中温固体氧化物燃料电池La_(1-x)Sr_xCo_(1-y)Fe_yO_(3-δ)阴极的性能稳定性及衰减机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体氧化物燃料电池(SOFC)是一种将化学能直接转化为电能的高效清洁能源转换装置。La_(1-x)Sr_xCo_(1-y)Fe_yO_(3-δ)(LSCF)是一种得到广泛研究的中温SOFC阴极材料,在600-800C范围内具有良好的氧离子/电子混合导电性。然而,在中温环境(600-800C)中,随着工作时间的延长,LSCF阴极性能会发生衰减,这已经成为限制其作为SOFC阴极材料得到广泛应用的关键问题。本文主要以LSCF及其复合阴极在工作环境中的性能稳定性为主要研究对象,研究导致性能衰减的各种因素,探索衰减机理,并且探讨提高LSCF阴极稳定性的措施和方法。
     本文研究了丝网印刷法制备的LSCF阴极在开路电压和电流极化条件下的稳定性,探索LSCF阴极发生衰减的本质原因;采用溶液浸渍法制备了LSCF-YSZ (Y_2O_3稳定的ZrO_2)复合阴极,重点研究了其在工作环境中的性能衰减机理,明确YSZ电解质与LSCF阴极的相互作用对阴极性能的影响;为了避免LSCF阴极与电解质在工作环境中发生固态反应,以GDC(Gd掺杂的CeO_2)为多孔骨架,采用溶液浸渍法制备出LSCF-GDC复合阴极,研究其长期稳定性,并提出抑制性能衰减、提高稳定性的措施;另外,以SDC(Sm掺杂的CeO_2)为骨架,采用溶液浸渍法制备出LSCF-SDC复合阴极,研究其在不同氧分压条件下的稳定性,探索阴极上的氧还原机制以及氧分压对性能衰减的影响。
     研究得到如下主要结果:
     (1)对于与YSZ电解质配合使用的传统LSCF阴极,在750C空气中测试500小时后,其欧姆阻抗和极化阻抗都显著增大。这主要是由阴极与电解质发生固态反应而形成SrZrO_3相,以及阴极内部结构发生聚合而使氧气传输变得困难导致的。
     电流极化会使LSCF阴极内部结构聚合更加严重,导致欧姆阻抗和极化阻抗的增大更加明显。在电流极化过程中,初始阶段欧姆阻抗和极化阻抗都会减小,阴极性能被活化。但是随着极化时间的延长,欧姆阻抗和极化阻抗呈增大趋势,阴极性能发生衰减。
     (2)对于溶液浸渍法制备的LSCF-YSZ阴极,在750C空气中测试500小时后,其欧姆阻抗和极化阻抗都增大,特别是极化阻抗显著增大。此类阴极性能发生衰减的主要原因是热作用使阴极内部LSCF颗粒在YSZ骨架表面发生平铺,引起了显著的极化损失。
     与不施加电流条件下相比,电流作用会导致LSCF-YSZ阴极发生更加严重的性能劣化,电流密度越大导致越严重的阴极性能衰减。在电流极化初期会出现明显的阴极性能活化过程。
     (3)对于溶液浸渍法制备的LSCF-GDC阴极,在750C空气中,LSCF颗粒长大不仅降低阴极的电化学活性、引起极化损失,而且破坏氧离子传输路径、引起欧姆损失,这是导致LSCF-GDC阴极性能衰减的主要原因。
     电流作用会加速LSCF-GDC阴极性能劣化,并且增大电流密度会促进LSCF颗粒长大,导致更加严重的性能衰减。
     LaNi_(0.6)Fe_(0.4)O_3(LNF)的引入能在保持阴极具有良好导电性的前提下,抑制LSCF颗粒长大,使LSCF-GDC阴极在工作环境中保持性能稳定。
     (4)对于溶液浸渍法制备的LSCF-SDC阴极,750C条件下的热作用导致LSCF颗粒的聚合长大以及阴极内部孔隙的减少,使该纳米结构阴极的性能劣化。
     在低氧分压条件下,由于氧气含量不充足,阴极表面SrO的形成受到抑制,使LSCF-SDC阴极性能衰减率降低。
Solid oxide fuel cell (SOFC) is a clean energy conversion device that convertschemical energy directly into electric power in a highly efficient way. La_(1-x)Sr_xCo_(1-y)Fe_yO_(3-δ)(LSCF) perovskite oxides are widely accepted as the cathode materials for SOFCs thatoperate in the intermediate temperature between600and800C due to their highelectronic and ionic conductivities. However, the electrochemical performance of LSCFcathodes is not stable with time under operation conditions and the performancedegradation becomes one of the most important issues hampering LSCF applications inSOFCs. In this dissertation, the stability of LSCF or LSCF composite cathodes ismeasured and reasons leading to performance degradation are investigated. Mechanismsof performance degradation are discussed and then methods of stability enhancement arepresented.
     The stability under the condition of open circuit or current polarization of LSCFcathodes prepared by screen-printing is measured to find the essential factors causingperformance degradation of cathodes. Performance degradation mechanisms ofimpregnated LSCF-YSZ composite cathodes are investigated in detail and effects ofinteraction between LSCF cathodes and YSZ electrolytes are revealed. To avoid the solidreaction between LSCF cathodes and electrolytes under operation conditions, GDC is usedas the scaffold in the preparation of LSCF-GDC composite cathodes by impregnation. Thestability of LSCF-GDC composite cathodes is measured and methods of stabilityenhancement for cathodes are explored. Additionally, the stability of LSCF-SDCcomposite cathodes prepared by impregnation is measured at different oxygen partialpressure. The mechanisms of oxygen reaction and effects of oxygen partial pressure onperformance degradation are interpreted.
     The major results obtained are described as follows:
     (1) After testing for500h at750C in air, both ohmic resistance and polarizationresistance of conventional LSCF cathodes increase drematiclly, which is caused by the formation of SrZrO3phases related to solid reaction between LSCF and YSZ, and theblock of oxygen transfer related to agglomeration of LSCF porous structure.
     Current polarization accelerates the agglomeration of LSCF porous structure and leadsto greater increase of both ohmic resistance and polarization resistance of LSCF cathodes.At the beginning stage of current polarization, both ohmic resistance and polarizationresistance decrease, indicating that the performance of cathodes is activated. Butprolonging current polarization time leads to the increase of both ohmic resistance andpolarization resistance and serious performance degradation.
     (2) After testing for500h at750C in air, both ohmic resistance and polarizationresistance of impregnated LSCF-YSZ cathodes increase. The polarization resistanceincreases dramatically compared to its origin value. It can be confirmed that plorizationlosses play a main role on the performance degradation of cathodes, which is caused bythe flattening of LSCF particles on the surface of YSZ scaffold.
     Comparing with LSCF-YSZ cathodes operating under open curcuite, currentpolarization leads to more serious performace degradation of cathodes. And higher currentdensity accelerates performace degradation. Obvious performance activation process isobserved at the beginning stage of current treatment.
     (3) During stability testing of LSCF-GDC cathodes at750C, the coarsening of LSCFparticles is the origin of the polarization losses, which is caused by the reduction of theelectrochemical activity, and the ohmic losses, which is caused by the damage of oxygenion diffusion paths.
     Current polarization leads to serious perforamance degradation of LSCF-GDCcathodes. Higher current density accelerates the coarsening of LSCF particles and thedeterioration process of cathodes.
     Under the operation condition, the introduction of LaNi0.6Fe0.4O3(LNF) phase intoLSCF-GDC cathodes can improve the performance stability as well as maintainingrelatively high conductivity and electrochemical activity of cathodes, due to thesuppression of the coarsening of LSCF particles.
     (4) For impregnated LSCF-SDC cathodes, thermal process at750C causes theagglomeration of LSCF particles and the reduction of porosity of cathodes, which is responsible for the performance degradation.
     Lowering oxygen partial pressure results in the decrease of performance degradationrate of LSCF-SDC cathodes, due to the suppression of the formation of SrO on thesurface of cathodes in the insufficient oxygen atmosphere.
引文
[1] Jiang S P, Wang X. In: Kharton V V, editors. Solid State Electrochemistry II:Electrodes, interfaces and ceramic membranes. Wiley-VCH Verlag GmbH&Co.KGaA,2011, pp.179-264.
    [2] Wachsman E D, Marlowe C A, Lee K T. Role of solid oxide fuel cells in a balancedenergy strategy. Energy&Environmental Science,2012,5:5498-5509.
    [3] Stambouli A B, Traversa E. Solid oxide fuel cells (SOFCs): a review of anenvironmentally clean and efficient source of energy. Renewable&SustainableEnergy Reviews,2002,6:433-455.
    [4] Wriklre W. In: Subhash C S, Kevin K, editors. High temperature and solid oxide fuelcells. Elsevier Science, Amsterdam,2003, pp.53-81.
    [5] Surdoval W A. The Solid State Energy Conversion Alliance (SECA)-A USDepartment of Energy initiative to promote the development of mass customized solidoxide fuel cells for low-cost power,2001.
    [6] Singhal S C. Solid oxide fuel cells: Status, challenges and opportunities. Advances inScience and Technology,2006,45:1837-1846.
    [7] Wachsman E d, Singhal S C. Solid oxide fuel cell commercialization,research andchallenges. American Ceramic Society Bulletin,2009,89:22-32.
    [8]毛宗强,黄建兵,王诚,等.低温固体氧化物燃料电池研究进展.电源技术,2008,32:75–79.
    [9] Williams M C, Strakey J P, Singhal S C. U.S. distributed generation fuel cell program.Journal of Power Sources,2004,131:79-85.
    [10] Mukerjee S, Haltiner K, Kerr R, Chick L, Sprenkle V, Meinhardt K, Lu C, Kim J Y,Weil K S. Solid Oxide Fuel Cell development: latest results, in: Eguchi K, Singhal SC, Yokokawa H, Mizusaki H, editors. Solid Oxide Fuel Cells10,2007, pp.59-65.
    [11] Singhal S C. Solid oxide fuel cells for stationary, mobile, and military applications.Solid State Ionics,2002,152–153:405-410.
    [12] Horita T, Yamaji K, Sakai N, Yokokawa H, Weber A, Ivers-Tiffée E. Electrodereaction of La1xSrxCoO3dcathodes on La0.8Sr0.2Ga0.8Mg0.2O3yelectrolyte in solidoxide fuel cells. Journal of the Electrochemical Society,2001,148: A456-A462.
    [13] Shao Z P, Zhou W, Zhu Z. Advanced synthesis of materials forintermediate-temperature solid oxide fuel cells. Progress in Materials Science,2012,57:804-874.
    [14] Sun C W, Hui R, Roller J. Cathode materials for solid oxide fuel cells: a review.Journal of Solid State Electrochemistry,2010,14:1125-1144.
    [15] Adler S B. Factors governing oxygen reduction in solid oxide fuel cell cathodes.Chemical Reviews,2004,104:4791-4843.
    [16] Tsipis E V, Kharton V V. Electrode materials and reaction mechanisms in solid oxidefuel cells: a brief review. Journal of Solid State Electrochemistry,2008,12:1367-1391.
    [17] Jiang S P. Development of lanthanum strontium manganite perovskite cathodematerials of solid oxide fuel cells: a review. Journal of Materials Science,2008,43:6799-6833.
    [18] Mizusaki J, Mori N, Takai H, Yonemura Y, Minamiue H, Tagawa H, Dokiya M,Inaba H, Naraya K, Sasamoto T, Hashimoto T. Oxygen nonstoichiometry and defectequilibrium in the perovskite-type oxides La1xSrxMnO3+d. Solid State Ionics,2000,129:163-177.
    [19] Kuo J H, Anderson H U, Sparlin D M. Oxidation-reduction behavior of undoped andSr-doped LaMnO3nonstoichiometry and defect structure. Journal of Solid StateChemistry,1989,83:52-60.
    [20] Mizusaki J, Yonemura Y, Kamata H, Ohyama K, Mori N, Takai H, Tagawa H,Dokiya M, Naraya K, Sasamoto T, Inaba H, Hashimoto T. Electronic conductivity,seebeck coefficient, defect and electronic structure of nonstoichiometricLa1-xSrxMnO3. Solid State Ionics,2000,132:167-180.
    [21] Clausen C, Bagger C, Bildesorensen J B, Horsewell A. Microstructural andmicrochemical characterization of the interface between La0.85Sr0.15MnO3andY2O3-stabilized ZrO2. Solid State Ionics,1994,70:59-64.
    [22] Yamamoto O, Takeda Y, Kanno R, Noda M. Perovskite-type oxides as oxygenelectrodes for high temperature oxide fuel cells. Solid State Ionics,1987,22:241-246.
    [23] Stochniol G, Syskakis E, Naoumidis A. Chemical compatibility betweenstrontium-doped lanthanum manganite and yttria-stabilized zirconia. Journal of theAmerican Ceramic Society,1995,78:929-932.
    [24] Tai L W, Nasrallah M M, Anderson H U, Sparlin D M, Sehlin S R. Structure andelectrical properties of La1-xSrxCo1-yFey03. Part1. The system La0.8Sr0.2Co1-yFeyO3.Solid State Ionics,1995,76:259-271.
    [25] Tai L W, Nasrallah M M, Anderson H U, Sparlin D M, Sehlin S R. Structure andelectrical properties of La1-xSrxCo1-yFey03. Part2. The system La1-xSrxCo0.2Fe0.8O3.Solid State Ionics,1995,76:273-283.
    [26] Jiang S P. A comparison of O2reduction reactions on porous (La,Sr)MnO3and(La,Sr)(Co,Fe)O3electrodes. Solid State Ionics,2002,146:1-22.
    [27] Mai A, Haanappel V A C, Uhlenbruck S, Tietz F, Stover D. Ferrite-based perovskitesas cathode materials for anode-supported solid oxide fuel cells Part I. Variation ofcomposition. Solid State Ionics,2005,176:1341-1350.
    [28] Chen J, Liang F L, Yan D, Pu J, Chi B, Jiang S P, Li J. Performance of large-scaleanode-supported solid oxide fuel cells with impregnated La0.6Sr0.4Co0.2Fe0.8O3-+Y2O3stabilized ZrO2composite cathodes. Journal of Power Sources,2010,195:5201-5205.
    [29] Mai A, Becker M, Assenmacher W, Tietz F, Hathiramani D, Ivers-Tiffee E, Stover D,Mader W. Time-dependent performance of mixed-conducting SOFC cathodes. SolidState Ionics,2006,177:1965-1968.
    [30] Kuhn M, Hashimoto S, Sato K, Yashiro K, Mizusaki J. Oxygen nonstoichiometry,thermo-chemical stability and lattice expansion of La0.6Sr0.4FeO3-. Solid State Ionics,2011,195:7-15.
    [31] Li Z P, Toshiyuki M, Auchterlonie G J, Zou J, John D. Mutual diffusion occurring atthe interface between La0.6Sr0.4Co0.8Fe0.2O3cathode and Gd-doped ceria electrolyteduring IT-SOFC cell preparation. Acs Applied Materials&Interfaces,2011,3:2772-2778.
    [32] Sakai N, Kishimoto H, Yamaji K, Horita T, Brito M E, Yokokawa H. Interfacestability of perovskite cathodes and Rare-Earth doped ceria interlayer in SOFCs.Journal of the Electrochemical Society,2007,154: B1331-B1337.
    [33] Li J, Jiang S P. In: Fergus J W, Hui R, Li X G, Wilkinson D P, Zhang J J, editors.Solid Oxide Fuel Cells: materials properties and performance. CRC Press,2008, pp.131-77.
    [34] Yokokawa H, Tu H, Iwanschitz B, Mai A. Fundamental mechanisms limiting solidoxide fuel cell durability. Journal of Power Sources,2008,182:400-412.
    [35] Shao Z P, Haile S M. A high-performance cathode for the next generation ofsolid-oxide fuel cells. Nature,2004,431:170-173.
    [36] Zhou W, Ran R, Shao Z P. Progress in understanding and development ofBa0.5Sr0.5Co0.8Fe0.2O3--based cathodes for intermediate-temperature solid-oxide fuelcells: A review. Journal of Power Sources,2009,192:231-246.
    [37] Waindich A, Mobius A, Muller M. Corrosion of Ba1-xSrxCo1-yFeyO3-andLa0.3Ba0.7Co0.2Fe0.8O3-materials for oxygen separating membranes under Oxycoalconditions. Journal of Membrane Science,2009,337:182-187.
    [38] Bucher E, Egger A, Caraman G B, Sitte W. Stability of the SOFC cathode material(Ba,Sr)(Co,Fe)O3-in CO2-containing atmospheres. Journal of the ElectrochemicalSociety,2008,155: B1218-B1224.
    [39] Zhao H, Mauvy F, Lalanne C, Bassat J M, Fourcade S, Grenier J C. New cathodematerials for ITSOFC: Phase stability, oxygen exchange and cathode properties ofLa2-xNiO4+. Solid State Ionics,2008,179:2000-2005.
    [40] Mauvy F, Lalanne C, Bassat J-M, Grenier J-C, Zhao H, Huo L, Stevens P. Electrodeproperties of Ln2NiO4+(Ln=La, Nd, Pr): AC Impedance and DC PolarizationStudies. Journal of the Electrochemical Society,2006,153: A1547-A1553.
    [41] Deng Z Q, Smit J P, Niu H J, Evans G, Li M R, Xu Z L, Claridge J B, Rosseinsky MJ. B cation ordered double perovskite Ba2CoMo0.5Nb0.5O6-as a potential SOFCcathode. Chemistry of Materials,2009,21:5154-5162.
    [42] Dai N N, Wang Z H, Lou Z L, Yan Y M, Qiao J S, Peng J, Sun K N. One-stepsynthesis of high performance Sr2Fe1.5Mo0.5O6–Sm0.2Ce0.8O1.9composite cathode forintermediate-temperature solid oxide fuel cells using a self-combustion technique.Journal of Power Sources,2012,217:519-523.
    [43] Yasuda I, Ogasawara K, Hishinuma M, Kawada T, Dokiya M. Oxygen tracerdiffusion coefficient of (La,Sr)MnO3±. Solid State Ionics,1996,86-8:1197-1201.
    [44] Vohs J M, Gorte R J. High-performance SOFC cathodes prepared by infiltration.Advanced Materials,2009,21:943-956.
    [45] Yang C C T, Wei W C J, Roosen A. Electrical conductivity and microstructures ofLa0.65Sr0.3MnO3–8mol%yttria-stabilized zirconia. Materials Chemistry and Physics,2003,81:134-142.
    [46] Leng Y J, Chan S H, Khor K A, Jiang S P. Development of LSM/YSZ compositecathode for anode-supported solid oxide fuel cells. Journal of AppliedElectrochemistry,2004,34:409-415.
    [47] Leng Y J, Chan S H, Khor K A, Jiang S P.(La0.8Sr0.2)0.9MnO3-Gd0.2Ce0.8O1.9composite cathodes prepared from (Gd, Ce)(NO3)x-modified (La0.8Sr0.2)0.9MnO3forintermediate-temperature solid oxide fuel cells. Journal of Solid StateElectrochemistry,2006,10:339-347.
    [48] Kubota C, Ito Y, Kikuta K. Co-firing of LSM-GDC/GDC/NiO-GDC with addition ofnano-GDC powder. Journal of the Ceramic Society of Japan,2008,116:792-796.
    [49] Teraoka Y, Zhang H M, Okamoto K, Yamazoe N. Mixed ionic-electronicconductivity of La1xSrxCo1yFeyO3perovskite-type oxides. Materials ResearchBulletin,1988,23:51-58.
    [50] Leng Y J, Chan S H, Liu Q L. Development of LSCF-GDC composite cathodes forlow-temperature solid oxide fuel cells with thin film GDC electrolyte. InternationalJournal of Hydrogen Energy,2008,33:3808-3817.
    [51] Murray E P, Sever M J, Barnett S A. Electrochemical performance of(La,Sr)(Co,Fe)O3-(Ce,Gd)O3composite cathodes. Solid State Ionics,2002,148:27-34.
    [52] Fu C J, Sun K N, Zhang N Q, Chen X B, Zhou D R. Electrochemical characteristicsof LSCF-SDC composite cathode for intermediate temperature SOFC. ElectrochimicaActa,2007,52:4589-4594.
    [53] Jiang S P. Nanoscale and nano-structured electrodes of solid oxide fuel cells byinfiltration: Advances and challenges. International Journal of Hydrogen Energy,2012,37:449-470.
    [54] Sholklapper T Z, Jacobson C P, Visco S J, De Jonghe L C. Synthesis of dispersed andcontiguous nanoparticles in Solid Oxide Fuel Cell electrodes. Fuel Cells,2008,8:303-312.
    [55] Jiang Z Y, Xia C R, Chen F L. Nano-structured composite cathodes forintermediate-temperature solid oxide fuel cells via an infiltration/impregnationtechnique. Electrochimica Acta,2010,55:3595-3605.
    [56] Jiang S P. A review of wet impregnation-An alternative method for the fabricationof high performance and nano-structured electrodes of solid oxide fuel cells. MaterialsScience and Engineering a-Structural Materials Properties Microstructure andProcessing,2006,418:199-210.
    [57] Huang Y Y, Ahn K, Vohs J M, Gorte R J. Characterization of Sr-doped LaCoO3-YSZcomposites prepared by impregnation methods. Journal of the ElectrochemicalSociety,2004,151: A1592-A1597.
    [58] Huang Y Y, Vohs J M, Gorte R J. SOFC cathodes prepared by infiltration withvarious LSM precursors. Electrochemical and Solid State Letters,2006,9:A237-A240.
    [59] Knofel C, Wang H J, Thyden K T S, Mogensen M. Modifications of interfacechemistry of LSM-YSZ composite by ceria nanoparticles. Solid State Ionics,2011,195:36-42.
    [60] Huang Y Y, Vohs J M, Gorte R J. Characterization of LSM-YSZ compositesprepared by impregnation methods. Journal of the Electrochemical Society,2005,152:A1347-A1353.
    [61] Liang F L, Chen J, Jiang S P, Chi B, Pu J, Li J. High performance solid oxide fuelcells with electrocatalytically enhanced (La, Sr)MnO3cathodes. ElectrochemistryCommunications,2009,11:1048-1051.
    [62] Sholklapper T Z, Lu C, Jacobson C P, Visco S J, De Jonghe L C. LSM-infiltratedsolid oxide fuel cell cathodes. Electrochemical and Solid State Letters,2006,9:A376-A378.
    [63] Huang Y Y, Vohs J M, Gorte R J. Fabrication of Sr-doped LaFeO3YSZ compositecathodes. Journal of the Electrochemical Society,2004,151: A646-A651.
    [64] Adijanto L, Kungas R, Bidrawn F, Gorte R J, Vohs J M. Stability and performance ofinfiltrated La0.8Sr0.2CoxFe1-xO3electrodes with and without Sm0.2Ce0.8O1.9interlayers.Journal of Power Sources,2011,196:5797-5802.
    [65] Nie L F, Liu M F, Zhang Y J, Liu M L. La0.6Sr0.4Co0.2Fe0.8O3-cathodes infiltratedwith samarium-doped cerium oxide for solid oxide fuel cells. Journal of PowerSources,2010,195:4704-4708.
    [66] Liang F L, Zhou W, Chi B, Pu J, Jiang S P, Li J. Pd-YSZ composite cathodes foroxygen reduction reaction of intermediate-temperature solid oxide fuel cells.International Journal of Hydrogen Energy,2011,36:7670-7676.
    [67] Liang F L, Chen J, Chi B, Pu J, Jiang S P, Li J. Redox behavior of supported Pdparticles and its effect on oxygen reduction reaction in intermediate temperature solidoxide fuel cells. Journal of Power Sources,2011,196:153-158.
    [68] Chen J, Liang F L, Chi B, Pu J, Jiang S P, Li J. Palladium and ceria infiltratedLa0.8Sr0.2Co0.5Fe0.5O3-cathodes of solid oxide fuel cells. Journal of Power Sources,2009,194:275-280.
    [69] Liang F L, Chen J, Jiang S P, Chi B, Pu J, Li J. Development of nanostructured andpalladium promoted (La,Sr)MnO3-based cathodes for intermediate-temperatureSOFCs. Electrochemical and Solid State Letters,2008,11: B213-B216.
    [70] Yokokawa H, Horita T. In: Subhash C S, Kevin K, editors. High temperature andsolid oxide fuel cells. Elsevier Science, Amsterdam,2003, pp.119-147.
    [71] Simner S P, Anderson M D, Engelhard M H, Stevenson J W. Degradationmechanisms of La-Sr-Co-Fe-O3SOFC cathodes. Electrochemical and Solid StateLetters,2006,9: A478-A481.
    [72] Tofield B C, Scott W R. Oxidative nonstoichiometry in perovskites, an experimentalsurvey; the defect structure of an oxidized lanthanum manganite by powder neutrondiffraction. Journal of Solid State Chemistry,1974,10:183-194.
    [73] Zheng F, Pederson L R. Phase behavior of lanthanum strontium manganites. Journalof the Electrochemical Society,1999,146:2810-2816.
    [74] Tsai T, Barnett S A. Effect of LSM-YSZ cathode on thin-electrolyte solid oxide fuelcell performance. Solid State Ionics,1997,93:207-217.
    [75] Yokokawa H, Horita T, Sakai N, Dokiya M, Kawada T. Thermodynamicrepresentation of nonstoichiometric lanthanum manganite. Solid State Ionics,1996,86-8:1161-1165.
    [76] Jiang S P, Zhang J P, Ramprakash Y, Milosevic D, Wilshier K. An investigation ofshelf-life of strontium doped LaMnO3materials. Journal of Materials Science,2000,35:2735-2741.
    [77] Tietz F, Mai A, Stover D. From powder properties to fuel cell performance-Aholistic approach for SOFC cathode development. Solid State Ionics,2008,179:1509-1515.
    [78] Mori M, Abe T, Itoh H, Yamamoto O, Shen G Q, Takeda Y, Imanishi N. Reactionmechanism between lanthanum manganite and yttria doped cubic zirconia. Solid StateIonics,1999,123:113-119.
    [79] van Roosmalen J A M, Cordfunke E H P, Huijsmans J P P. Sinter behaviour of (La,Sr)MnO3. Solid State Ionics,1993,66:285-293.
    [80] Komatsu T, Watanabe K, Arakawa M, Arai H. A long-term degradation study ofpower generation characteristics of anode-supported solid oxide fuel cells usingLaNi(Fe)O3electrode. Journal of Power Sources,2009,193:585-588.
    [81] Mitterdorfer A, Gauckler L J. La2Zr2O7formation and oxygen reduction kinetics ofthe La0.85Sr0.15MnyO3, O2(g)│YSZ system. Solid State Ionics,1998,111:185-218.
    [82] Jordan N, Assenmacher W, Uhlenbruck S, Haanappel V A C, Buchkremer H P,Stover D, Mader W. Ce0.8Gd0.2O2-protecting layers manufactured by physical vapordeposition for IT-SOFC. Solid State Ionics,2008,179:919-923.
    [83] Matsuzaki Y, Yasuda I. Electrochemical properties of a SOFC cathode in contactwith a chromium-containing alloy separator. Solid State Ionics,2000,132:271-278.
    [84] Jiang S P, Zhang J P, Apateanu L, Foger K. Deposition of chromium species onSr-doped LaMnO3cathodes in solid oxide fuel cells. ElectrochemistryCommunications,1999,1:394-397.
    [85] Jiang S P, Zhang J P, Zheng X G. A comparative investigation of chromiumdeposition at air electrodes of solid oxide fuel cells. Journal of the European CeramicSociety,2002,22:361-373.
    [86] Xinbing Chen L Z, Erjia Liu, San Ping Jiang. A fundamental study of chromiumdeposition and poisoning at (La0.8Sr0.2)0.95(Mn1-xCox)O3±(0.0≤x≤1.0) cathodes ofsolid oxide fuel cells. International Journal of Hydrogen Energy,2010:1-17.
    [87] Wu J W, Johnson C D, Gemmen R S, Liu X B. The performance of solid oxide fuelcells with Mn-Co electroplated interconnect as cathode current collector. Journal ofPower Sources,2009,189:1106-1113.
    [88] Zhou X D, Templeton J W, Zhu Z, Chou Y S, Maupin G D, Lu Z, Brow R K,Stevenson J W. Electrochemical performance and stability of the cathode for solidoxide fuel cells. Journal of the Electrochemical Society,2010,157: B1019-B1023.
    [89] Chen K F, Ai N, Zhao L, Jiang S P. Effect of volatile boron species on theelectrocatalytic activity of cathodes of solid oxide fuel cells: I.(La,Sr)MnO3basedelectrodes. Journal of the Electrochemical Society,2013,160: F183-F190.
    [90] Chen K F, Ai N, Zhao L, Jiang S P. Effect of volatile boron species on theelectrocatalytic activity of cathodes of solid oxide fuel cells: II.(La,Sr)(Co,Fe)O3based electrodes. Journal of the Electrochemical Society,2013,160: F301-F308.
    [91] Brugnoni C, Ducati U, Scagliotti M. SOFC cathode/electrolyte interface. Part I:Reactivity between La0.85Sr0.15MnO3and ZrO2-Y2O3. Solid State Ionics,1995,76:177-182.
    [92] Yokokawa H, Sakai N, Horita T, Yamaji K, Brito M E, Kishimoto H.Thermodynamic and kinetic considerations on degradations in solid oxide fuel cellcathodes. Journal of Alloys and Compounds,2008,452:41-47.
    [93] Ju G, Reifsnider K, Huang X Y. Infrared thermography and thermoelectrical study ofa solid oxide fuel cell. Journal of Fuel Cell Science and Technology,2008,5:031006-1-6.
    [94] Jiang S P, Wang W. Sintering and grain growth of (La,Sr)MnO3electrodes of solidoxide fuel cells under polarization. Solid State Ionics,2005,176:1185-1191.
    [95] Hagen A, Barfod R, Hendriksen P V, Liu Y L, Ramousse S. Degradation of anodesupported SOFCs as a function of temperature and current load. Journal of theElectrochemical Society,2006,153: A1165-A1171.
    [96] Lee S, Miller N, Gerdes K. Long-term stability of SOFC composite cathode activatedby electrocatalyst infiltration. Journal of the Electrochemical Society,2012,159:F301-F308.
    [97] Simner S R, Anderson M D, Coleman J E, Stevenson J W. Performance of a novelLa(Sr)Fe(Co)O3-Ag SOFC cathode. Journal of Power Sources,2006,161:115-122.
    [98] Wang W G, Mogensen M. High-performance lanthanum-ferrite-based cathode forSOFC. Solid State Ionics,2005,176:457-462.
    [99] Pena-Martinez J, Marrero-Lopez D, Sanchez-Bautista C, Dos Santos-Garcia A J,Ruiz-Morales J C, Canales-Vazquez J, Nunez P. Effect of a CGO buffer layer on theperformance of (La0.6Sr0.4)0.995Co0.2Fe0.8O3-cathode in YSZ-based SOFC. Boletin DeLa Sociedad Espanola De Ceramica Y Vidrio,2010,49:15-22.
    [100] Shah M, Voorhees P W, Barnett S A. Time-dependent performance changes inLSCF-infiltrated SOFC cathodes: The role of nano-particle coarsening. Solid StateIonics,2011,187:64-67.
    [101] Oh D, Gostovic D, Wachsman E D. Mechanism of La0.6Sr0.4Co0.2Fe0.8O3cathodedegradation. Journal of Materials Research,2012,27:1992-1999.
    [102] Oh M Y, Unemoto A, Amezawa K, Kawada T. Stability of La0.6Sr0.4Co0.2Fe0.8O3-as SOFC cathode. Journal of the Electrochemical Society,2012,159: F659-F664.
    [103] Fonseca F C, Uhlenbruck S, Nedelec R, Buchkremer H P. Properties of bias-assistedsputtered gadolinia-doped ceria interlayers for solid oxide fuel cells. Journal of PowerSources,2010,195:1599-1604.
    [104] Lu Z G, Zhou X D, Fisher D, Templeton J, Stevenson J, Wu N J, Ignatiev A.Enhanced performance of an anode-supported YSZ thin electrolyte fuel cell with alaser-deposited Sm0.2Ce0.8O1.9interlayer. Electrochemistry Communications,2010,12:179-182.
    [105] Lynch M E, Yang L, Qin W T, Choi J J, Liu M F, Blinn K, Liu M L. Enhancementof La0.6Sr0.4Co0.2Fe0.8O3-durability and surface electrocatalytic activity byLa0.8Sr0.15MnO3±investigated using a new test electrode platform. Energy&Environmental Science,2011,4:2249-2258.
    [106] Adler S B. Reference electrode placement in thin solid electrolytes. Journal of theElectrochemical Society,2002,149: E166-E172.
    [107] Jiang S P, Love J G. Origin of the initial polarization behavior of Sr-doped LaMnO3for O2reduction in solid oxide fuel cells. Solid State Ionics,2001,138:183-190.
    [108] van der Heide P A W. Systematic x-ray photoelectron spectroscopic study ofLa1-xSrx-based perovskite-type oxides. Surface and Interface Analysis,2002,33:414-425.
    [109] Choudhury T, Saied S O, Sullivan J L, Abbot A M. Reduction of oxides of iron,cobalt, titanium and niobium by low-energy ion bombardment. Journal of Physics D:Applied Physics,1989,22:1185-1195.
    [110] Chen J, Liang F L, Liu L N, Jiang S P, Chi B, Pu J, Li J. Nano-structured (La,Sr)(Co, Fe)O3+YSZ composite cathodes for intermediate temperature solid oxide fuelcells. Journal of Power Sources,2008,183:586-589.
    [111] Liang F L, Chen J, Cheng J L, Jiang S P, He T M, Pu J, Li J. Novel nano-structuredPd plus yttrium doped ZrO2cathodes for intermediate temperature solid oxide fuelcells. Electrochemistry Communications,2008,10:42-46.
    [112] Sholklapper T Z, Radmilovic V, Jacobson C P, Visco S J, De Jonghe L C. Synthesisand stability of a nanoparticle-infiltrated solid oxide fuel cell electrode.Electrochemical and Solid State Letters,2007,10: B74-B76.
    [113] Wang W S, Gross M D, Vohs J M, Gorte R J. The stability of LSF-YSZ electrodesprepared by infiltration. Journal of the Electrochemical Society,2007,154:B439-B445.
    [114] Komatsu T, Yoshida Y, Watanabe K, Chiba R, Taguchi H, Orui H, Arai H.Degradation behavior of anode-supported solid oxide fuel cell using LNF cathode asfunction of current load. Journal of Power Sources,2010,195:5601-5605.
    [115] Matsui T, Mikami Y, Muroyama H, Eguchi K. Quantification of microstructuralchange at the interface between (La,Sr)MnO3+cathode and YSZ electrolyte upondischarge operation. ECS Transactions,2011,35:1871-1880.
    [116] Bucher E, Sitte W, Klauser F, Bertel E. Oxygen exchange kinetics ofLa0.58Sr0.4Co0.2Fe0.8O3at600C in dry and humid atmospheres. Solid State Ionics,2011,191:61-67.
    [117] Wu Q-H, Liu M, Jaegermann W. X-ray photoelectron spectroscopy ofLa0.5Sr0.5MnO3. Materials Letters,2005,59:1980-1983.
    [118] Shichi Y, Inoue Y, Munakata F, Yamanaka M. X-ray photoelectron spectroscopyanalysis of Bi2Sr2Ca1-xYxCu2Oy. Physical Review B,1990,42:939-942.
    [119] Knofel C, Chen M, Mogensen M. The effect of humidity and oxygen partialpressure on LSM-YSZ cathode. Fuel Cells,2011,11:669-677.
    [120] Harvey A S, Litterst F J, Yang Z, Rupp J L M, Infortuna A, Gauckler L J. Oxidationstates of Co and Fe in Ba1-xSrxCo1-yFeyO3-(x, y=0.2-0.8) and oxygen desorption inthe temperature range300-1273K. Physical Chemistry Chemical Physics,2009,11:3090-3098.
    [121] Yang Z, Harvey A S, Infortuna A, Schoonman J, Gauckler L J. Electricalconductivity and defect chemistry of BaxSr1-xCoyFe1-yO3-perovskites. Journal ofSolid State Electrochemistry,2011,15:277-284.
    [122] Petrov A, Cherepanov V, Zuev A. Thermodynamics, defect structure, and chargetransfer in doped lanthanum cobaltites: an overview. Journal of Solid StateElectrochemistry,2006,10:517-537.
    [123] Wagner C D, Riggs W M, Davis L E, Moulder J F, Muilenberg G E. In: Handbookof X-ray photoelectron spectroscopy, Perkin-Elmer Corporation, Minnesota,1981, pp.29-167.
    [124] Liu B, Muroyama H, Matsui T, Tomida K, Kabata T, Eguchi K. Analysis ofimpedance spectra for segmented-in-series tubular solid oxide fuel cells. Journal ofthe Electrochemical Society,2010,157: B1858-B1864.
    [125] Brundle C R, Chuang T J, Rice D W. X-ray photoemission study of the interactionof oxygen and air with clean cobalt surfaces. Surface Science,1976,60:286-300.
    [126] Shiratori Y, Tietz F, Buchkremer H P, Stover D. YSZ-MgO composite electrolytewith adjusted thermal expansion coefficient to other SOFC components. Solid StateIonics,2003,164:27-33.
    [127] Orui H, Watanabe K, Chiba R, Arakawa M. Application of LaNi(Fe)O-3as SOFCcathode. Journal of the Electrochemical Society,2004,151: A1412-A1417.
    [128] Niwa E, Uematsu C, Miyashita E, Ohzeki T, Hashimoto T. Conductivity andsintering property of LaNi1-xFexO3ceramics prepared by Pechini method. Solid StateIonics,2011,201:87-93.
    [129] Bertacco R, Contour J P, Barthélemy A, Olivier J. Evidence for strontiumsegregation in La0.7Sr0.3MnO3thin films grown by pulsed laser deposition:consequences for tunnelling junctions. Surface Science,2002,511:366-372.
    [130] Vasquez R P. X-ray photoelectron spectroscopy study of Sr and Ba compounds.Journal of Electron Spectroscopy and Related Phenomena,1991,56:217-240.
    [131] Haber J, Ungier L. On chemical shifts of ESCA and Auger lines in cobalt oxides.Journal of Electron Spectroscopy and Related Phenomena,1977,12:305-312.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700