表面展示南极假丝酵母脂肪酶B的毕赤酵母全细胞催化合成糖酯
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
糖酯是一类重要的非离子型表面活性剂,具有无毒、无刺激和可生物降解等优点,在食品、化妆品和医药等领域有着广泛的用途和良好的发展前景。与化学法合成糖酯相比,酶法合成糖酯具有反应条件温和、选择性强、副产物少以及产品易于纯化等优点。
     基于酵母表面展示技术得到的表面展示南极假丝酵母脂肪酶B(Candida antarctica lipase B, CALB)的毕赤酵母全细胞催化剂,具有固定化酶的特性及优点,且制备方法简单,易于回收与再生利用,用于在有机相中合成表面活性剂(糖酯),克服了游离酶在分离纯化、再生以及循环利用等方面的困难,且与目前商品化的固定化脂肪酶相比,其制备方法简单、成本较低、可重复利用,使酶法合成表面活性剂前景广阔。
     本文利用本实验室自制表面展示南极假丝酵母脂肪酶B的全细胞为催化剂,以葡萄糖和果糖为酰基受体,以月桂酸为酰基供体合成糖酯。首先建立了糖酯定性定量分析方法,用薄层色谱进行糖酯定性。薄层色谱最佳条件为:甲苯/乙酸乙酯/甲醇/水(10: 5: 4.5: 0.2,v/v/v/v)。将薄层色谱条件运用于硅胶柱层析,对产物进行初步分离,再用制备液相色谱进一步分离纯化,并用高效液相色谱-质谱(HPLC-MS),核磁共振(NMR)技术鉴定纯品结构。此外,建立了利用高效液相色谱-蒸发光散射检测器(HPLC-ELSD)对糖酯进行定量分析的方法,色谱条件为:甲醇/乙酸乙酯/水(52: 35: 13, v/v/v),漂移管温度55℃,氮气流速30 psi。
     本研究对全细胞催化剂催化合成两种单糖酯的反应体系进行了优化。在以葡萄糖为酰基受体的反应体系中,考察了有机溶剂种类、复合溶剂体系中二甲基亚砜(DMSO)体积百分比、全细胞催化剂添加量、底物浓度、水活度和温度等几个影响酯化反应的因素。结果表明:在5 mL反应体系中,以叔戊醇/二甲基亚砜(30% DMSO, v/v)为反应介质,添加初始水活度为0.11的全细胞催化剂0.5 g,葡萄糖0.5 g,月桂酸1.0 g,60℃下反应72 h后,葡萄糖月桂酸单酯的产率可达到48.7%。
     在以果糖为酰基受体的反应体系中,考察了有机溶剂种类、复合溶剂体系中二甲基亚砜(DMSO)体积百分比、全细胞催化剂添加量、底物浓度、底物摩尔比、温度、水活度和分子筛等因素对全细胞催化剂催化合成果糖月桂酸单酯和果糖月桂酸二酯的影响。在单因素优化的基础上,运用响应面分析方法对酯化反应过程进行了优化,考察了温度、底物摩尔比、全细胞催化剂添加量之间的交互作用对全细胞催化剂催化合成果糖酯的影响。结果表明:在5 mL应体系中,以叔戊醇/二甲基亚砜(20% DMSO, v/v)为反应介质,添加初始水活度为0.11的全细胞催化剂0.3 g,果糖0.36 g,月桂酸1.08 g,56℃下反应72 h后,果糖月桂酸单酯的产率达到82.5%。为了实现全细胞催化剂高效率的循环使用,考察了全细胞催化剂催化合成果糖月桂酸酯的操作稳定性。全细胞催化剂重复利用15批次(24 h/批次)后,果糖月桂酸单酯的相对产率仍可达最高反应批次的77%。此外,该全细胞还具有良好的有机溶剂稳定性,从而为糖酯的进一步开发应用提供了可能性。
Sugar fatty acid esters are significant nonionic surfactant which produced from renewable and inexpensive substance. Because they are completely biodegradable under aerobic and anaerobic conditions, non-toxic, no-skin irritants, odourless and tasteless, so widely used as emulsifler in food cosmetic and pharmaceutical industries. Sugar esters can be porduced by enzymatic or chemical methods. However, chemical synthesis of sugar fatty acid esters is generally performed as a high temperature esterification in the persence of alkaline catalyst, which is accompanied by high energe consumption, browning of products and low selectivity toward the various hydroxyl groups in sugars. Comparing with the chemical method,enzymatic synthesis can be performed under milder reaction conditions with a higher regioselectivity.
     Candida antarctica Lipase B (CALB) has a good potential in industrial application, with a wide range of monosaccaride fatty acid esters often as single regiosomers. The free lipase has the drawbakcs of purification and recycling, while the high cost of commercial immobilized CALB limits its industrial application. Compared with immobilized enzymes, enzyme- displaying yeast whole-cell biocatalyst seems to be an alternative due to its simplicity, high enzymatic activity and cost-effective as well. Lipase-displaying yeast whole-cell biocatalyst has attracted more and more attentions since it can be used for the synthesis of useful product, such as bio-surfactant.
     In this paper, the recombinant CALB displayed on the surface of Pichia pastoris was constructed and used as a whole-cell biocatalyst to catalyze the esterification of sugers and fatty acids. Glucose and fructose as the acyl acceptors and lauric acid as the acyl donor. The thin layer chromatogaphy (TLC) to qualitatively analyze fatty acid ester was developed. The optimal conditions of TLC were: toluene-ethyl acetate-methanol-water (10:5:4.5:0.2, v/v/v/v) as the mobile phase, coloration by sprayingα-naphthol-sulfuric acid. Products was isolated by silica gel column chromatography at first, using the same condition as TLC, and then by preparative liquid chromatography, sugar fatty acids were identified by Liquid Chromatography-Mass Spectrometry and Nuclear Magnetic Resonance.
     The influential factors on whole-cell synthesis of glucose laurate monoester were studied, such as solvent composition, percentage of Dmethyl sulfoxide in 2-Methyl-2-butanol (v/v), catalyst dosage, substrate concentration, water activity and temperature. The optimal reaction conditions were: 5 mL total reaction volume, 2-Methyl-2-butanol/Dmethyl sulfoxide (30% Dmethyl sulfoxide, v/v), 0.5 g glucose, 1.0 g lauric acid, 0.5 g whole-cell biocatalysts, the best initial water activity of whole-cell biocatalyst was 0.11, temperature 60°C, 200r/min. The maximum yield could be 48.7% after 72 h.
     In the synthesis of fructose laurate ester catalyzed by whole-cell catalyst, reaction conditions such as solvent composition, biocatalyst concentration, substrate concentration, water activity, amount of molecular sieves and temperature, were also studied. On the basis of single factor optimization, Response Surface Methodology was used to analyse the interaction of fators: catalyst dosage, substrate concentration and temperature. The highest conversion was obtained in 2-Methyl-2-butanol/Dmethyl sulfoxide, Dmethyl sulfoxide percentage 20% (v/v) in 5 mL total reaction volume, fructose 0.36 g, lauric acid 1.08 g, 0.3 g whole-cell biocatalysts, the best initial water activity of whole-cells biocatalyst was 0.11, temperature 56°C, 200 r/min, and 82.5% of the maximum yield achieved after 72 h.
     To further examine the potential of the whole-cell biocatalyst for sugar esters synthesis, the operational stability of the whole-cell biocatalyst in organic solvents was investigated. The results indicated that the whole-cell catalyst owned good operation stability, after being reused for 15 batches (24 h/batch), the residual activity remained above 77%, compared with the best batch.
引文
[1]赵国玺.表面活性剂作用原理[M].北京:中国轻工业出版社,2003
    [2]梁治奇,宗惠娟,李金华.表面活性剂工业[M].北京,中国轻工业出版社,2002,6-10
    [3]李祖义,徐国梁等.生物表面活性剂催化合成蔗糖酯及其应用[J].上海化工,1999(21):6-11
    [4]李祖义,刘俊杰.酶促合成全氟辛酸半乳糖脂[J].有机化学, 1998, 18(5):432-434.
    [5] Garti N., Aserin A., Fanun M. Nonionic sucrose esters microemulsions for food applications. Part 1.Water solubilization[J]. Physicochemical and Engineering Aspects,2000,164(1):27-38
    [6] Lemp E., Zanocco A.L., Günther G. Surtcutral changes in DODAC unilamellar liposomes by addition of sucrose esters monitored by using fluorescent techniques[J]. Physicochemical and Engineering Aspects, 2003, 229(1-3):63-73
    [7] Muller A.S., Gagnaire J., Queneu Y., et al. Winsor behvaiour of sucrose fatty acid esters: choice of the cosurfactant and effct of the surfactant composition[J]. Physicochemical and Engineering Aspects, 2002, 203(1-3):55-66
    [8] Alembert T.T., Pierre T., Ayafora J.F., et al. Stigmastane derivatives and isovaleryl sucrose esters from Vernonia guineensis (Asteraceae) [J]. Phytochemistry, 2003, 63(7):841-846.
    [9] Husband F.A., Sarney D.B., Barnard M.J., et al. Comparison of foaming and interfacial properties of pure sucrose monolaurates dilaurate and commercial Preparations[J]. Food Hydrocolloids, 1998, 12(2):237-244
    [10]张万福.食品乳化剂[M].北京:中国轻工业出版社, 1993
    [11] Plat T., Linhardt R.J. Syntheses and applications of sucrose-based esters[J]. Journal of Surfactants and Detergents, 2001, 4(4):415-425
    [12] Yin Y.L., Wlker C.E., Deffenbaugh L.B. Emulsification properties of sugar esters[J]. FoodScience&Technology, 1994, 62:111-136
    [13] FDA. Food additives for direct addition to food for human consumption. Sucrose fatty acid seters [J]. Federal Register, 60(167):723-725
    [14] Potier P., Maccario V., Giudicelli M., et al. Gallic esters of sucrose as a new class of antioxidants[J]. Tetrahedron letters, 1999, 40(17): 3387-3390
    [15] Rios J.J., Pérez-Cmaino M.C., Márquez-Ruiz G., et al. Isolation and Characterization of sucrose polyesters[J]. Journal of the American Oil Chemists’Society, 1994,71(4):385-390
    [16] Chorty O.T., Pomonis J.G., Johnson A.W. Syntheses and Characterizations of Insectici -dal Sucrose esters[J]. Journal of Agricultural and Food chemistry, 1996,44(6):1551-1557
    [17] Kea S., Walker C.E. Sugar esters and improved anhydrous method of manufacture[P]. US:4683299.1987,6,28
    [18]张万福.食品乳化剂[M].北京:中国轻工业出版社,1993
    [19] Feuge R.O., Zeringue H.J., Weiss T.J., et al. Preparation of Sucrose esters by interesteri -fication [J]. Journal of the American Oil Chemists’Society, 1970, 47(2):56-60
    [20] Zaks A., Knibanov A.M. Enzymatic catalysis in organic media at 100degrrees C[J]. Scienc, 1984, 224(4654):1249-1251
    [21] Wescott C.R., Klibanov A.M. The solvent dependence of enzyme specificity[J]. Biochimica et Biophysica Acta(BBA),1994.1206(1):1-9
    [22]崔玉敏,魏东芝,俞俊棠.水在有机相酶催化反应中的作用[J].生物工程进展,1999,19(1):54-61
    [23] Degn P., Zimmermann W. Optimization of Carbohydrate Fatty Acid Ester Synthesis in Organic Media by a Lipase from Candida antarctica[J]. Biotechnology and bioengineering, 2001, 74(6): 483-491
    [24] Zaks A., EmPieM.,Gross A. Potentially commercial enzymatic Processes for the fine and specialty chemical industries[J]. Trends in Biotechnology, 1988, 6(11):272-275
    [25] Hayes D.G., Gulari E. Formation of Polyol-fatty acid esters by lipase in reverse micellar media[J]. Biotechnology and Bioengineering, 1992, 40(1):110-118
    [26] Rao A.M., John V.T., Gonzalez R.D., et al. Catalytic and interfacial aspects of enzymatic Polymer synthesis in reversed micellar systems[J]. Biotechnologe and Bioengineering, 1992, 41(5):531-540
    [27] Nakamura K. Biochmical reactions in supercritical fluids[J]. Trends in Biotechnology. 1990, 8:288-292
    [28] Blanchard L.A., Hancu D., Beckman E.J., et al. Green processing using ionic liquids and CO2[J]. Nature,1999,399(6731):28-29
    [29] Huan P.T., Gerd B. Sugar fatty acid ester synthesis in high-pressure acetone–CO2 system[J], The Journal of Supercritical Fluids, 2009,48(1):36-40
    [30]周晓露,宗敏华,姚汝华.促进非水相酶反应的研究进展[J].分子催化,2000,16:52-60;
    [31] Park S., Kazlauskas R.J. Biocatalysis in ionic liquids-advantages beyond green technol-ogy[J]. Current Poinion in Biotechnology, 2003,14(4):432-437
    [32] Lozano P., Piamtongkam R., Kohns K., et al. Ionic liquids improve citronellyl ester synthesis catalyzed by immobilized Candida antarctica lipase B in solvent-free media[J]. Green Chemistry, 2007,9(7):780-784
    [33] Kim M.J., Choi M.Y., Lee J.K., et al. Enzymatic selective acylation of glycosides in ionic liquids: significantly enhanced reactivity and regioselectivity[J]. Journal of Molecular Catalysis B: Enzymatic, 2003, 26(1-3):115-118
    [34] Yu J.G., Zhang J.S., Zhao A., et al. Study of glucose ester synthesis by immobilized lipase from Candida sp. [J] . Catalysis Communications, 2008,9(6):1369-1374
    [35] Uppenberg J., HansenM T., Patkar S., et al. The sequence, crystal structure determination and refinement of two crystal forms of lipase B from Candida antarctica [J]. Structure, 1994, 2(4): 293-308
    [36] Gao J.L., Ma S.H., Major D.T., et al. Mechanisms and free energies of enzymatic reaction[J]. Chemical Reviews, 2006,106(8),3188-3209
    [37] Kondo A., Udea M. Yeast cell-surface display-applications of molecular dishlay [J]. Applied Microbiology and Biotechnology, 2004, 64(1): 28-40
    [38]郭波,谢佩蓉等.酵母表面展示系统研究进展[J].生物化学与生物物理进展, 2002, 29(1):19-22
    [39] Vaart J.M., Biesebeke R.T., Chapman J.W., et al. Comparison of cell wall proteins of Saccharomyces cerevisiae as anchors for cell surface expression of heterologous proteins [J]. APPl Environ Microbiol, 1997, 63(2): 615-620
    [40] Sato N. Matsumolo T., Ueda M., et al. Fukuda H, Kondo. A Long anchor using Flol protein enhance, reactivily of ce11 surface displayed glucoamylase to polymer substrates [J]. APPl Microbiol Biotechnol, 2002, 60: 469- 474
    [41] Malsumoto T., Fukuda H., Ueda M., et al. Construction of yeast strains with high cell surface lipase activity by using novel display systems based on tbe Flolp flocculation function domain [J]. APPl Microbiol Biotechnol, 2002, 68: 4517- 4522
    [42] Husband F.A., Sarney D.B., Barnard M.J., et al. Comparison of foaming and interfacial properties of pure sucrose monolaurates dilaurate and commercial Preparations[J]. Food Hydrocolloids, 1998, 12(2):237-244
    [43] Spiliotis N., Voutsas E., Magoulas K. Recovery of fructose laurate produced through enzymatic esterification[J]. Separation and Purification Technology.2003. 19(3):229-236
    [44] Kennedy J.F., Kumar H., Panesar P.S., et al. Enzyme-catalyzed regioselective synthesis of sugar esters and related compounds[J]. Journal of Chemical Technology&Biotechnology,2006, 81(6):866-876
    [45] Chang S.W., Shaw J.F. Biocatalysis for the production of carbohydrate esters[J]. New Biotechnology, 2009, 26(3-4):109-116
    [46] Karmee S.K. Lipase catalyzed synthesis of ester-based surfactants from biomass derivatives[J]. Biofuels. Bioproducts and Biorefining, 2008, 2(2):144-154
    [47] Kondo A., Udea M. Yeast cell-surface display- applications of molecular display. Appl Microbiol Biotechnol, 2004, 64(1): 28-40
    [48] Fukuda H., Kondo A., Noda H. Biodiesel fuel production by transesterification of oils[J]. Journal of Bioscience and Bioengineering, 2001, 92(5):405-416
    [49] Kato M., Fuchimoto J., Tanino T., et al. Preparation of a whole-cell biocatalyst of mutated Candida antarctica lipase B (mCALB) by a yeast molecular display system and its practical properties[J]. Applied Microbiology and Biotechnology, 2007, 75(3):549-555
    [50] Tanino T., Ohno T., Aoki T., et al. Development of yeast cells displaying Candida Antarctica lipase B and their application to ester synthesis reaction[J]. Applied Microbiology and Biotechnology, 2007, 75(6):1319-1325
    [51] Han S.Y., Pan Z.Y., Huang D.F., et al. Highly efficient synthesis of ethyl hexanoate catalyzed by CALB-displaying Saccharomyces cerevisiae whole-cells in non-aqueous phase[J]. Journal of Molecular Catalysis B: Enzymatic, 2009, 59(1-3):168-172
    [52] Arcos J.A., BernabéM., Otero C. Quantitative enzymatic production of 6-O-acylglucose esters[J]. Biotechnology and Bioengineering., 1998,57(5):505-509
    [53] Degn P., Pedersen L.H., Duus J.?., et al. Lipase-catalyzed synthesis of glucose fatty acid esters in tert-butanol[J]. Biotechnology Letters,1999,21(4):275-280
    [54] Chamouleau F., Coulon D., Girardin M,et al. Influence of water activity and water content on sugar esters lipase-catalyzed synthesis in organic media[J]. Journal of Molecular Catalysis B: Enzymatic, 2001,(11):949-954
    [55] Schekermann C., Schlotterbeck A., Schmidt M., et al. Enzymatic monoacylation of fructose by two procedures[J]. Enzyme and Microbial Technology,1995,17(2):157-162
    [56] Kumari S.D., Aranzazu G.S., Ferrer M. et al. Effect of carbohydrate fatty acid esters on Streptococcus sobrinus and glucosyltransferase activity[J]. Carbohydrate Research, 2004, 339(6):1029-1034
    [57] Pan ZY, Han SY, Lin Y, et al. Experssion of Candida antarctica Lipase B on Yeast Surface and Synthesis of Ethyl Hexanoate Catalyzed by CALB[J]. Chinese Journal of Biotechnology, 2008, 24(4):673-678.潘志友,韩双艳,林影等.南极假丝酵母脂肪酶B的酿酒酵母表面展示及其催化己酸乙酯的合成[J].生物工程报,2008, 24(4):673-67
    [58] J Z., Lin Y., Huang D.F., Su G.D., et al. Synthesis of flavor esters catalyzed by CALB-displaying Pichia pastoris whole-cell in non-aqueous phase [J]. Chinese Journal of Biotechnology, 2009, 25(12):1921-1926金子,林影,黄登峰等.展示南极假丝酵母脂肪酶B的毕赤酵母全细胞催化合成短链芳香酯[J].生物工程报,2008, 24(4):673-67
    [59]周健,张晓鸣.甘露糖酯的分离纯化及分析方法研究[J].食品科学,2006,27(6):69-72
    [60] Bruno M., Giuliano C. Analysis of mixtures containing free fatty acids and mono-, di- and triglycerides by high-performance liquid chromatography coupled with evaporative light- scattering detection[J]. Journal of Chromatography A, 1996,730(1-2):83-90
    [61] Park O.J., Kim D.Y., Dordick J.S., Enzyme-Catalyzed Synthesis of Sugar-Containing Monomers and Linear Polymers[J]. Biotechnology And Bioengineering, 2000, 70(2):208-216
    [62]李延科,张淑芬,杨锦宗.薄层色谱分析[J].色谱, 2007,20(5):476-478
    [63] Coulon D., Girardin M., Engasser J.M., et al. Investigation of keys Parmaeters of fructose oleate enzymatic synthesis catalyzed by an immobilized lipase[J]. Industrial Crops and Produts6, 1997,6(3-4):375-381
    [64] Gupta R. K., James K., Smith F. J. Analysis of Sucrose Dono- and Diesters Prepared from Triglycerides Containing C12-C18 Fatty Acids[J]. Journal of the American oil chemists’Society, 1983,60(11):1908-1913
    [65] Jaspers M.P.A.P., Leeuwen F.F., Nieuwenhuis H.J.W., et al. High performance liquid chromatographic seperation of sucrose fatty acid esters[J]. Journal of the American Oil Chemists' Society, 1987, 64(7):1020-1025
    [66] Moh M.H., Tang T.S., Tan G.H. Improved separation of sucrose ester isomers using gradient high performance liquid chromatography with evaporative light scattering detection[J]. Food chemmistry, 2000, 69(1):105-110
    [67]安振明,韩萍芳.非离子表面活性剂果糖酯的酶法合成研究[D].南京:南京工业大学, 2004
    [68] Kimihiro Y., Yoshitaka L.,Yoshisuke T. 13C-Nuclear Magnetic Resonance (NMR) Spectra of O-Acylglucoses. Additivity of Shift Parameters and Its Application to Structure Elucidations[J]. Chemical & pharmaceutical bulletin, 1980, 28(7):2065-2076
    [69] Amos J.A., BernabéM., Cristina O. Quantitative enzymatic production of 1,6-diacyl fructofuranoses[J]. Enzyme and Microbial Technology, 1998,22(1):27-35
    [70] Sin Y.M., Cho K.W., Lee T.H. Synthesis of fructose esters by Pseudomonas sp. lipase in anhydrous pyridine[J]. Biotechnology Letters, 1998, 20(1):91-94
    [71]李伟光,高大维,闵亚光.均匀设计法快速确定超声场对纤维素酶活力的影响的粗探[J],微生物学杂志, 1996,16(4):36-40
    [72] Plou F.J., Cruces A.M., Ferrer M., et al. Enzymatic acylation of di- and trisaccharides with fatty acids: choosing the appropriate enzyme, support and solvent[J]. Journal of Biotechnology, 2002, 96(1):55-66
    [73] Ma L., Persso M., Adlercreutz P. Water activity dependence of lipase catalysis in organic media explains successful transesterification reactions[J]. Enzyme Microbial Technology, 2002, 31(7): 1024-1029
    [74] Tsavas P., Polydorou S., Faflia L. Solubility of Glucose in Mixtures Containing 2-Methyl-2-butanol, Dimethyl Sulfoxide, Acids, Esters, and Water[J]. Journal of chemical&engineering data, 2002, 47(4),:807-810
    [75] Flores M.V., Naraghi K., Engasser J.M., et al. Influence of glucose solubility and dissolution rate on the kinetics of lipase catalyzed synthesis of glucose laurate in 2-Methyl 2-Butanol[J]. Biotechnology and bioengineering, 2002, 78(7):815-821
    [76] Cauglia F., Canepa P. The enzymatic synthesis of glucosylmyristate as a reaction model for general considerations on‘sugar esters’production[J]. Bioresour Technology, 2008, 99(10): 4065-4072
    [77] Lima F.V., Pyle D.L., Asenjo J.A. Factors affecting the esterification of lauric acid using an immobilized biocatalyst: Enzyme characterization and studies in a well-mixed reactor[J]. Biotechnol Bioengineering, 1995, 46(1):69-79
    [78] Yu J.G., Zhang J.S., Zhao A., et al. Study of glucose ester synthesis by immobilized lipase from Candida sp. [J]. Catalysis Communications, 2008, 9(6):1369-1374
    [79] Cao L., Bornscheuer U.T., Schmid R.D. Lipase-catalyzed solid-phase synthesis of sugar esters. Influence of immobilization on productivity and stability of the enzyme[J]. Journal of Molecular Catalysis B: Enzymatic,1999, 6(3):279–285
    [80] Anatole A.K., Nguen V.V., Ilya V.B. The Reactions of a-Chymotrypsin and Related Proteins with Ester Substrates in Non-aqueous Solvents[J]. Eur. J. Biochem. 1975,59. 3-7
    [81] Ferrer M., Cruces M.A., BernabéM., et al. Lipase-Catalyzed Regioselective Acylation of Sucrose in Two-Solvent Mixtures[J]. Biotechnology and bioengineering, 1999, 65(1): 10-16
    [82] Arcos, J. A., Hill, C. G., Otero.C. Kinetics of the lipase catalyzed synthesis of glucoseesters in acetone[J]. Biotechnology and Bioengineering, 2001, 73(2): 104-110
    [83] Coulon D., Girardin M., Engasser J.M., et al. Investigation of keys parameters of fructose oleate enzymatic synthesis catalyzed by an immobilized lipase[J]. Industrial Crops and Products, 1997,6(3-4):375–381
    [84] Yan Y., Bornscheuer U. T., Cao L., et al. Lipase-catalyzed solid-phase synthesis of sugar fatty acid esters: Removal of byproducts by azeotropic distillation[J]. Enzyme and Microbial Technology, 1999, 25(8-9):725-728
    [85] Mutua L.N., Akoh C.C. Synthesis of alkyl glycoside fatty acid esters in non-aqueous media by Candida sp. lipase[J]. Journal of the American Oil Chemists' Society, 1993,70(1):43-46
    [86] Janssen A.E.M., Klabbers C., Franssen M.C.R., et al. Enzymatic synthesis of carbohydrate esters in 2-pyrrolidone[J]. Enzyme Microbial Technology, 1991, 13(7):565-572
    [87] Fregapane G., Sarney D.B., Vulfson E.N. Enzymic solvent-free synthesis of sugar acetal fatty acid esters[J]. Enzyme Microbial Technology, 1991,13(10).796-800
    [88] Lima F.V., Pyle D.L., Asenjo J.A. Factors affecting the esterification of lauric acid using an immobilized biocatalyst: Enzyme characterization and studies in a well-mixed reactor[J]. Biotechnology and Bioengineering, 1994,46(1):69-79
    [89] Tarahomjoo S., Alemzadeh L. Surfactant production by an enzymatic method[J]. Enzyme and Microbial Technology, 2003, 33(1): 33-37
    [90] ?abeder S., Habulin M., Knez ?. Lipase-catalyzed synthesis of fatty acid fructose esters[J]. Journal of Food Engineering, 2006, 77(4): 880-886
    [91] Zhou J., Tao G.J., Liu Q.Y., et al. Equilibrium yields of mono- and di-lauroyl mannoses through lipase-catalyzed condensation in acetone in the presence of molecular sieves[J]. Biotechnology Letters, 2006,28: 395-400
    [92] Cao L.Q., Bornscheuer U.T., Schmid R.D. Lipase-catalyzed solid-phase synthesis of sugar esters. Influence of immobilization on productivity and stability of the enzyme[J]. Journal of Molecular Catalysis B: Enzymatic, 1999,6:279-285
    [93] Sin Y. M., Cho K. W., Lee T.H. Synthesis of fructose esters by Pseudomonas sp lipase in anhydrous pyridine[J]. Biotechnology Letters, 1998, 20(1):91-94
    [94] Schlotterbeck A., Lang S., Wray V., et al. Lipase catalyzed monoacylation of fructose[J]. Biotechnology Letters, 1993,15(1):61-64
    [95] Matsumoto M., Kida K., Kondo K. Effects of Polyols andOrganic Solvents on Thermostability of Lipase[J]. J. Chem. Technol. Biotechnol,1997, 70, 188-192
    [96] Box G.E.P., Wilson K.B. On the Experimental Attainment of Optimum Conditions. Journal of the Royal Statistical Society[J]. Series B (Methodological), 1995,13(1):1-4
    [97]慕运动.响应面方法及其在食品工业中的应用[J].郑州工程学院学报, 2001, 21(3): 91-94
    [98]凌秀梅,邱树毅,胡鹏刚等.响应面法优化从啤酒废酵母中提取谷胱甘肽工艺条件[J].中国酿造, 2007(7): 35-38

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700