ando, Appl. Phys. Lett.74(1999)28.
    [7]Sedat Alkoy, Cetin Toy, Turgay Gdniil, Adnan Tekin. J. Europ. Ceram. Soc.17 (1997) 1415.
    [8]S. Horiuchi, L.L. He, M. Akaishi, Jpn. J. Appl. Phys.34 (1995) L1612.
    [9]H.S. Yang, C. Iwamoto, T. Yoshida, J. Appl. Phys.91 (2002) 6695.
    [10]H.S. Yang, C. Iwamoto, T. Yoshida, Thin Solid Films 407 (2002) 67.
    [11]Z.P. Xia, Z.Q. Li, J. Alloys. Compd.436 (2007) 170.
    [12]Q.X. Guo, Y. Xie, C.Q. Yi et al., J. Solid Stat. Chem.178 (2005) 1925.
    [13]X.J. Wang, Y. Xie, Q.X. Guo, Chem. Commun.21 (2003) 2688.
    [14]F. Xu, Y. Xie, X. Zhang, S.Y. Zhang, X.M. Liu, X.B. Tian, Inorg. Chem.43 (2004) 822.
    [15]Z.F. Lai, L.L. Zhu, L.L. Yu, Z. Chen, X. Zhang, Q.L. Wang, D.L. Cui, M.H. Jiang, Zeitschrift fuer Naturforschung B,61b (2006) 1555.
    [16]R. Komm, R. A. Geanangel, R. Liepins, Inorg. Chem.22 (1983) 1684.
    [17]Y. Tang, J. Wang, X.D. Li, H. Wang, W.H. Li, X.Z. Wang, J. Appl. Polym. Sci., 110(2008),921.
    [18]Q.B. Zeng, J. Appl. Polym. Sci.,73 (1999) 863
    [19]Silke Reinhardt, Marcus Gastreich, Christel M. Marian., Z. Anorg. Allg. Chem. 626(2000),1871.
    [20]Be'range're Toury, Philippe Miele., J. Mater. Chem.,14 (2004) 2609.
    [21]C. T. Kwon, H. A. McGee Jr., Inorg. Chem.12 (1973) 696.
    [22]Henry A. McGee Jr., C. T. Kwon., Inorg. Chem.,9(11) (1970) 2458.
    [23]A. H. McDaniel and M. D. Allendorf., J. Phys. Chem. A 102 (1998) 7804.
    [24]E.J.M. Hamilton, S.E. Dolan, C.M. Mann, H.O. Colijn, S.G. Shore, Chem. Mater. 7(1995) 111.
    [25]P.B. Mirkarimi, K.F. McCarty, D.L. Medlin, Mater. Sci.& Engin. R21 (1997) 47.
    [26]A.S. Rozenberg, Yu.A. Sinenko, N.V. Chukanov, J. Mater. Sci.28 (1993) 5528.
    [27]A.S. Rozenberg, Yu.A. Sinenko, N.V. Chukanov, J. Mater. Sci.28 (1993) 5675.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700