用户名: 密码: 验证码:
铜绿假单胞菌噬菌体PaP3生物学特性的研究与噬菌体基因组改造的技术准备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
噬菌体是细菌的病毒,广泛的存在于自然环境之中。作为细菌之间基因水平转移的重要载体,噬菌体与转座子、整合型质粒、致病岛、插入序列等可移动DNA元件一起,在细菌基因组的进化、细菌的致病性、耐药性以及细菌对环境的适应性中都具有非常关键的作用。溶原性噬菌体通过自身携带的外源性遗传物质改变着宿主菌及自身的基因组构成,进而改变了宿主菌的生物学性状,对噬菌体展开广泛深入的研究对于了解噬菌体与宿主的相互作用、揭示生物的多样性等方面具有重要的意义。因此,噬菌体及其基因组功能的研究成为微生物学研究的热点领域之一。近年来由于抗生素的广泛使用,细菌的多重耐药现象日益严重,寻求新的抗菌手段已成为当务之急。噬菌体作为特异性感染并裂解细菌的病毒,可望成为一种新的抗细菌感染制剂。但是,噬菌体感染细菌的特异性决定了它的抗菌谱很窄,为了解决这一问题,必须对噬菌体进行人工改造以扩大它的宿主谱。在分子生物学技术高度发展的今天,人工改造噬菌体已经成为可能。但在进行噬菌体改造之前,必须进行一些必要的技术准备,如:通过什么手段来改造噬菌体,改造后的噬菌体基因组如何导入宿主菌从而产生感染性的噬菌体颗粒等等。这些都是有待于克服的技术屏障。
     本文以本室分离鉴定的一株铜绿假单胞菌噬菌体PaP3为研究对象,首先探讨其生物学特性;进而建立一种利用分子生物学技术改造噬菌体基因组的方法;最后探讨将改造后的噬菌体基因组电转导入宿主菌的方法。研究内容及其结果主要包括以下几个方面:
     1.铜绿假单胞菌噬菌体PaP3生物学特性的研究。
     ①电镜观察发现,PaP3有一个多面体立体对称头部,头部直径约为65nm,无囊膜,有一个短尾。从病毒颗粒的形态来看,噬菌体PaP3属于短尾噬菌体科。
     ②PaP3感染其宿主菌铜绿假单胞菌PA3形成的噬斑明显,为圆形半透明,直径在2mm左右,呈典型的温和噬菌体的噬斑特征。
     ③测定噬菌体PaP3的一步生长曲线,得知PaP3感染宿主菌的潜伏期约为20min,爆发期约为60min,爆发量约为31。该曲线反映出噬菌体从感染宿主菌到子代释放的一个完整的生活周期。
     ④当MOI=0.001时,噬菌体PaP3感染其宿主菌产生的子代噬菌体滴度为4.0×10~(10)pfu/ml,产出率最高。确定了噬菌体PaP3感染其宿主菌铜绿假单胞菌的最佳感染复数为0.001。
     ⑤测定了本室保存的三株铜绿假单胞菌噬菌体与抗血清之间的交叉吸附常数。结果表明,三株噬菌体的抗血清只抑制自身与对应宿主菌的结合,不存在交叉抑制吸附关系。说明三株噬菌体的吸附结构之间不存在相关性。
     2.噬菌体PaP3基因组的改造
     基因组的改造包括基因的插入、删除、定点突变等方式。本研究采用删除目的基因的方法对PaP3基因组进行改造,即选择限制性内切酶PacⅠ、SphⅠ和SacⅡ对PaP3基因组进行分步酶切,获得目的基因所在的片段,再利用PCR删除技术去除该目的基因(在本研究中为tRNA基因)。最后将删除改造后的片段与其他酶切片段按顺序连接起来,即获得人工改造后的PaP3基因组。
     3.改造后PaP3基因组电转化宿主菌。
     ①PaP3基因组电转化宿主菌的条件摸索。纯化噬菌体PaP3完整基因组DNA,以铜绿假单胞菌(Pseudomonas aeruginosa)PA3为受体菌,探讨电转化基本条件,包括:细胞生长状态、感受态细胞的制备方式、电场强度、DNA浓度、细胞密度等条件对转化效率的影响。确定了一组适用于电转化噬菌体PaP3基因组DNA的条件:在含50μg/ml红霉素的LB培养基中培养宿主菌14h—16h,以100mM蔗糖溶液为介质,在25℃条件下制备感受态细胞,适宜的感受态细胞浓度为10~(11)/ml,适宜的电转参数为12kV/cm,300Ω,25μF。在此条件下获得较高的转化效率,可达2.1×10~3pfu/μg DNA。这为改造后噬菌体基因组的电转奠定了基础。
     ②改造后基因组的电转。将删除了tRNA基因的PaP3基因组按前面摸索的铜绿假单胞菌噬菌体基因组电转化宿主菌的条件进行电转,未能获得具有感染性的噬菌体颗粒。在本文中对其原因进行了探讨。
     综上所述,通过本研究,初步明确了铜绿假单胞菌噬菌体PaP3的基本生物学特性,并探讨了其基因组电转化宿主菌并获得具有感染性的噬菌体颗粒的基本条件,同时通过PCR删除技术去除基因组中的tRNA基因,并将改造后的噬菌体DNA再次转入宿主菌体内,以期了解噬菌体tRNA基因的功能。最后虽然没有获得改造后的噬菌体颗粒,但为我们研究噬菌体基因功能以及对噬菌体进行人工改造进行了技术上的探索。
Bacteriophages are virus of bacteria.They are recognized to be the most numerous life-form in the biosphere.Since they were discoveried in 1915,bacteriophages have been at the forefront of molecular biological research,both as model systems and biological tools for the study and manipulation of bacterial genes.Many general concepts of contemporary biology were derived from work with phages.Lysogenic phages and the others mobile DNA elements(transposons,integrative plasmids,pathogenicity islands,and IS elements) are important vehicles for the gene lateral transfer between bacterial strains,then bring the biological diversity.They play an important role in bacteria evolution,antibiotic-resistant and pathogenicity,and also enhance the fitness of the bacteria.Deep insight into the genetic background of phages is very important for no matter investigating the interaction of phages and their host bacteria,and revealing the biological diversity mechanism resulting from gene horizontal transfer caused by phages.Currently,phage research is becoming a hot spot of microbiology.In addition,multidrug-resistant bacteria are becoming serious increasingly because of antibiotic abuse,and as the virus of infecting bacterias specifically, the bacteriophages in controlling bacterial infection are presented,some of which show therapeutic promise.Today,multivalency phages or engineering remolded phages have the optimistic perspective in antibacterial therapy.For this reason,it is very necessary to establish a method to remold phage genome.In this study,we focused on the biological characters of Pseudomonas aeruginosa phage PAP3,and remolded genome of Pseudomonas aeruginosa phage PaP3 through restriction endonucleasing,PCR deletion and religasing,at last,the remolded genome was electroporated into host cell.The contents and results are as follows:
     1.The biological characters of PaP3.
     ①Electron microscopy revealed that the Pseudomonas aeruginosa phage PaP3 has an isometric head(about 65nm in diameter) and a short tail,and it belongs to pedoviridae families.
     ②Bacteriophage PaP3 is a temperate phage of Pseudomonas aeruginosa strain PA3, the plaques of PaP3 are semitransparent and their sizes are about 0.2cm in diameter.
     ③The one-step growth curve of PaP3 revealed that latent periods is about 20min,the rise periods is 60min,and the average burst size is about 31 phage particles per infected cell. The data demonstrate one life circle of PaP3 from phage absorption to offspring particle releasing.
     ④0.001 MOI-infected host bacteria is gained the highest phage offsprings,about 4.0×10~(10)pfu/ml.So the optimal multiplicity of infection of PaP3 is 0.001.
     ⑤Rate constant of reaction between antiserum and PaP3 is 262,it means that the antigenicity of PaP3 is moderate.Cross neutralization test among three phages indicates there is little dependablity among these three phages.
     2.Genomic remolding ofPseudomonas aeruginosa phage PAP3.
     PaP3 genomic DNA was cut by PacⅠ,SphⅠand SacⅡstep-by-step,and all the fragments were reclaimed using Gel extraction kit.The fragment contain tRNA genes was used as template to perform PCR deletion reaction.PCR product was cloned into pBSK vector and identified by sequencing.Finally,remolded genome ofPseudomonas aeruginosa phage PaP3 was obtained by ligating propotional fragment.
     3.Tansforming remolded PaP3 genomic DNA into host cells by electroporation.
     ①Conditions of PaP3 genomic DNA electroporated into host cells.A P.aeruginosa strain PA3 was used as the recipient strain.Effects of growth stage of the strain, electroporation medium,Erythromycin concentration,osmotic pressure,field strength, DNA concentration and competent cells density on electroporation rate of PaP3 genomic DNA were observed under different conditions.It was showed that the highest transformation rate of electroporation was 2.1×10~3pfu/μgDNA under the condition in which the cells were cultured to stationary phase in LB adding 50μg/ml Erythromycin and concentrated to about 10~(11) cells/ml with 100mM sucrose at 25℃,the mixture of the competent cells and PaP3 DNA was eletroporated at 12kV/cm,300Ω,25μF.The results will be very helpful for the study of genomic function of Pseudomonas aeruginosa phage PAP3.
     ②Electroporation of remolded PaP3 genome.The rernolded genome DNA was electroporated under the condition above metioned,but none of infective phage was obtained finally.
     In conclusion,the basic biological characters of Pseudomonas aeruginosa phage PaP3 was investigated,and the conditions of P.aeruginosa phage PaP3 genomic DNA electroporated into host cells was also explored.To study PaP3 tRNA genes function,four tRNA genes were deleted using PCR method.Though none of infective phage was obtained after remolded PaP3 genome had been electroporated,it will be a new approach to research genes function of phage.
引文
1.Canchaya C.,Fournous G.,Sandra C.C.,et al.Phage as agents of lateral gene transfer.Current Opinion in Microbiol.2003;6:414-424.
    2.Canchaya C.,Proux C.,Fournous G.,et al.Prophage genomics.Microbiol Mol Biol Rev.2003;67:238-276.
    3.Levin B.R.and Bull J.J.Population and evolutionary dynamics of phage therapy.Nat Rev Microbiol.2004;2(2):166-173.
    4.Dison B.New dawn for phage therapy.Lancet Infect Dis.2004;4(3):186-193.
    5.Hendrix RW.Bacteriophage genomics[J].CurtOpinMicrobio[,2003;6(5):506-511.
    6.Hagens S,Hable A,von-Ahsen U,et.Therapy of experimental pseudomonas infections with a nonreplicating genetically modified phage.Antimicrob Agents Chemother.2004;48(10):3817-22
    7.Chibani C S,Sidoti J,Bruttin A,et.In vitro and in vivo bacteriolytic activities of Escherichia coli phages:implications for phage therapy.Antimicrob Agents Chemother.2004;48(7):2558-69.
    8.Dixon B.New dawn for phage therapy.Lancet Infect Dis.2004;4(3):186
    9.张克斌,陈志瑾,金晓琳等.铜绿假单胞菌噬菌体的分离鉴定及耐噬菌体突变频率测定[J].微生物学通报,2002;29(1):40-45.
    10.Lu Z,Breidt FJ.,Fleming HP,et al.Isolation and characterization of a Lactobacillus plantarurn bacteriophage,ΦJL-1,from a cucumber fermentation[J].Int J Food Microbiol.2003;84(2):225-235.
    11.黄建军,胡晓梅,饶贤才等.铜绿假单胞菌噬菌体PaP2生物学特性的研究.第三军医大学学报,2004,26(13):1133-1136.
    12.李明,申晓冬,周莹冰等.铜绿假单胞菌噬菌体PaP1生物学特性的研究.第三军医大学学报,2005,27(9):860-863.
    13.Weiss BD,Capage MA,Kessel M,et al.Isolation and characterization of a generalized transducing phage for Xanthomonas carnpestris pv.Campestris[J].J Bacteriol.1994;176(11):3354-3359.
    14.Lavigne R.,Burkal'tseva MV.,Robben J.,et al.The genome of bacteriophage φKMV,a T7-1ike virus infecting Pseudornonas aeruginosa[J].Virology.2003;312:49-59.
    15.Pajunen M,Kiljunen S,Skurnik M.Bacteriophage phiYeO3-12,specific for Yersinia enterocolitica serotype O:3,is related to coliphages T3 and T7.[J].J Bacteriol.2000;182(18):5114-20.
    16.余茂劾,司稺东.《噬菌体实验技术》北京:科学出版社,1991.
    17.J.萨姆布鲁克.《分子克隆实验指南》第二版 北京:科学出版社,1996.
    18.Pedersen M.,φstergaard S.,Bresciani J,et al.Mutational Analysis of Two Structural Genes of the Temperate Lactococcal Bacteriophage TP901-1 Involved in Tail Length Determination and Baseplate Assembly.Virology.2000;276(2):315-328.
    19.Kropinski AM,Sibbald MJ.Transfer RNA genes and their significance to codon usage in the Pseudomonas aeruginosa lamboid bacteriophage D3.Can J Microbiol.1999;45(9):791-6.
    20.Coelho P.S.R.,Kumar A.and Snyder M.Genome-wide mutant collections:toolboxes for functional genomics.Curr.Opin.Microbiol.2000;3:309-315.
    21.Rene' Strepp,Sirkka Scholz,Sven Kruse,et al.Plant nuclear gene knockout reveals a role in plastid division for the homolog of the bacterial cell division protein FtsZ,an ancestral tubulin.Proc.Natl.Acad.Sci.USA.1998;95:4368-4373.
    22.Kempin S.A.,Liljegren S.J.,Block L.M.,et al.Targeted disruption in Arabidopsis.Nature(London).1997;389:802-803.
    23.Martienssen RA:Functional genomics:probing plant gene function and expression with transposons.Proc.Natl.Acad.Sci.USA.1998;95:2021-2026.
    24.张克斌,金晓琳,陈志谨等.铜绿假单胞菌噬菌体PaP3的密码使用偏嗜性与tRNA 基因.第三军医大学学报.2002;24(4)385-388.
    25.Li M,Farrant J.L.,Paul R.,et al.Identification and characterization of genomic loci unique to the Brazilian purpuric fever clonal group of H.influenzae biogroup aegyptius:functionality explored using meningococcal homology.Molecular Microbiology.2003;47(4):1101-1111.
    26.Woods D.E.,Jeddeloh J.A.,Fritz D.L.,et al.Burkholderia thailandensis E125 harbors a temperate bacteriophage specific for Burkholderia mallei.J.bacterial.2002;184(14):4003-17.
    27.Rakin A.,Noelting C.,Schropp P.et al.Integrative module of the high-pathogenicity island of Yersinia.Molecular Microbiology.2001;39(2):407±415.
    28. Larbig K.D., Christman A., Johann A., et al. Gene islands integrated into tRNA(Gly) genes confer genome diversity on a Pseudomonas aeruginosa clone. J Bacteriol. 2002; 184(23): 6665-80.
    29. Alexander D.C., Devlin D.J., Hewitt D.D., et al. Development of the Micromonospora carbonacea var. africana ATCC 39149 bacteriophage pMLP1 integrase for site-specific integration in Micromonospora spp. Microbiology. 2003; 149(9): 2443-2453.
    30. Lauer P., Chow M.Y., Loessner M.J., et al. Construction, characterization, and use of two Listeria monocytogenes site-specific phage integration vectors. J Bacteriol. 2002; 184(15): 4177-4186.
    31. Li M, Farrant J.L., Paul R., et al. Identification and characterization of genomic loci unique to the Brazilian purpuric fever clonal group of H. influenzae biogroup aegyptius: functionality explored using meningococcal homology . Molecular Microbiology . 2003; 47(4): 1101-1111.
    32. Woods D.E., Jeddeloh J.A., Fritz D.L., et al. Burkholderia thailandensis E125 harbors a temperate bacteriophage specific for Burkholderia mallei. J. bacterial. 2002 ; 184(14): 4003-17.
    33. Papp I, Dorgai L, Papp P, et al. The bacterial attachment site of the temperate Rhizobium phage 16-3 overlaps the 3' end of a putative proline tRNA gene. Mol Gen Genet. 1993 Aug;240(2):258-64.
    34. Hayashi T, Matsumoto H, Ohnishi M, et al. Molecular analysis of a cytotoxin-converting phage, phi CTX, of Pseudomonas aeruginosa: structure of the attP-cos-ctx region and integration into the serine tRNA gene. Mol Microbiol. 1993; 7(5): 657-67.
    35. Dupont L, Boizet BB, Coddeville M, et al. Characterization of genetic elements required for site-specific integration of Lactobacillus delbrueckii subsp. bulgaricus bacteriophage mv4 and construction of an integration-proficient vector for Lactobacillus plantarum. J Bacteriol. 1995 Feb; 177(3): 586-95.
    36. Bruttin A, Foley S, Brussow H. The site-specific integration system of the temperate Streptococcus thermophilus bacteriophage phiSfi21. Virology.1997;237:148—158.
    37. Tan Y, Zhang K, Rao X, et al. Whole genome sequencing of a novel temperate bacteriophage of P. aeruginosa: evidence of tRNA gene mediating integration of the phage genome into the host bacterial chromosome.Cell Microbiol.2006 Sep 11;[Epub ahead of print]
    38.BalashovS.and Humayun M.Z.Specificity of spontaneous mutations induced in mutA mutator cells.Mutat Res.2004;548(1):9-18.
    39.Grundy F.J.Winkler W.C.,Henkin T.M.,et al.tRNA-mediated transcription antitermination in vitro:codon-anticodon pairing independent of the ribosome.Proc Natl Acad Sci USA.2002;99(17):11121-11126.
    40.Neumann E,Schaefer RM,Wang Y,et al.Gene transfer into mouse lyoma cells by electroporation in high electric fields.Eur Mol Biol Organ[J],1982,1(7):841-5.
    41.Choi KH,Kumar A,Schweizer HP.A 10-min method for preparation of highly electrocompetent Pseudomonas aeruginosa cells:application for DNA fragment transfer between chromosomes and plasmid transformation.J Microbiol Methods.2006,64(3):391-7.
    42.Zimmermann U.Electric field-mediated fusion and related electrical phenomena.Biochim Biophys Acta.1982 Nov 30;694(3):227-77
    43.汪和睦,谢廷栋。《细胞电穿孔电融合电刺激原理技术及应用》第一版 天津:天津科学技术出版社,2000
    44.Needham D;Hochmuth RM.Electro-mechanical permeabilization of lipid vesicles.Role of membrane tension and compressibility.Biophys J.1989;55(5):1001-9.
    45.饶宪,唐英春,张扣兴等.红霉素对绿脓杆菌生物膜形成的抑制作用.中山医科大学学报,1997,18(3):182-185
    46.Planelles L,Maranon C,Requena JM,et al.Phage recovery by electroporation of naked DNA into host cells avoids the use of packaging extracts.Anal Biochem.1999,267(1):234-5.
    47.Schleper C,Kubo K,Zillig W.The particle SSV1 from the extremely thermophilic archaeon Sulfolobus is a virus:demonstration of infectivity and of transfection with viral DNA.Proc Natl Acad Sci U S A.1992,89(16):7645-9.
    48.Maria KY,Cheri SK.Transfection of Actinomyces spp.by Genomic DNA of Bacteriophages from Human Dental Plaque.Plasmid,1997,37(2):141-153.
    1. Das P. Bacteriophage therapy offers new hope for streptococcal infections. Lancet 2001;357:938.
    2. Stone R. Bacteriophage therapy. Stalin's forgotten cure. Science 2002;298:728-31.
    3. Bernhardt TG, Roof WD, Young R. Genetic evidence that the bacteriophage ΦX174 lysis protein inhibits cell wall synthesis. Proc Natl Acad Sci USA 2000;97:4297-302.
    4. Bernhardt TG, Struck DK, Young R. The lysis protein E of ΦX174 is a specific inhibitor of the MraY-catalyzed step in peptidoglycan synthesis. J Biol Chem 2000;276:6093-7.
    5. Bernhardt TG, Wang I-N, Struck DK, Young R. A protein antibiotic in the phage Qβ virion: diversity in lysis target. Science 2001;292:2326-9.
    6. Cao J, Sun Y, Berglindh T, et al. Helicobacter pylori-antigen-binding fragments expressed on the filamentous M13 phage prevent bacterial growth. Biochem Biophys Acta 2000;1474:107-13.
    7. Hagens S, Habel A, von Ahsen U,et al. Therapy of experimental pseudomonas infections with a nonreplicating genetically modified phage. Antimicrob Agents Chemother 2004;48:3817-22.
    8. 8 Betley MJ, Mekalanos JJ. Staphylococcal enterotoxin A is encoded by phage. Science 1985;229:185-7.
    9. Kaneko J, Kimura T, Kawakami Y, et al. Pantonvalentine leukocidin genes in a phage-like particle isolated from mitomycin C-treated Staphylococcus aureus V8 (ATCC 49775). Biosci Biotechnol Biochem 1997;61:1960-2.
    10. Wang IN, Smith DL, Young R. Holins: the protein clocks of bacteriophage infections. Annu Rev Microbiol 2000;54:799-825.
    11. Smith HW, Huggins MB. Successful treatment of experimental Escherichia coli infections in mice using phage: its general superiority over antibiotics. J Gen Microbiol 1982;128:307-18.
    12. Smith HW, Huggins MB. Effectiveness of phages in treating experimental Escherichia coli diarrhoea in calves, piglets, and lambs. J Gen Microbiol 1983;129:2659—75.
    13. 13 Merril CR, Biswas B, Carlton R, et al. Long-circulating bacteriophage as antibacterial agents. Proc Natl Acad Sci USA 1996;93:3188-92.
    14. Chibani-Chennoufi S, Sidoti J, Bruttin A, et al. In vitro and in vivo bacteriolytic activities of Escherichia coli phages: implications for phage therapy. Antimicrob Agents Chemother 2004;48:2558-69.
    15. Soothill JS. Treatment of experimental infections of mice with bacteriophages. J Med Microbiol 1992;37:258-61.
    16. Soothill JS. Bacteriophage prevents destruction of skin grafts by Pseudomonas aeruginosa. Burns 1994;20:209-11.
    17. Biswas B, Adhya S, Washart P, et al. Bacteriophage therapy rescues mice bacteremic from a clinical isolate of vancomycin-resistant Enterococcus faecium. Infect Immun 2002;70;204-10.
    18. Toro H, Price SB, McKee AS, et al. Use of bacteriophages in combination with competitive exclusion to reduce Salmonella from infected chickens. Avian Dis 2005;49:118-24.
    19. Matsuzaki S, Yasuda M, Nishikawa H, Kuroda M, Ujihara T, Shuin T, et al. Experimental protection of mice against lethal Staphylococcus aureus infection by novel bacteriophage ΦMR11. J Infect Dis 2003; 187:613-24.
    20. Wills QF, Kerrigan C, Soothill JS. Experimental bacteriophage protection against Staphylococcus aureus abscesses in a rabbit model. Antimicrob Agents Chemother 2005;49:1220-1.
    21. O'Flaherty S, Ross RP, Meaney W, et al. Potential of the polyvalent anti -Staphylococcus bacteriophage K for control of antibiotic-resistant staphylococci from hospitals. Appl Environ Microbiol 2005;71:1836-42.
    22. Nakai T, Park SC. Bacteriophage therapy of infectious diseases in aquaculture. Res Microbiol 2002;153:13-8.
    23. Leverentz B, Conway WS, Camp MJ, et al. Biocontrol of Listeria monocytogenes on freshcut produce by treatment with lytic bacteriophages and a bacteriocin. Appl Environ Microbiol 2003;69:4519-26.
    24. Atterbury RJ, Connerton PL, Dodd CE, Rees CE, Connerton IF. Application of host-specific bacteriophages to the surface of chicken skin leads to a reduction in recovery of Campy lobacter jejuni. Appl Environ Microbiol 2003;69:6302-6.
    25. Goode D, Allen VM, Barrow PA. Reduction of experimental Salmonella and Campylobacter contamination of chicken skin by application of lytic bacteriophages. Appl Environ Microbiol 26. 2003;69:5032-6.
    
    27. 26 Young RY. Bacteriophage lysis: mechanism and regulation. Microbiol Rev 1992;56:430-81.
    
    28. Navarre WW, Ton-That H, Faull KF, Schneewind O. Multiple enzymatic activities of the murein hydrolase from staphylococcal phage Φ11. J Biol Chem 1999;274:15847-56,
    29. Jado I, Lopez R, Garcia E, et al. Phage lytic enzymes as therapy for antibiotic-resistant Streptococcus pneumoniae infection in a murine sepsis model. J Antimicrob Chemother 2003;52:967-73.
    30. Loeffler JM, Fischetti VA. Synergistic lethal effect of a combination of phage lytic enzymes with different activities on penicillinsensitive and -resistant Streptococcus pneumoniae strains. Antimicrob Agents Chemother 2003;47:375-7.
    31. Yoong P, Schuch R, Nelson D, et al. Identification of a broadly active phage lytic enzyme with lethal activity against antibiotic-resistant Enterococcus faecalis and Enterococcus faecium. J Bacteriol 2004;186:4808-12.
    32. Nelson D, Loomis L, Fischetti VA. Prevention and elimination of upper respiratory colonization of mice by group A streptococci by using a bacteriophage lytic enzyme. Proc Natl Acad Sci USA 2001;98:4107-12.
    33. Loeffler JM, Nelson D, Fischetti VA. Rapid killing of Streptococcus pneumoniae with a bacteriophage cell wall hydrolase. Science 2001 ;294:2170-2.
    34. Schuch R, Nelson D, Fischetti VA. A bacteriolytic agent thatdetects and kills Bacillus anthracis. Nature (Lond) 2002;418:884-9.
    35. Cheng Q, Nelson D, Zhu S, et al. Removal of group B streptococci colonizing the vagina and oropharynx of mice with a bacteriophage lytic enzyme. Antimicrob Agents Chemother 2005; 49:111-7.
    36. Bemhardt TG, Wang IN, Struck DK, Young R. Breaking free: "protein antibiotics" and phage lysis. Res Microbiol 2002; 153: 493-501.
    37. Panthel K, Jechlinger W, Matis A, Rohde M, Szostak M, Lubitz W, et al. Generation of Helicobacter pylori ghosts by fX174 protein E-mediated inactivation and their evaluation as vaccine candidates. Infect Immun 2003 ;71:109-16.
    38. Clark JR, March JB. Bacterial viruses as human vaccines? Expert Rev Vaccines 2004;3:463-76.
    39. Jepson CD, March JB. Bacteriophage lambda is a highly stable DNA vaccine delivery vehicle. Vaccine 2004;22:2413-9.
    40. March JB, Clark JR, Jepson CD. Genetic immunization against hepatitis B using whole bacteriophage lambda particles. Vaccine 2004;22:1666-71.
    41. 40 Payne RJ, Phil D, Jansen VA. Phage therapy: the peculiar kinetics of self-replicating Pharmaceuticals. Clin Pharmacol Ther 2000;68:225-30.
    42. Payne RJ, Jansen VA. Understanding bacteriophage therapy as a density-dependent kinetic process. J Theor Biol 2001;208:37-48.
    43. Geier MR, Trigg ME, Merril CR. Fate of bacteriophage lambda in non-immune germ-free mice. Nature (Lond) 1973;246:221-3.
    44. Drexler K, Riede I, Montag D, Eschbach ML, Henning U. Receptor specificity of the Escherichia coli T-even type phage 0x2. Mutational alterations in host range mutants. J Mol Biol 1989;207:797-803.
    45. Schoolnik GK, Summers WC, Watson JD. Phage offer a real alternative. Nat Biotechnol 2004;22:505-6.
    46. Advance in studying phage as antibiotics .Biotechnol News , 2002,22(12):3
    1. Botstein D.. A theory of modular evolution for bacteriophages. Ann. N. Y. Acad. Sci. 1980;354:484-490.
    2. Hendrix RW. Bacteriophages: evolution of the majority. Theor. Popul. Biol. 2002;61:471-480.
    3. Juhala RJ, Ford ME, Duda RL, et al. Genomic sequences of bacteriophages HK97 and HK022: pervasive genetic mosaicism in the lambdoid bacteriophages. J. Mol. Biol. 2000;299:27-51.
    4. Pedulla ML, Ford ME, Houtz JM, et al. Origins of highly mosaic mycobacteriophage genomes. Cell. 2003;113:171-182.
    5. Hendrix RW, Lawrence JG, Hatfull GF, et al. The origins and ongoing evolution of viruses. Trends Microbiol. 2000;8:504-508.
    6. Clark AJ, Inwood W, Cloutier T , et al. Nucleotide sequence of coliphage HK620 and the evolution of lambdoid phages. J. Mol. Biol. 2001 ;311:657-679.
    7. Mirold S, Ehrbar K, Weissmuller A, et al.. Salmonella host cell invasion emerged by acquisition of a mosaic of separate genetic elements, including Salmonella pathogenicity island 1 (SPI1), SPI5, and sopE2. J. Bacteriol. 2001;183:2348-2358.
    8. Mirold S, Rabsch W, Tschape H, et al. Transfer of the Salmonella type III effector sopE between unrelated phage families. J. Mol. Biol. 2001 ;312:7-16.
    9. Pelludat C, Mirold S, Hardt WD. The SopE_ phage integrates into the ssrA gene of Salmonella enterica serovar Typhimurium A36 and is closely related to the Fels-2 prophage. J. Bacteriol. 2003;185:5182-5191.
    10. Glaser P, Rusniok C, Buchrieser C, et al. Genome sequence of Streptococcus agalactiae, a pathogen causing invasive neonatal disease. Mol Microbiol. 2002;45: 1499-1513.
    11. Kuroda M, Ohta T, Uchiyama I, et al. Whole genome sequencing of methicillin-resistant Staphylococcus aureus. Lancet 2001 ;357: 1225-1240.
    12. Smoot JC, Barbian KD, Van Gompel JJ, et al. Genome sequence and comparative microarray analysis of serotype M18 group A Streptococcus strains associated with acute rheumatic fever outbreaks. Proc Natl Acad Sci USA. 2002 ;99: 4668-4673.
    13. Brussow H, Canchaya C, Hardt WD. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev. 2004;68(3):560-602.
    14. Schicklmaier P, Schmieger H. Frequency of generalized transducing phages in natural isolates of the Salmonella typhimurium complex. Appl. Environ. Microbiol. 1995;61:1637-1640.
    15. Burke J, Schneider D, Westpheling J. Generalized transduction in Streptomyces coelicolor. Proc. Natl. Acad. Sci. USA 2001 ;98:6289-6294.
    16. Hodgson DA. Generalized transduction of serotype 1/2 and serotype 4b strains of Listeria monocytogenes. Mol. Microbiol. 2000;35:312-323.
    17. Bossi L, Fuentes JA, Mora G, et al. Prophage contribution to bacterial population dynamics. J. Bacteriol. 2003;185:6467-6471.
    18. Edlin G, Lin L, Kudmar R. Lambda lysogens of E. coli reproduce more rapidly than non-lysogens. Nature 1975;255:735-737.
    19. Edlin G, Lin L, Bitner R. Reproductive fitness of P1, P2, and Mu lysogens of Escherichia coli. J. Virol. 1977;21:560-564.
    20. Lin L, Bitner R, Edlin G. Increased reproductive fitness of Escherichia coli lambda lysogens. J. Virol. 1977;21:554-559.
    21. Al Mamun AA, Tominaga A, Enomoto M. Cloning and characterization of the region III flagellar operons of the four Shigella subgroups: genetic defects that cause loss of flagella of Shigella boydii and Shigella sonnei. J. Bacteriol. 1997;179:4493-4500.
    22. Beres SB, Sylva GL, Barbian KD, et al. Genome sequence of a serotype M3 strain of group A Streptococcus: phage-encoded toxins, the high-virulence phenotype, and clone emergence. Proc. Natl. Acad. Sci. USA 2002;99:10078-10083.
    23. Canchaya C, Desiere F, McShan WM, et al. Genome analysis of an inducible prophage and prophag eremnants integrated in the Streptococcus pyogenes strain SF370. Virology 2002;302:245-258.
    24. Coleman D, Knights J, Russell R., et al. Insertional inactivation of the Staphylococcus aureus beta-toxin by bacteriophage phi 13 occurs by site- and orientationspecific integration of the phil3 genome. Mol. Microbiol. 1991 ;5:933—939.
    25. HendrixRW. Bacteriophage genomics[J]. CurtOpinMicrobio|, 2003;6(5): 506—511.
    26. Rohwer F. Global phage diversity. Cell 2003;113:141.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700