L-色氨酸结晶过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
L-色氨酸是人和动物维持生命活动所必需的氨基酸,广泛应用于医药、食品、饲料等领域。针对目前L-色氨酸产品存在纯度低、流动性差、晶习不完美等问题,本文对L-色氨酸的结晶分离纯化过程进行了系统工程的研究,具体内容如下:
     对L-色氨酸进行了晶体形态学研究。利用Materials studio软件对X-射线粉末衍射数据进行解析,确定了L-色氨酸的晶体结构,包括晶胞参数、所属晶系和空间群。采用BFDH、AE模型预测了L-色氨酸的晶习,通过与实验产品的对比,分析了晶体结构与晶面生长速率、晶习之间的关系。另外,考察了溶剂、冷却速率、结晶终温等因素对晶体形态的影响。
     采用动态法分别测定了L-色氨酸在纯水、不同pH值水溶液、甲醇-水、乙醇-水、正丙醇-水溶剂中的溶解度,建立了溶解度模型,并分析了溶剂的物化性质与溶解特性之间的关系。同时,测定了L-色氨酸在不同溶剂体系中的介稳区宽度,以便为结晶过程中成核的控制提供依据。
     运用荧光检测手段研究了L-色氨酸成核过程中分子间的相互作用。考察了L-色氨酸溶液的基本荧光性质,包括荧光最大激发波长和发射波长、荧光寿命的特征和成分以及溶剂、温度、pH和浓度对荧光强度和寿命的影响。针对高浓度情况下L-色氨酸荧光发生猝灭的特性,分析了其猝灭机理。测定了L-色氨酸成核过程中荧光强度、荧光寿命、光散射强度、荧光各向异性的变化,结合L-色氨酸的猝灭机制判断出成核过程中L-色氨酸分子之间的相互作用,并将实验结果与经典成核理论进行了比照。另外,以头孢哌酮钠为研究体系,对荧光法研究成核过程这一检测手段的可靠性进行了再次验证。
     采用激光法测定了L-色氨酸在上述不同溶剂中的结晶诱导期,揭示了L-色氨酸的成核和生长机理。利用聚焦光束反射测量仪(FBRM)、粒子成像仪(PVM)、马尔文粒度分析仪(Malvern Mastersizer)、扫描电子显微镜(SEM)等在线和离线分析手段对L-色氨酸结晶过程中的聚结、破碎、老化等二次过程进行了详细考察。
     在L-色氨酸晶体形态学、结晶热力学、成核和生长机理研究基础上,综合考虑各种实际因素,筛选出了最佳溶剂体系和结晶工艺。通过考察不同操作参数对结晶产品的影响,最终确定了L-色氨酸结晶的优化操作时间表。与厂家产品相比,优化操作条件下得到的L-色氨酸产品纯度达到98%以上;主粒度增大至原来的3倍,晶习完美;从而使得产品聚结程度下降、流动性改善。
     以上有关研究内容尚未见文献报道。
L-tryptophan is one of the essential amino acids for human and animals. It has been widely used in the fields of medicine, food and feed additives. At present, there are some problems in the manufacturing process of L-tryptophan, such as low purity, bad fluidity, defective morphology and so on. In order to improve the quality of L-tryptophan, the crystallization process of L-tryptophan was studied systematically in this article. The detailed contents of research are as follows:
     The crystal structure of L-tryptophan was investigated by solving the X-ray diffraction spectrum in the software of Materials Studio. Then, the crystal cell parameters, crystal system and space group of L-tryptophan were determined. Based on the data of crystal structure, the crystal habit was predicted by BEDH and AE models. By comparing with the experimental products, the relationship between crystal structure and crystal-growth rate was analyzed. The effects of solvents, coolling rate and ending temperature on crystal morphology were also studied.
     The solubilities of L-tryptophan in pure water, water with different pH, methanol-water, ethanol-water and 1-propanol-water were measured by synthetic method. Then, the experimental data was well correlated by different models. The relationship between the solvent properties and solubility abilities was analyzed as well. Meantime, the metatable zone of L-tryptophan in different solvents was measured to provide thermodynamic data for the nucleation control.
     Fluorescence technique was employed to probe the interactions of L-tryptophan molecules during nucleation. The basic fluorescence properties of L-tryptophan in solution were studied first, including the maximum excitation and emission wavelengths of fluorescence, the composition of fluorescence lifetime, and the effects of solvents, temperature, pH and concentration on the fluorescence. Crystallization is usually operated in concentrated solutions. However, the fluorescence of L-tryptophan will be quenched at high concentrations. In this case, the nature of concentration quenching was explored. Then, the change of fluorescence intensity, lifetime, anisotropy and light scattering of L-tryptophan during nucleation process were measured. Finally, the interaction of L-tryptophan molecules was deduced on the basis of quenching mechanism. The consistency of experimental results with the classical nucleation theory was analyzed. In addition, cefoperazone sodium was used as an example to check the reliability of the fluorescence method in this work.
     The induction time of L-tryptophan in the solvents mentioned above was measured by laser method. Then the mechanism of nucleation and growth of L-tryptophan in these solvents was determined. The secondary processes of crystallization such as agglomeration, breakage, Ostwald ripening and so on were investigated in detail by means of focused beam reflectance measurement (FBRM), particles visual measurement (PVM), malvern mastersizer and scanning electron microscope (SEM).
     Based on the investigation of crystal morphology, crystallization thermodynamics and nucleation and growth mechanism, best solvent and crystallization method were chosen. Then the optimum operation schedule was established after studying the effects of various operation parameters on the crystallization process of L-tryptophan. Compared with the products of factory, the products manufactured by the optimum operation schedule have low level of agglomeration and better fluidity. The purity was higher than 98%. The crystal mode size was 3 times as large as the products of factory. In addition, the crystal has perfect morphology.
     No similar report to above study results has been published in literature up to date.
引文
[1]葛方昕, L-色氨酸提取工艺的研究[硕士学位论文],天津轻工业学院, 1999, 1-2
    [2]桑丽花,王玉梅,潘成文,齐飞, L-色氨酸的应用,河北化工, 2009, 32(10): 14-16
    [3]李剑欣,张绪梅,徐琪寿,色氨酸的生理生化作用及其应用,氨基酸和生物资源, 2005, 27 (3): 58-62
    [4]赵春光,程立坤,徐庆阳等,微生物法生产L-色氨酸的研究进展,发酵科技通讯, 2008, 37(4): 34-36
    [5]宋文霞,王瑞明, L-色氨酸的研究.农产品加工, 2005, (3): 18-20
    [6]焦庆才,赵根海,刘均忠等, L-色氨酸工业化技术研究进展,发酵科技通讯, 2010, 39(4): 34-36
    [7]胡耀辉,王玉华,于寒松等, L-色氨酸的应用及生产技术研究进展,吉林农业大学学报, 2008, 30(4): 586-589
    [8]武彩莲,郭长江,杨继军等,发酵液中L-色氨酸分离纯化工艺研究,氨基酸和生物资源, 2007, 29(3): 42-46
    [9]王静康,化学工程手册-第十篇结晶,北京:化学工业出版社, 1996, 10-3
    [10]张海涛,头孢噻肟钠结晶技术研究[博士学位论文],天津大学, 2008, 12
    [11]王占忠,红霉素结晶过程研究[博士学位论文],天津大学, 2007, 8
    [12]陈小明,荣继文,单晶结构分析原理与实践,北京:科学出版社, 2003, 139-140
    [13]钱逸泰,结晶化学导论,合肥:中国科学技术大学出版社, 1999, 117-118
    [14]马礼敦, X射线粉末衍射的新起点-Rietveld全谱拟合,物理学进展, 1996, 16 (2): 251-265
    [15]梁敬魁,粉末衍射法测定晶体结构(下册),北京:科学出版社, 2003
    [16] Metropolis N, Rosenbluth A W, Rosenbluth M N, et al, Equation of state calculations by fast computing machines, The Journal of Chemical Physics, 1953, 21(6): 1087
    [17] Karfunkel H R, Gdanitz R J, Ab initio prediction of possible crystal structures for general organic molecules, Journal of computational chemistry, 1992, 13(10): 1171-1183
    [18]丁绪淮,谈遒,工业结晶,北京:化学工业出版社, 1985, 1-101
    [19] Davey R J, The effect of impurity absorption on the kinetics of crystal growth from solution, Journal of crystal growth, 1976, 34(1): 109-119
    [20] Cano H, Gabas N, Canselier J P, Experimental study on the ibuprofen crystal growth morphology in solution, Journal of crystal growth, 2001, 224(3-4): 335-341
    [21] Puel F, Marchal P, Klein J, Habit transient analysis in industrial crystallization using two dimensional crystal sizing technique, Chemical engineering research and design, 1997, 75(2): 193-205
    [22] Davey R J, Mullin J W, The effect of supersaturation on growth features on the {100} face of ammonium dihydrogen phosphate crystals, Journal of crystal growth, 1975, 29(1): 45-48
    [23] Garnier S, Petit S, Coquerel G, Influence of supersaturation and structurally related additives on the crystal growth of -lactose monohydrate, Journal of crystal growth, 2002, 234(1): 207-219
    [24] Edwards R T, Crystal habit of paraffin wax, Ind. Eng. Chem., 1957, 49: 750
    [25]王静康,黄向荣,刘秉文,有机分子晶体晶习预测的研究进展,人工晶体学报, 2002, 31(3): 218-223
    [26]陈敬中,现代晶体化学,北京:高等教育出版社, 2001, 1-3
    [27] Hartman P, Perdok W G, On the relations between structure and morphology of Crystals III, Acta Cryst., 1955, 8: 525-526
    [28] Hartman P, Bennema P, The attachment energy as a habit controlling factor: I. Theoretical considerations, 1980, 49 (1): 145-156
    [29] Jiang Q, Gao G H, Yu Y X, et.al, Solubility of sodium dimethyl isophthalate-5-sulfonate in water and in water + methanol containing sodium sulfate, J Chem Eng Data, 2000, 45: 292-294
    [30] Roberts K L, Rousseau R W, Teja A S, Solubility of long-chain n-alkanes in heptane between 280 and 350 K, J Chem Eng Data, 1994, 39: 793-795
    [31] Liu B S, Gong J B, Wang J K, et.al, Solubility of potassium clavulanate in ethanol, 1-propanol, 1-butanol, 2-propanol, and 2-methyl-1-propanol between 273 K and 305 K, J Chem Eng Data, 2005, 50: 1684-1686
    [32] Wu J H, Wang J K, Solubility of cefazolin sodium pentahydrate in aqueous 2-propanol mixtures, J Chem Eng Data, 2005, 50: 980-982
    [33] Preston G T, Prausnitz J M, Thermodynamics of solid solubility in cryogenic solvents, Industrial & Engineering Chemistry Process Design and Development, 1970, 9 (2): 264-271
    [34] Myerson A S, Handbook of industrial crystallization, Elsevier Science & Technology Books, 2001, 1-63
    [35]金家骏,分子热力学,北京:科学出版社, 1990, 153-195
    [36]韩晓红,陈光明,王勤等,状态方程研究进展,天然气化工, 2005, 30(5): 52-60
    [37] Larsan B L, Rasmussen P, Fredenslund A, A modified UNIFAC group-contribution model for prediction of phase quilibria and heats of mixing, Ind. Eng. Chem. Res., 1987, 26: 2274-2286
    [38] Apelblat A, Manzurola E, Solubilities of o-acetylsalicylic, 4-aminosalic, 3, 5-dinitrosalicylic, and p-toluic acid, and magnesium-DL-aspartate in water from T = (278 to 348) K, J Chem Thermodyn 1999, 31: 85-91
    [39] Buchowski H, Ksiazczak A, Pietrzyk S, Solvent activity along a saturation line and solubility of hydrogen-bonding solids, J Phys Chem, 1980, 84: 975-979
    [40] Acree W E Jr, Mathematical representation of thermodynamic properties, part 2, derivation of the comined nearly ideal binary solvent (NIBS)/Redlich-Kister mathematical representation from a two-body and three-body interactional mixting model, Thermochim Acta, 1992, 198: 71-79
    [41] Acree W E Jr, Comments concerning“model for solubility estimation in mixed solvent system”, Int J Pharm, 1996, 127: 27-30
    [42]Е.В.哈姆斯基,著,古涛,叶铁林,译,化学工业中的结晶,北京:化学工业出版社, 1984, 1-5
    [43] Kim K J, Mersmann A, Estimation of metastable zone width in different nucleation processes, Chem Eng Sci, 2001, 56: 2315-2324
    [44] Mersmann K. Bartosch, How to predict the metastable zone width, J Crystal Growth, 1998, 183(1-2): 240-250
    [45] Titiz-sargut S, Ulrich J, Influence of additives on the width of the metastable zone, CrystGrowth Des, 2002, 2(5): 371-374
    [46] Gurbuz H, Ozdemir B, Experimental determination of the metastable zone width of borax decahydrate by ultrasonic velocity measurement, J Cryst Growth, 2003, 252: 343-349
    [47] Correia P, Lopes C, Piedade M E M, et al., Solubility and metastable zone width of 1-Keto-1, 2, 3, 4-tetrahydro-6-methylcarbazole in acetone, J Chem Eng Data, 2006, 51(4): 1306-1309
    [48]韩佳宾,王静康,咖啡因在水和乙醇中的介稳区的测定,天津大学学报, 2003, 36: 765-768
    [49]吴佩颖,徐莲英,陶建生,难溶性药物增溶方法研究进展,中成药, 2005, 27(9): 10-12
    [50] Akerlof G, Dielectric constants of some organic solvent-water mixtures at various temperatures, J. Am. Chem. Soc., 1932, 54: 4125-4139
    [51] Omar W, Ulrich J, Solid liquid equilibrium, metastable zone, and nucleation parameters of the oxalic-water system, Cryst. Growth Des., 2006, 6(8): 1927-1930
    [52]许金钩,王尊本,荧光分析法,北京:科学出版社, 2006, 3-200
    [53] Lakowicz J R, Principles of fluorescence spectroscopy, New York: Kluwer Academic / Plenum Publishers, 1999, 95-391
    [54] Stefan J I, Edward M E, Fluorescence quantum yield of cresyl violet in methanol and water as a function of concentration, J Phys Chem, 1992, 96(4): 1738-1742
    [55] Bowen E J, Sahu J, The effect of temperature on fluorescence of solutions, Journal of Physical Chemistry, 1959, 63(1): 4-7
    [56] Thistlethwaite P J, Griesser H J, The temperature-dependence of the fluorescence lifetime of pinacyanol iodide, Chemical Physics Letters, 1982, 91(1): 58-62
    [57] Flamigni L, Barigelletti F, Dellonte S, Orlandi G, Temperature - dependence of fluorescence lifetime of cyclic alkanes - mechanism of S1 deactivation, Chemical Physics Letters, 1982, 89(1): 13-16
    [58] Tomin V I, Dynamic fluorescence quenching and the highest excited states of molecules, Opticsand Spectroscopy, 2008, 105(2): 217-222
    [59] Okamoto M, Nagashima H, Tanaka F, Contribution of local density augmentation in the vicinity of 9-cyanoanthracene and dynamic fluorescence quenching by oxygen in liquid and supercritical carbon dioxide, Physical Chemistry Chemical Physics, 2002, 4(22): 5627-5633
    [60] Lee J H, Carraway E R, Hur J, Yim S, Schlautman M A, Pyrene fluorescence in the presence of nonquenching and dynamic quenching salting-out agents, Journalof PhotochemistryandPhotobiology A-Chemistry, 2007, 185(1): 57-61
    [61] Tomin V I, Smolarczyk G, Dynamic quenching of the multiband fluorescence of 3-hydroxyflavone, Optics and Spectroscopy, 2008, 104(6): 832-837
    [62] Ghali M, Static quenching of bovine serum albumin conjugated with small size CdS nanocrystalline quantum dots, Journalof Luminescence, 2010, 130(7): 1254-1257
    [63] Rahman M, Harmon H J, Absorbance change and static quenching of fluorescence of meso-tetra (4-sulfonatophenyl) porphyrin (TPPS) by trinitrotoluene (TNT), Spectrochimica Acta Part A-Molecularand Biomolecular Spectroscopy, 2006, 65(3-4): 901-906
    [64] Kim H S, Choi H S, Spectrofluorimetric determination of copper (II) by its static quenching effect on the fluorescence of 4,5-dihydroxy-1,3-benzenedisulfonic acid, Talanta, 2001, 55(1): 163-169
    [65] Gebert H, Kretzschmar W, Regenstein W, Ground-state complex formation of perylene with pyromellitic dianhydride studied by static fluorescence quenching, Journalof Fluorescence, 1998, 8(1): 67-72
    [66] Evale B G, Hanagodimath S M, Static and dynamic quenching of biologically active coumarin derivative by aniline in benzene-acetonitrile mixtures, Journal of Luminescence, 2010, 130(8): 1330-1337
    [67] Matos M S, Hofkens J, Gehlen M H, Static and dynamic bimolecular fluorescence quenching of porphyrin dendrimers in solution, Journal of Fluorescence, 2008, 18(5): 821-826
    [68] Radha N, Swaminathan M, Fluorescenece quenching of 2-amino-7-bromofluorene by chloromethanes - static and dynamic model for CCl4quenching in polar solvents, Journal of Chemical Researchs, 2001, (12): 503-504
    [69] Liu B S, Gao J, Yang G L, Fluorescence resonance energy transfer between acridine orange and rhodamine 6G and fluorescence quenching of rhodamine 6G reaction for the determination of proteins, Chinese Journalof Analytical Chemistry, 2005, 33(4): 546-548
    [70] Hennig H, Zeckert K, Luminescence quenching of ruthenium complexes through fluorescence resonance energy transfer (FRET), Journalof Information Recording, 2000, 25(3-4): 391-395
    [71] Hutterer R, Kramer K, Schneider F W, Hof M, The localization of the local anesthetic tetracaine in phospholipid vesicles: A fluorescence quenching and resonance energy transfer study, Chemistryand Physicsof Lipids, 1997, 90(1-2): 11-23
    [72] Petrasek Z, Phillips D, A time - resolved study of concentration quenching of disulfonated aluminium phthalocyanine fluorescence, Photochem Photobiol Sci, 2003, 2(3): 236-244
    [73] Myint T, Harold B H, The determination of Thiamine in small amounts of whole blood and serum by a simplified thiochrome method, Clinical Chemistry, 1965, 11(6): 617-623
    [74]欧阳燿国,蔡维平,许金钩, ,β,γ, -四苯基卟啉在荧光分析中的应用,化学试剂, 1986, 8(2): 70-72
    [75]黄贤智,翁鹭滨,林建云,荧光分光光度法测定天然水中的微量氟,分析化学, 1986, 14(5): 348-351
    [76] Seybold P G, Hinckley D A, Heinrichs T A, Surface sensitized luminescence, Analytical Chemical, 1983, 55(12): 1994-1996
    [77] Tong C L, Zhuo X J, Liu W P, Wu J M, Synchronous fluorescence measurement of enrofloxacin in the pharmaceutical formulation and its residue in milks based on the yttrium (III)-perturbed luminescence, Talanta, 2010, 82(5): 1858-1863
    [78] Tothova J, Sadecka J, Principles and Applications of Synchronous Fluorescence in Multicomponent Analysis, Chemicke Listy, 2010, 104(8): 778-783
    [79] Han S, Cheng X G, Ma S J, Ren T H, Application of synchronous fluorescence spectrometry in separation of aromatics from hydrotreated naphthenic oil, Petroleum Science and Technology, 2006, 24(7): 851-858
    [80] He L F, Lin D L, Li Y Q, Application and development of synchronous fluorescence spectrometry, Progress in Chemistry, 2004, 16(6): 879-885
    [81] Matuszewska A, Czaja M, The use of synchronous luminescence spectroscopy in qualitative analysis of aromatic fraction of hard coal thermolysis products, Talanta, 2000, 52(3): 457-464
    [82] Tomeckova V, Gajova A, Velika B, Steffekova Z, Lichardusova L, Fluorescence Properties of Paracetamol During Interactions with Mitochondria, SpectroscopyLetters, 2011, 44(2): 122-127
    [83] He L L, Wang X, Liu B, Wang J, Sun Y G, Gao E J, Xu S K, Study on the interaction between promethazine hydrochloride and bovine serum albumin by fluorescence spectroscopy, Journal of Luminescence, 2011, 131(2): 285-290
    [84] Olofsson J, Richter M, Alden M, Auge M, Development of high temporally and spatially (three-dimensional) resolved formaldehyde measurements in combustion environments, Review of Scientific Instruments, 2006, 77(1): 013104
    [85]杨晋,吴惠毅,梁文学,陈晋,杨新玲,孙兴会,导数同步荧光法测定血清色氨酸Journal of Clinical Laboratory Science, 1999, 17(4): 200-201
    [86] Du S X, Du Y F, Wu X L, Detection of dissolved organic matter based on three-dimensional first-order derivative fluorescence spectrometry, Spectroscopy and Spectral Analysis, 2010, 30(12): 3268-3271
    [87] Konstantianos D G, Ioannou P C, Second-derivative synchronous fluorescence spectroscopy for the simultaneous determination of naproxen and salicylic acid in human serum, Analyst, 1996, 121(7): 909-912
    [88] Furusawa M, Tachibana M, Sugime S, Sakaguchi H, Studies on the reproducibility for the determination by derivative synchronous fluorescence spectrometry, Nippon Kagaku Kaishi, 1997, (9): 658-661
    [89] Li Y Q, Huang X Z, Rapid resolution of five polynuclear aromatic compounds in a mixture by derivative non-linear variable angle synchronous fluorescence spectrometry, Fresenius Journalof Analytical Chemistry, 1997, 357(8): 1072-1075
    [90] Hurtubise R J, Skar G T, Determination of benzo[A]pyrenein shale oilby solid-surface fluorescence, Analytica Chimica Acta, 1978, 97(1): 13-19
    [91] Fidanza J, Aaron J J, The analysis of pharmaceutical preparations using solid-surface room-temperature photochemical-fluorescence, Journal of Pharmaceutical and Biomedical Analysis, 1987, 5(6): 619-623
    [92] Yoshida K, Tachikawa T, Yamasaki J, Watanabe S, Tokita S, Solidsurface fluorescence characteristics and X-ray crystal structures of inclusion compounds of imidazoanthraquinol-type fluorescent host with ethanol and 1,4-dioxane, Chemistry Letters, 1996, (12): 1027-1028
    [93] Greiner V J, Egele C, Oncul S, Ronzon F, Manin C, Klymchenko A, Mely Y, Characterization of the lipid and protein organization in HBsAg viral particles by steady-state and time-resolved fluorescence spectroscopy, Biochimie, 2010, 92(8): 994-1002
    [94] Herrmann A, Fibikar S, Ehrt D, Time-resolved fluorescence measurements on Eu3+- and Eu2+-doped glasses, JournalofNon-Crystalline Solids, 2009, 355(43-44): 2093-2101
    [95] Khara DC, Paul A, Santhosh K, Samanta A, Excited state dynamics of 9,9 '-bianthryl in room temperature ionic liquids as revealed by picosecond time-resolved fluorescence study, Journalof Chemical Sciences, 2009, 121(3): 309-315
    [96] Mauring K, Novoderezhkin V, Zaberezhnaya S, Fetisova Z, Low temperature fluorescence spectroscopy studies of the chlorosomal antenna of the green bacterium Chloroflexus aurantiacus, Photosynthesis: Mechanismsand Effects, 1998, I-V: 125-128
    [97] Raviolo MA, Sanchez JM, Brinon MC, Perillo MA, Determination of liposome permeability of ionizable carbamates of zidovudine by steady state fluorescence spectroscopy, Colloidsand Surfaces, 2008, 61(2): 188-198
    [98] Santabarbara S, Jennings RC, The size of the population of weakly coupled chlorophyll pigments involved in thylakoid photoinhibition determined by steady-state fluorescence spectroscopy, Biochimicet Biophysica Acta-Bioenergetics, 2005, 1709(2): 138-149
    [99] Tuncer H, Erk C, Association constants of dibenzo[3n+2]crown-n ethers using steady-state fluorescence spectroscopy, Talanta, 2005, 65(3): 819-823
    [100] O’connor D V, Philips D, Time correlated single photo counting, New York: Academic Press, 1984
    [101] Won Y, Moon S, Lee D, Kim DY, High-speed fluorescence lifetime measurement for investigation of dynamic phenomena, Imaging, Manipulation, and Analysisof Biomolecules, Cells, and Tissues VII, 2009, 7182: 718219
    [102]房喻,王辉,荧光寿命测定的现代方法与应用,化学通报, 2001, (10): 631-636
    [103] Harris C M, Selinger B K, Single-Photon Decay Spectroscopy. 2. Pile-Up Problem, Australian Journalof Chemistry, 1979, 32(10): 2111-2129
    [104] Petrasek Z, Phillips D, A time - resolved study of concentration quenching of disulfonated aluminium phthalocyanine fluorescence, Photochem Photobiol Sci, 2003, 2(3): 236-244
    [105] Li H M, Chen Y D, Yan Z Y, Hu Y Z, Fluorescence self-quenching and the quenching mechanism of magnolol, Acta Physico-Chimica Sinica, 2007, 23(9): 1454-1458
    [106] Arbeloa F L, Ojeda P R, Arbeloa I L, The fluorescence quenching mechanism of Rhodamine 6G in concentrated ethanolic solution, Journal of Photochemistry and Photobiology A: Chemistry, 1988, 45: 313-323
    [107] Beddard G S, Carlin S E, Porter G, Concentration quenching of ChlorophyⅡfluorescence in bilayer lipid vesicles and liposomes, Chemical Physics letters, 1976, 43: 27-32
    [108]张玉平,魏永巨,李娜,秦身钧,人血清白蛋白和牛血清白蛋白荧光量子产率的测量,分析化学, 2004, 32(6): 779-782
    [109] Kayser V, Chennamsetty N, Voynov V, Helk B, Trout B L, Tryptophan-tryptophan energy transfer and classification of tryptophan residues in proteinsusing a therapeutic monoclonal antibody as a model, Journal of fluorescence, 2011, 21(1): 275-288
    [110] Gavezzotti A, Molecular aggregation of acetic acid in a carbon tetrachloride solution: a molecular dynamics study with a view to crystal nucleation, Chem Eur J, 1999, 5: 567-576
    [111] Shore J D, Perchak D, Shnidman Y, Simulations of the nucleation of AgBr from solution, J Chem Phys, 2000, 113: 6276-6284
    [112] Mullin J W, Leci C L, Evidence of molecular cluster formation in supersaturated solutions of citric acid, Philosophical Magazine, 1969, 19 (161): 1075-1077
    [113] Mcmahon P M, Berglund K A, Larson M A, Raman spectroscopic studies of the structure of supersaturated KNO3 solution, Industrial Crystallization 1984, 229-232
    [114] Erdemir D, Chattopadhyay S, Guo L, Ilavsky J, Amenitsch H, Segre C U, Myerson A S, Relationship between self-association of Glycine molecules in supersaturated Solutions and solid state outcome, Physical Review Letters, 2007, 99: 115702
    [115]李艳斌,头孢哌酮钠反应与溶析结晶过程研究[硕士论文],天津大学, 2004, 1-2
    [116]李艳斌,王永莉,王静康,头孢哌酮钠结晶工艺的进展,中国抗生素杂志, 2004, 29(1): 58-62
    [117] Botsaris G D, Qin R Y, A new mechanism for nuclei formation in suspension crystallizers: the role of interparticle forces, Chem. Eng. Sci., 1997, 52(2): 3429-3440
    [118] Ward M D, Bulk crystals to surface: combining X-ray diffraction and atomic force microscopy to probe the structure and formation of crystal interfaces, Chem. Rev., 2001, 1697-1725
    [119] Mullin J W, Crystallization, Oxford: Butterworth-Heinemann, 2001, 1-284
    [120] Ohara M, Reid R C, Modeling Crystal Growth Rates from Solution, Prentice Hall, 1973
    [121] Burton W K, Cabrera N, Frank F C, The Growth of Crystals and the Equilibrium Structure of their Surfaces, Philosophical Transactions of the Royal Society of London, Series A, Mathematical and Physical Sciences, 1951, 243(866): 299-358
    [122] Kashchiev D, Verdoes D, Van Rosmalen G M, Induction time and metastability limit in new phase formation, Journal of Crystal Growth, 1991, 110(3): 373-380
    [123] TeychenéS, Biscans B, Nucleation Kinetics of Polymorphs: Induction Period and Interfacial Energy Measurements, Cryst. Growth Des, 2008, 8(4): 1133-1139
    [124] Barata P A, Serrano M L, Salting-out precipitation of potassium dihydrogenphosphate (KDP). I. Precipitation mechanism, Journal of Crystal Growth, 1996, 160(3-4): 361-369
    [125]智敏杰,氯唑西林钠耦合结晶新工艺研究[博士学位论文],天津大学, 2011, 84-100
    [126] Mydlarz J, Jones A G, Crystallization and agglomeration kinetics during the batch drawing-out precipitation of potash alum with aqueous acetone, Powder Technology, 1991, 65: 187-194
    [127] Lian G P, Thornton C, Adams M J, Discrete particle simulation of agglomerate impact coalescence, Chemical Engineering Science, 1998, 53(19): 3381-3391
    [128] Saint-Raymond H, Gruy F, Cournil M, Turbulent aggregation of alumina in water and n-heptane, Journal of Colloid and Interface Science, 1998, 202(2): 238-250
    [129] Schmork K, Modeling of mechanism of agglomeration of KCl crystallization, Crystal Research and Technology, 1988, 23: 967-972
    [130] Masy J C, Cournil M, Using a turbidometric method to study the kinetics of agglomeration of potassium sulfate in a liquid medium, Chemical Enginneering Science, 1991, 46(2): 639-701
    [131] Nore P H, Mersmann A, Batch precipitation of barium carbonate, Chemical Enginneering Science, 1993, 48(17): 3083-3088
    [132] Melis S, Verduyn M, Storti G, et al., Effect of fluid motion on the aggregation of small particles subject to interaction forces, AIChE Journal, 1999, 45(7): 1383-1393
    [133] Maskara A, Smith D M, Agglomeration during the drying of fine silica powders, Part II: The role of particle solubility, Journal of the American Ceramic Society, 1997, 80(7): 1715-1722
    [134]胡英顺,尹秋响,侯宝红等,结晶及沉淀过程中粒子聚结与团聚的研究进展,化学工业与工程, 2005, 22(5): 371-375
    [135]谌怡,克林霉素磷酸酯结晶过程研究[博士学位论文],天津大学, 2009, 78-79
    [136]陆杰,王静康,反应结晶过程研究,化学工业与工程, 1999, 16(1): 58-61
    [137] Farkas B, Horvath K, Szent-Kirrallyi Z, Elaboration of a test method for examination of polymorphism of active pharmaceutical ingredients (API), 15th ISIC Sorrento, 2002, 587-592
    [138] Haselhuhn F, Kind M, Pseudo-polymorphic behavior of precipitated calcium-oxalate, 15th ISIC Sorrento, 2002, 41-46
    [139] Masaru O, Masami K, Toshio K, Method for purifying tryptophan, 1988, EP 0274728A1
    [140] Shoichiro M, Toshio M, Tooru M, Kazunari N, Process for purifying tryptophan, 1988, US 4769474
    [141] Yoshitsugu K, Hiroyuki I, Ryoichi T, Tsugio W, Process for purifying tryptophan, 1991, US 5057615
    [142] Kenichi Y, Takahisa T, Ryuichiro K, Method for crystallization of optically active tryptophan, 1991, US 5070208
    [143] Luca B, Maurizio M, Roberto M, Process for the purification of tryptophan, 2005, WO 090306 A1
    [144]朱耕宇,陈雪萍,化工现代测试技术,浙江大学出版社, 2009, 16(1): 92-108
    [145]冯玉红,现代仪器分析实用教程,北京大学出版社, 2007, 16(1): 363-370
    [146] Randolph A D, Larson M A, Theory of particle process: Analysis and techniques of continuous crystallization, New York: Academic Press, 1988, 1-32

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700