炭膜分离过程的机理和建模研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
炭膜是由含碳物质经高温热解炭化制成的一种新型无机膜。它不仅具有良好的耐高温和耐化学溶剂侵蚀的能力、发达的微米或纳米级孔隙和较高的机械强度,还具有制备成功率高、孔径易控制和清洁程度高等特点,因此在液体和气体分离方面有独到之处。但目前对炭膜的液体分离研究大多还处于实验室阶段,离工业应用有一定的距离。主要原因是对分离过程机理不明确和对污染控制措施不利等。因此研究炭膜液体分离机理和建立机理模型十分必要。在气体分离方面,因炭膜具备诱人的应用前景,故炭膜气体分离技术被认为是本世纪可部分替代现有分离技术的一个重要方法。但目前受膜制备方面的影响,气体分离炭膜还没有在工业上被广泛采用。所以加强膜的制备研究以及从机理上进行气体分离过程的研究来促进膜的制备,更有十分重要的意义。
     针对以上情况,本文在实验的基础上,从建立液体分离系统的机理模型和气体分离的分子模拟两个部分开展炭膜分离过程的机理研究,主要研究内容如下:
     以煤粉为原料、以羧甲基纤维素(CMC)为粘结剂制备管状煤基炭膜。以管状煤基炭膜作为支撑体、以聚糠醇作为前驱体材料制备复合气体分离炭膜。为实验研究奠定基础。
     在煤基炭膜微滤刚性颗粒(以二氧化钛为代表)液体混合物实验的基础上,通过探讨过程机理,建立描述微滤过程通量随时间变化的数学模型,同时确定微滤过程中滤饼层孔隙率的分布、颗粒的沉积粒径分布、饼层阻力及饼层厚度增长变化等。通过与实验数据及其他文献发表模型计算数据的对比,证明所建模型的适用性。
     在煤基炭膜微滤可变形粒子(以油滴为代表)混合液实验的基础上,分析微滤过程的阻力分布,探讨微滤过程机理,并讨论将以上所建刚性颗粒微滤系统模型应用于本系统的实现措施。
     在气体渗透实验的基础上,采用单孔狭缝模型和μVT-非平衡分子动力学(μVT-NEMD)方法对炭膜气体分离过程进行分子模拟研究。针对常规单孔狭缝模型模拟过程中化学势和压力计算时由于分子间相互作用的截断而产生的系统误差,本文增加了尾部贡献来进行模型校正,并根据压力和温度对CH_4和CO_2纯组分气体传递过程的影响,确定了L-J参数和通量随时间的变化函数,由此考察CO_2/CH_4混合气体通量和气体与膜孔壁间相互作用势能随孔径的变化趋势,确定分离过程机理。
     构建合适的膜的孔网络模型和孔径分布函数,采用临界路径分析方法(CPA)对膜孔的内部结构进行研究,并结合单孔狭缝模型模拟得到的CH_4/CO_2混合气体通量变化关系,确定炭膜分离CH_4/CO_2混合气体时的孔径范围,解决气体通量与分离选择性之间矛盾的问题。最后,尝试将孔网络模型的研究结果应用于炭膜分离煤层气过程,设计分离方案并确定各级分离膜的孔径。
Carbon membrane, as an important member of the inorganic membrane family, is prepared by pyrolysis of various carbonaceous materials. It possesses advantages of better thermal and chemical stabilities, wear resistance and well-defined stable pore structure. Therefore, carbon membrane relevant researches have gained a worldwide interest in liquid separation and gas separation. On the one hand, the carbon membrane has been experimentally demonstrated to be feasible and effective in separation of liquid mixture. On the other hand, the carbon membrane is recognized to have an attractive prospect in separation of gas mixture to displace current separation technology in this century. However, investigations on carbon membrane separation are in the lab-scale and technology push stage with less reports of industrial application. This is due to the lack of the understanding of carbon membrane separation mechanisms.
     In this dissertation, a systematic research on carbon membrane separation was proposed and performed including membrane fabrication, separation experiments, mechanism model development of liquid separation and molecular dynamics simulation of gas separation. Specifically,
     The coal-based tubular carbon membrane and the carbon composite membrane using the former as a support were prepared based on available procedures.
     Experiments was carried out on microfiltration of liquid mixture using TiO_2 as the representative of rigid particles. A mathematic model describing flux variations with time was developed introducing a variable cake porosity function through a mechanism analysis. Critical diameter, cake resistance, cake porosity and cake height variation with time were successfully obtained. The model predictions show excellent agreements with the experimental data, which confirms the practicability and validity of the model developed.
     Experiments was conducted on microfiltration of oily wastewater with oil droplet as the representative of deformable particles. Based on the modified Hermia's model, membrane fouling mechanisms were analyzed and resistance controlling factors of permeate flow were determined. Meanwhile, the implemental approach of the model developed for the rigid particle system to be used for the deformable particle system was discussed.
     Experiments was performed on permeation of pure CH_4 and CO_2. TheμVT ensemble nonequilibrium molecular dynamics (μVT-NEMD) simulation was then conducted using a slit pore model to investigate the effects of temperature and pressure on permeation of pure CH_4 and CO_2 so as to fix the appropriate Lennard-Jones interaction parameters according to the experimental data. Afterwards, the effects of pore size on the fluxes and wall potential energies of a binary mixture of CH_4 and CO_2 are numerically examined. The results show that the process of gas separation in carbon membrane is affected by various factors. Molecular sieving and selective adsorption are the dominating mechanisms of gas separation.
     A pore network model and a pore size distribution function were constructed. Using the of critical path analysis (CPA) method, a deep insight into the internal structure of pores was attained. With the binary mixture of CH_4 and CO_2 as a prototype, different pore size ranges of the species to be transported in membrane considering the effects of pore connectivity on gas separation were numerically determined based on the flux variation with pore size stimulated by the slit pore model. The membrane flux and its separation selectivity were compromised. And then, the pore size distribution curve was stimulated, which displays an excellent agreement with the experimental measurement, suggesting that the pore network model constructed can represent the separation process of CH_4 and CO_2 of the carbon membrane. At last, the pore network model constructed was applied to predict the separation process of a ternary system of CH_4/CO_2/H_2, the typical three components in coal-bed methane. Two-stage separation strategy was designed with different pore size range determined in each stage.
引文
[1] 刘阳,曾芝芳,陈虎等.无机膜的研究进展及应用.中国陶瓷工业,2000,12(7):25-30.
    
    [2] 施力,张星,李承烈等.无机膜的应用与展望.功能材料,1994,25(5):475-480.
    
    [3] 时均,袁权,高从增.膜技术手册(第一版).北京:化学工业出版社,2001.
    
    [4] Ash R, Baker R W, Barrer R M. Sorption and Surface Flow in Graphitized Carbon Membranes. I.The Steady State. Proc. Roy. Soc, 1967,299:434-454.
    
    [5] Ash R, Baker R W, Barrer R M. Sorption and Surface Flow in Graphitized Carbon Membranes. II.The Steady State. Proc. Roy. Soc, 1968,304:407-425.
    
    [6] Koresh J E, Sofer A. Molecular-Sieve Carbon Permselective Membrane. 1. Presentation of a New Device for Gas-Mixtures Separation. Separation Science and Technology, 1983,18 (8):723-734.
    
    [7] Hatori H, Yamada Y, Shiraishi M. Preparation of Macroporous Carbon-Films from Polyimide by Phase Inversion Method. Carbon, 1992, 30 (2):303-304.
    
    [8] 王同华,魏微,刘淑琴等.管状多孔炭膜的研究.新型炭材料,2000,15:6-11.
    
    [9] 李永峰,邱介山,王云鹏等.一种新颖煤基球形炭及其形成机理.大连理工大学学报,2002,42 (6):663-668.
    
    [10]刘作华,杜军,李晓红等.炭膜的制备及应用.重庆大学学报,2004,271(2):63-67.
    
    [11] Bauer J M, Elyassini J, Moncorge G etal. New Developments and Applications of Carbon Membranes. Proceedings of the 2nd International Conference on Inorganic Membranes, Montpellier, 1991,5:207-212.
    
    [12]王振余,郭树才.炭膜处理染料水溶液的研究.膜科学与技术,1997,17(5):6-9.
    
    [13]李文翠,郭树才.炭膜处理印染废水的研究.炭素,2000,1:35-37.
    
    [14]王细凤,潘艳秋,王同华等.炭膜处理含有废水的研究.膜科学进行与技术,2001,21(6):59-62.
    
    [15]潘艳秋,李红剑,王同华等.油水污染炭膜清洗方法的放大实验研究.膜科学与技术,2004, 4:36-39.
    
    [16] Baudu M, Lecloirec P, Martin G. Pollutant Adsorption onto Activated Carbon Membranes. WaterScience and Technology, 1991,23 (7-9):1659-1666.
    
    [17] Sojo L E, Djauhari J. Determination of Chlorophenolics in Waters by Membrane Solid-PhaseExtraction: Comparison between C-18 and Activated Carbon Membranes and between Modes ofExtraction and Elution. Journal of Chromatography A, 1999, 840 (1):21-30.
    
    [18] Sojo L E, Brocke A, Fillion J et al. Application of Activated Carbon Membranes for On-LineCleanup of Vegetable and Fruit Extracts in the Determination of Pesticide Multiresidues by GasChromatography with Mass Selective Detection. Journal of Chromatography A, 1997, 788(1-2):141-154.
    
    [19] Hayashi J, Hirotaka M, Masatake Y et al. Pore Size Control of Carbonized BPDA-pp'ODAPolyimide Membrane by Chemical Vapor Deposition of Carbon. Journal of Membrane Science,1997, 124(2):243-251.
    
    [20] Suda H, Haraya K. Gas Permeation through Micropores of Carbon Molecular Sieve MembranesDerived from Kapton Polyimide. Journal of Physical Chemistry B, 1997, 101(20):3988-3994.
    
    [21] Kita H, Maeda H, Tanaka K et al. Carbon Molecular Sieve Membrane Prepared from Phenolic Resin.Chemistry Letters (2), 1997,179-180.
    
    [22] Jones C W, Koros W J. Carbon Molecular-Sieve Gas Separation Membranes. 1. Preparation andCharacterization based on Polyimide Precursors. Carbon, 1994, 32 (8):1419-1425.
    
    [23] Acharya M, Raich B A, Foley H C et al. Metal-Supported Carbogenic Molecular Sieve Membranes:Synthesis and Applications. Industrial & Engineering Chemistry Research, 1997, 36 (8):2924-2930.
    
    [24] Suda H, Haraya K. Alkene/Alkane Permselectivities of a Carbon Molecular Sieve Membrane.Chemical Communications (1), 1997,93-94.
    
    [25]陈霖新.中国氢能源利用现状及发展潜力.气体分离,2005,2:13-16.
    
    [26] Geiszler V C, Koros W J. Effects of Polyimide Pyrolysis Conditions on Carbon Molecular Sieve Membrane Properties. Industrial & Engineering Chemistry Research, 1996, 35 (9):2999-3003.
    
    [27]陈勇,王从厚,吴鸣编著.气体膜分离技术与应用.北京:化学工业出社,2004.
    
    [28] Linkov V M, Sanderson R D, Jacobs E P. Highly Asymmetrical Carbon Membranes. Journal ofMembrane Science, 1994, 95 (l):93-99.
    
    [29] Sondhi R, Bhave R. Role of Backpulsing in Fouling Minimization in Crossflow Filtration withCeramic Membranes. Journal of Membrane Science, 2001,186 (1):41-52.
    
    [30] Mores W D, Bowman C N, Davis R H. Theoretical and Experimental Flux Maximization byOptimization of Backpulsing. Journal of Membrane Science, 2000, 165 (2):225-236.
    
    [31] Matsumoto K, Katsuyama S, Ohya H. Separation of Yeast by Cross-flow Filtration withBackwashing. Journal of Fermentation Technology, 1987, 65 (1):77-83.
    
    [32] Matsumoto K, Kawahara M, Ohya H. Cross-Flow Filtration of Yeast by Microporous CeramicMembrane with Backwashing. Journal of Fermentation Technology, 1988, 66 (2): 199-205.
    
    [33]童金忠,邢卫红,徐南平等.陶瓷微滤膜处理钛白水洗液的过程强化研究.高校化学工程学报, 1999,13(5):421-427.
    
    [34] Belfort G. Fluid-Mechanics in Membrane Filtration - Recent Developments. Journal of MembraneScience, 1989,40 (2): 123-147.
    
    [35] Winzeler H B, Belfort G. Enhanced Performance for Pressure-Driven Membrane Processes - TheArgument for Fluid Instabilities. Journal of Membrane Science, 1993, 80 (1-3):35-47.
    
    [36] Cui Z F, Wright K I T. Flux Enhancements with Gas Sparging in Downwards CrossflowUltrafiltration: Performance and Mechanism. Journal of Membrane Science, 1996, 117(1-2):109-116.
    
    [37] Cui Z F, Wright K I T. Gas-Liquid 2-Phase Cross-Flow Ultrafiltration of BSA and Dextran Solutions.Journal of Membrane Science, 1994,90 (1-2):183-189.
    
    [38] Vera L, Villarroel L, Delgado S et al. Enhancing Microfitration through an Inorganic TubularMembrane by Gas Sparging. Journal of Membrane Science, 2000,165(1):47-57.
    
    [39] Mikulasek P, Dolecek P, Smidova D et al. Crossflow Microfiltration of Mineral Dispersions UsingCeramic Membranes. Desalination, 2004,163 (1-3):333-343.
    
    [40]钟璨,徐南平,时钧.颗粒粒径和膜孔径对陶瓷膜微滤微米级颗粒悬浮液的影响.高校化学工 程学报,2000,14(3):230-234.
    
    [41] Mikulasek P, Wakeman R J, Marchant J Q. Crossflow Microfiltration of Shear-Thinning Aqueous Titanium Dioxide Dispersion. Chemical Engineering Journal, 1998, 69 (1):53-61.
    
    [42]赵京东,苏仕军,蒋文举等.陶瓷膜回收钛白粉厂煅烧尾气洗涤废水中TiO_2的研究.重庆环境 科学,2003,25(11):42-44.
    
    [43]赵宜江,钟璨等.陶瓷微滤膜处理钛白生产废水研究.化学工程,1998,26(4):25-30.
    
    [44] Mikulasek P, Wakeman R J, Marchant J Q. The Influence of PH and Temperature on the Rheology and Stability of Aqueous Titanium Dioxide Dispersions. Chemical Engineering Journal, 1997, 67 (2):97-102.
    
    [45]赵宜江,钟璟,李红等.陶瓷膜回收钛自生产中偏钛酸的研究.涂料工业,1998,28(7):17-20.
    
    [46]赵宜江,邢卫红,徐南平.扩散渗析法从钛白废酸中回收硫酸.高校化学工程学报,2002,16 (2):217-221.
    
    [47] Smidova D, Mikulasek P, Wakeman R J et al. Influence of Ionic Strength and PH of DispersedSystems on Microfiltration. Desalinaton, 2004,163 (1-3):323-332.
    
    [48] Bowen W R, Gosnaga X. Properties of Microfiltration Membranes. Part 3. Effect ofPhysicochemical Conditions on Crossflow Microfiltration at Aluminum Oxide Membrane. IChemESymposium Series, 1991, 118:107-118.
    
    [49]张艳,吴勤民,嵇鸣等.溶液环境对二氧化钛悬浮体系微滤过程的影响.淮阴师范学院学报, 2002,1(14):62-65.
    
    [50]钟璟,徐南平,时钧.溶液环境对陶瓷膜微滤微米级颗粒悬浮液的影响.高校化学工程学报, 2000,14(1):19-24.
    
    [51]赵宜江,邢卫红,徐南平.聚电解质对TiO_2悬浮体系微滤过程的影响.水处理技术,2005,31 (8):7-9.
    
    [52] Zhao Y J, Xing W H, Xu N P. Hydraulic Resistance in Microfiltration of Titanium White Waste Acid through Ceramic Membranes. Separation and Purification Technology, 2003, 32 (l-3):99-104.
    
    [53]童金忠,邢卫红,徐南平等.陶瓷微滤膜处理钛白水洗液的过程强化研究.高校化学工程学报, 1999,13(5):421-427.
    
    [54]徐根良,曾静,翁建庆.含油废水处理技术综述.水处理技术,1991,17(1):1-12.
    
    [55] Bansal I K. Concentration of Oily and Latex Waste-Waters Using Ultrafilltration InorganicMembranes. Industrial Water Engineering, 1976,13 (10):6-15.
    
    [56] Hsieh H P, Bhave R R, Fleming H L. Microporous Alumina Membranes. Journal of MembraneScience, 1988, 39 (3):221-241.
    
    [57] Lin S H, Lan W J. Treatment of Waste Oil/Water Emulsion by Ultrafiltration and Ion Exchange.Water Research, 1998, 32 (9):2680-2688.
    
    [58] Koltuniewicz A B, Field R W, Arnot T C. Cross-Flow and Dead-End Microfiltration of Oily-WaterEmulsion .1. Experimental-Study and Analysis of Flux Decline. Journal of Membrane Science, 1995,102:193-207.
    
    [59] Arnot T C, Field R W, Koltuniewicz A B. Cross-Flow and Dead-End Microfiltration of Oily-WaterEmulsions - Part II. Mechanisms and Modeling of Flux Decline. Journal of Membrane Science, 2000,169(1):1-15.
    
    [60] Field R W, Wu D, Howell J A et al. Critical Flux Concept for Microfiltration Fouling. Journal ofMembrane Science, 1995,100 (3):259-272.
    
    [61] Lee S H, Chung K C, Shin M C et al. Preparation of Ceramic Membrane and Application to theCrossflow Microfiltration of Soluble Waste Oil. Materials Letters, 2002, 52 (4-5):266-271.
    
    [62]宋航,Field R W.膜淤塞对微滤分离性能的作用.水处理技术,1994,20(1):45-48.
    
    [63]宋航,Field R W,Arnot T.用微滤处理乳化含油废水,水处理技术,1994,20(2):95-98.
    
    [64]樊栓狮,王金渠.无机膜处理含油废水.大连理工大学学报,2000,40(1):61-63.
    
    [65]单连斌.用陶瓷膜作滤材处理含油废水的研究.环境保护科学,1996,22(3):26-29.
    
    [66]顾文滨,王怀林,云金明.无机膜含油污水处理装置控制系统的设计.油气地面工程,2000,19 (5):45-47.
    
    [67]王春梅,谷和平,王义刚.陶瓷微滤膜处理含油废水的工艺研究.南京化工大学学报,2000,22 (5):38-52.
    
    [68]吴桢,金江,陈悦.无机膜处理机加工废冷却液研究.中国给水排水,2001,17(6):73-76.
    
    [69]孟勇.无机膜技术用于污水处理的实验研究.中国油脂,2001,26(1):65-67.
    
    [70]金江,陈悦,吴桢.陶瓷膜处理餐饮废水的膜化学清洗再生.南京化工大学学报,2001,21 (7):59-62.
    
    [71] Hermia J. Constant Pressure Blocking Filtration Laws - Application to Power-Law Non- NewtonianFluids. Trans. Inst. Chem. Eng., 1982, 60(10):183-187.
    
    [72] Ohya H, Kim J J, Chinen A et al. Effects of Pore Size on Separation Mechanisms of Microfiltrationof Oily Water ,Using Porous Glass Tubular Membrane. Journal of Membrane Science. 1998, 145(1):1-14.
    
    [73] Belfort G, Davis R H, Zydney A L. The Behavior of Suspensions and Macromolecular Solutions inCross-flow Microfiltration. Journal of Membrane Science, 1994,96 (1-2):1-58.
    
    [74] Khatib K, Rose J, Barres O et al. Physico-Chemical Study of Fouling Mechanisms of UltrafiltrationMembrane on Biwa Lake (Japan). Journal of Membrane Science, 1997, 130 (1-2):53-62.
    
    [75] Trettin D R, Doshi M R. Limiting Flux in Ultrafiltration of Macromocular Solutions. ChemicalEngineering Communications, 1980,4 (4-5):507-522.
    
    [76] Green G, Belfort G. Fouling of Ultrafiltration Membranes - Lateral Migration and the ParticleTrajectory Model. Desalination, 1980, 35 (1-3):129-147.
    
    [77] Drew D A, Schonberg J A, Belfort G. Lateral Inertial Migration of a Small Sphere in FastLaminar-Flow through a Membrane Duct. Chemical Engineering Science, 1991, 46 (12):3219-3224.
    
    [78] Altena F W, Belfort G. Lateral Migration of Spherical Particles in Porous Flow Channels -Application to Membrane Filtration. Chemical Engineering Science, 1984, 39(3):343-355.
    
    [79] Mackley M R, Sherman N E. Cross-Flow Cake Filtration Mechanisms and Kinetics. ChemicalEngineering Science, 1992,47(12):3067-3084.
    
    [80] Zydney A L, Colton C K. A Concentration Polarization Model for the Filtrate Flux in Cross-FlowMicrofiltration of Particulate Suspensions. Chemical Engineering Communications, 1986, 47(1-3):1-21.
    
    [81] Davis R H, Leighton D T. Shear-Induced Transport of a Particle Layer along a Porous Wall.Chemical Engineering Science, 1987,42 (2):275-281.
    
    [82] Davis R H, Sherwood J D. A Similarity Solution for Steady-state Cross-flow Microfiltration.Chemical Engineering Science, 1990,45 (11):3203-3209.
    
    [83] Romero C A, Davis R H. Experimental-Verification of the Shear-Induced HydrodynamicDiffusion-Model of Cross-flow Microfiltration. Journal of Membrane Science, 1991,62 (3):249-273.
    
    [84] Davis R H, Grant D C. Theory for deadend microfiltration. In: Ho W S W, Sirkar K K, ed.Membrane Handbook. Dordrecht: Kluwer Academic Publishers, 1992:461-479.
    
    [85] Altmann J, Ripperger S. Particle Deposition and Layer Formation at the Crossflow Microfiltration.Journal of Membrane Science, 1997,124 (1):119-128.
    
    [86] Lu W M, Ju S C. Selective Particle Deposition in Cross-flow Filtration. Separation Science and Technology, 1989, 24 (7-8):517-540.
    
    [87] Schmitz P, Houi D, Wandelt B. Hydrodynamic Aspects of Cross-flow Microfiltration - Analysis ofParticle Deposition at the Membrane-Surface, Journal of Membrane Science, 1992, 71 (1-2):29-40.
    
    [88] Sethi S, Wiesner M R. Modeling of Transient Permeate Flux in Cross-flow Membrane FiltrationIncorporating Multiple Particle Transport Mechanisms, Journal of Membrane Science, 1997, 136(1-2):191-205.
    
    [89] Blake N J, Cumming I W, Streat M. Prediction of Steady-State Crossflow Filtration Using a ForceBalance Model, Journal of Membrane Science, 1992,68 (3):205-216.
    
    [90] Fischer E, Raasch J. Cross Flow Filtration. Chemie Ingenieur Technik, 1984, 56 (8):573-578.
    
    [91] Stamatakis K, Tien C. A. Simple-Model of Cross-flow Filtration Based on Particle Adhesion. AIChEJournal, 1993, 39 (8): 1292-1302.
    
    [92] Dharmappa H B, Verink J, Benaim R, et al. A Comprehensive Model for Cross-Flow FiltrationIncorporating Polydispersity of the Influent. Journal of Membrane Science, 1992, 65 (1-2):173-185.
    
    [93] Piron E, Rene F, Latrille E. A Cross-Flow Microfiltration Model-Based on Integration of theMass-Transport Equation. Journal of Membrane Science, 1995,108 (1-2):57-70.
    
    [94] Huang L H, Morrissey M T. Fouling of Membranes during Microfiltration of Surimi Wash Water:Roles of Pore Blocking and Surface Cake Formation. Journal of Membrane Science, 1998, 144(1-2):113-123.
    
    [95] Silva C M, Reeve D W, Husain H et al. Model for Flux Prediction in High-Shear MicrofiltrationSystems. Journal of Membrane Science, 2000,173 (l):87-98.
    
    [96] Romero C A, Davis R H. Transient Model of Cross-flow Microfiltration. Chemical EngineeringScience, 1990,45(1): 13-25.
    
    [97] Vyas H K, Bennett R J, Marshall A D. Cake Resistance and Force Balance Mechanism in theCrossflow Microfiltration of Lactalbumin Particles, Journal of Membrane Science, 2001, 192(1-2):165-176.
    
    [98] Ould-Dris A, Jaffrin M Y, Si-Hassen D et al. Effect of Cake Thickness and Particle Polydispersity onPrediction of Permeate Flux in Microfiltration of Particulate Suspensions by a HydrodynamicDiffusion Model. Journal of Membrane Science, 2000,164 (1-2):211-227.
    
    [99] Wang W, Jia X D, Davies G A. A Theoretical Study of Transient Cross-Flow Filtration Using ForceBalance Analysis. Chemical Engineering Journal and the Biochemical Engineering Journal, 1995, 60(1-3):55-62.
    
    [100] Endo Y, Alonso M. Physical Meaning of Specific Cake Resistance and Effects of Cake Properties inCompressible Cake Filtration. Filtration and Separation, 2001, 38 (7):43-46.
    
    [101] Lu W M, Lai C C, Hwang K J. Constant-Pressure Filtration of Submicron Particles. SeparationsTechnology, 1995, 5 (l):45-53.
    
    [102] Schluep T, Widmer F. Initial Transient Effects during Cross Flow Microfiltration of Yeast Suspensions. Journal of Membrane Science, 1996,115 (2):133-145.
    
    [103]方为茂,陈文梅.十字流微滤过滤机理研究机理研究评述.过滤与分离,1997,3:7-13.
    
    [104]史载锋,范逸群,徐南平等.颗粒体系错流过滤过程的数学模拟.高校化学工程学报,2000,6 (14):535-540.
    
    [105]钟璟,徐南平.陶瓷膜过滤微米级颗粒体系的模拟.江苏石油化工学院学报,2000,3(12):12-15.
    
    [106]董声雄,张济宇.中空纤维膜低压超滤处理含油废水的数学模拟.化工学报,2000,3 (51):320-325.
    
    [107]宋航,石炎福,付超.错流微滤和超滤的一种新的数学模型.四川大学学报,2000,4(32):51.55.
    
    [108]#12
    
    [109]#12
    
    [110]#12
    
    [111]#12
    
    [112]胡英,刘洪来.分子工程与化学工程.化学进展,1995,7(3):235-250.
    
    [113] Alder B J, Wainwright T E. Phase Transition for a Hard Sphere System. Journal of Chemical Physics,1957,27 (5): 1208-1209.
    
    [114] Lees A W, Edwards S F. The Computer Study of Transport Processes under Extreme Conditions.Journal of Physics C: Solid State Physics, 1972, 5 (15):1921-1928.
    
    [115] Anderson H C. Molecular-Dynamics Simulations at Constant Pressure and/or Temperature. Journalof Chemical Physics, 1980, 72 (4):2384-2393.
    
    [116] Gillan M J, Dixon M. The Calculation of Thermal-Conductivities by Perturbed Journal of PhysicsC-Solid State Physics, 1983, 16(5):869-878.
    
    [117] Nose S. A Unified Formulation of the Constant Temperature Molecular-Dynamics Methods. Journalof Chemical Physics, 1984, 81 (1 ):511 -519.
    
    [118] Car R, Parrinello M. Unified Approach for Molecular-Dynamics and Density-Functional Theory.Physical Review Letters, 1985, 55(22):2471-2474.
    
    [119]吴兴惠,项金钟.现代材料计算与设计教程.北京:电子工业出版社,2002.
    
    [120] MacElroy J M D. Nonequilibrium Molecular Dynamics Simulation of Diffusion and Flow in Thin Microporous Membranes. Journal of Chemical Physics, 1994,101 (6):5274-5280.
    
    [121] Heffelfinger G S, van Swol F. Diffusion in Lennard-Jones Fluids Using Dual Control-Volume Grand-Canonical Molecular-Dynamics Simulation (DCV-GCMD). Journal of Chemical Physics, 1994, 100 (10):7548-7552.
    
    [122]Frenkel D,Smit B.分子模拟-从算法到应用.汪文川等译.北京:化学工业出版社,2002.
    
    [123] Xu L, Tsotsis T T, Sahimi M. Nonequilibrium Molecular Dynamics Simulation of Transport and Separation of Gases Mixtures in Carbon Nanopores. I. Basic Result. Journal of Chemical Physics, 1999, 111 (7):3252-3264.
    
    [124] Xu L, Sedigh M G, Tsotsis T T et al. Nonequilibrium Molecular Dynamics Simulation of Transport and Separation of Gases Mixtures in Carbon Nanopores. II. Binary and Ternary Mixtures and Comparison with the Experimental Data. Journal of Chemical Physics, 2000,112 (2):910-922.
    
    [125] Furukawa S, Nitta T. Computer Simulation Studies on Gas Permeation through Nanoporous Carbon Membranes by Non-Equilibrium Molecular Dynamics. J Chem Eng Jpn, 1997, 30 (1): 116-122.
    
    [126] Furukawa S, Hayashi K, Nitta T. Effect of Surface Heterogeneity on Gas Permeation throughSlit-Like Carbon Membranes by Non-Equilibrium Molecular Dynamics Simulations. J Chem EngJpn, 1997, 30 (6): 1107-1112.
    
    [127] Furukawa S, Sugahara T, Nitta T. Non-Equilibrium MD Studies on Gas Permeation through CarbonMembrane with Belt-Like Heterogeneous Surfaces. J Chem Eng Jpn, 1999, 32 (2):223-228.
    
    [128] MacElroy J M D, Boyle M J. Nonequilibrium Molecular Dynamics Simulation of a Model CarbonMembrane Separation of CH4/H2 Mixture. J Chem Eng, 1999, 74:85-97.
    
    [129] Vieira-Linhares A M, Seaton N A. Non-Equilibrium Molecular Dynamics Simulation of GasSeparation in a Microporous Carbon Membrane. Chem Eng Sci, 2003, 58:4129-4136.
    
    [130] Seo Y G, Kum G H, Seaton N A. Monte Carlo Simulation of Transport Diffusion in NanoporousCarbon Membranes. J Membr Sci, 2002,195:65-73.
    
    [131] Firouzi M, Nezhad K M, Tsotsis T T et al. Molecular Dynamics Simulation of Transport andSeparation of Carbon Dioxide-Alkane Mixtures in Carbon Nanopores. J Chem Phys, 2004, 120(17):8172-8185.
    
    [132] Wang S, Yu Y, Gao G. Grand Canonical Monte Carlo and Non-Equilibrium Molecular DynamicsSimulation Study on the Selective Adsorption and Fluxes of Oxygen/Nitrogen Gas Mixtures throughCarbon Membranes. J Mem Sci, 2006,271:140-150.
    
    [133]周彦明.非平衡分子动力学在炭膜气体分离中的研究:(硕士学位论文).大连:大连理工大学,2006.
    
    [134] Xu L, Sahimi M, Tsotsis T T. Non-Equilibrium Molecular Dynamics Simulations of Transport andSeparation of Gas Mixtures in Nanoporous Materials. Phys Rev E, 2000,62 (5):6942-6948.
    
    [135] MacElroy J M D, Friedman S P, Seaton N A. On the Origin of Transport Resistances within CarbonMolecular Sieves. Chem Eng Sci, 1999, 54:1015-1027.
    
    [136] Furukawa S, Nitta T. Non-Equilibrium Molecular Dynamics Simulation Studies on Gas Permeationacross Carbon Membranes with Different Pore Shape Composed of Micro-Graphite Crystallites. JMembr Sci, 2000, 178:107-119.
    
    [137] Ohta Y, Takaba H, Nakao S I. A Combinatorial Dynamic Monte Carlo Approach to Finding aSuitable Zeolite Membrane Structure for CO_2/N_2 Separation. Microporous and MesoporousMaterials, 2007, 101:319-323.
    
    [138] Krishna R, van Baten J M, Using Molecular Simulations for Screening of Zeolites for Separation ofCO_2/CH_4 Mixtures. Chemical Engineering Journal, 2007, 133 (1-3):121-131.
    
    [139]王同华,魏微,刘素琴等.管状多孔炭膜的研究.新型炭材料,2000,15:6-11.
    
    [1] Schobert H H, Song C. Chemicals and materials from coal in 21st century. Fuel, 2002,81 (1):15-32.
    
    [2]李侃社,周安宁.煤基材料研究进展.高分子材料科学与工程,2001,17:19-22.
    
    [3] Papanicolaou C, Kotis T, Foscolos A et al. Coals of Greece: a review of properties, uses and future perspectives. International Journal of Coal Geology, 2004, 58:147-169.
    
    [4]王同华,魏微,刘淑琴等.管状多孔炭膜的研究.新型炭材料,2000,15:6-11.
    
    [5]王同华,宋成文.一种煤基炭膜的调孔方法.ZL03134196.9,2003.
    
    [6]宋成文.煤基炭膜的制备、孔结构调控及应用.大连理工大学博士学位论文,2006.
    
    [7] Song C, Wang T, Pan Y, Qiu J. Preparation of coal-based microfiltration carbon membrane and application in oily wastewater treatment. Separation and Purification Technology, 2006, 51:80-84.
    
    [8] Venkataraman K, Choate W T, Torre E R et al. Characterization studies of ceramic membranes: a novel technique using a coulter porometer. J.Membr.Sci., 1988, 39:259-265.
    
    [9]汪锰,王湛,李政雄.膜材料及其制备.北京:化学工业出版社,2003.
    
    [10] Robeson L M. Correlation of separation factor versus permeability for polymeric membranes. J.Membr. Sci., 1991,62:165-182.
    
    [11] Saufi S M, Ismail A E. Fabrication of carbon membranes for gas separation-a review. Carbon, 2004,42:241-159.
    
    [12] Ismail A E, David L I B. A review on the latest development of carbon membranes for gas separation.J.Membr.Sci., 2001,193:1-18.
    
    [13]邱英华,王同华,宋成文.聚丙烯腈炭-炭气体分离复合膜的制备.膜科学与技术,2006,26 (3):12-16
    
    [14] Suda H, Haraya K. Gas permeation through micropores of carbon molecular sieve membranes derived from kapton polyimide. J.Phys.Chem.B, 1997,101:3988-3995.
    
    [1] 唐振宁.钛白粉的生产与环境监理.北京:化学工业出版社,2000.
    
    [2] Mikulasek P, Dolecek P, Smidova D et al. Crossflow Microfiltration of Mineral Dispersions Using Ceramic Membranes. Desalination, 2004,163 (1-3):333-343.
    
    [3] 赵宜江,钟璟,李红等.陶瓷膜回收钛白生产中偏钛酸的研究.涂料工业,1998,28(7):17-20.
    
    [4] 赵京东,苏仕军,蒋文举等.陶瓷膜回收钛白粉厂煅烧尾气洗涤废水中TiO_2的研究.重庆环境 科学,2003,25(11):42-44.
    
    [5] Blake N J, Cumming I W, Streat M. Prediction of Steady-State Cross-Flow Filtration Using a Force Balance Model. Journal of Membrane Science, 1992,68 (3):205-216.
    
    [6] 李文翠,郭树才.炭膜处理印染废水的研究.炭素,2000,1:35-37.
    
    [7] Hwang K J, Wu Y S, Lu W M. The Surface Structure of Cake Formed by Uniform-Sized RigidSpheroids in Cake Filtration. Powder Technology, 1996, 87 (2):161-168.
    
    [8] Kawakatsu T, Nakajima M, Nakao S et al. 3-Dimensional Simulation of Random Packing and PoreBlocking Phenomena during Microfiltration. Desalination, 1995,101 (3):203-209.
    
    [9] Altmann J, Ripperger J. Particle Deposition and Layer Formation at the Crossflow Microfiltration.Journal of Membrane Science, 1997,124 (1):119-128.
    
    [10]钟璟,徐南平.陶瓷膜过滤微米级颗粒体系的模拟.江苏石油化工学院学报,2000,12(3):12-15.
    
    [11] Schmitz P, Houi D, Wandelt B. Hydrodynamic Aspects of Cross-Flow Microfiltration - Analysis ofParticle Deposition at Membrane-Surface. Journal of Membrane Science, 1992, 71 (1-2):29-40.
    
    [12] Dharmappa H B, Verink J, Benaim R, et al. A Comprehensive Model for Cross-Flow FiltrationIncorporating Polydispersity of the Influent. Journal of Membrane Science, 1992,65 (1-2):173-185.
    
    [13] Ould-Dris A, Jaffrin M Y, Si-Hassen D et al. Effect of Cake Thickness and Particle Polydispersity onPrediction of Permeate Flux in Microfiltration of Particulate Suspensions by a HydrodynamicDiffusion Model. Journal of Membrane Science, 2000,164 (1-2):211-227.
    
    [14] Sethi S, Wiesner M R. Modeling of Transient Permeate Flux in Cross-Flow Membrane FiltrationIncorporating Multiple Particle Transport Mechanisms. Journal of Membrane Science, 1997, 136(1-2):191-205.
    
    [15] Romero C A, Davis R H. Transient Model of Cross-Flow Microfiltration. Chemical EngineeringScience, 1990,45 (1):13-25.
    
    [16] Benkahla Y K, Ould-Dris A, Jaffrin M Y. Cake Growth-Mechanism in Cross-Flow Microfiltration ofMineral Suspensions. Journal of Membrane Science, 1995,98 (1-2):107-117.
    
    [17] Hwang K J, Hsueh C L. Dynamic Analysis of Cake Properties in Microfiltration of Soft Colloids.Journal of Membrane Science, 2003, 214 (2):259-273.
    
    [18] Hermia J. Constant Pressure Blocking Filtration Laws - Application to Power-Law Non- NewtonianFluids. Trans. Inst. Chem. Eng., 1982, 60(10):183-187.
    
    [19] Song L F. Flux Decline in Crossflow Microfiltration and Ultrafiltration: Mechanisms and Modelingof Membrane Fouling. Journal of Membrane Science, 1998,139 (2): 183-200.
    
    [20] Zydney A L, Colton C K. A Concentration Polarization Model for the Filtrate Flux in Cross-FlowMicrofiltration of Particulate Suspensions. Chemical Engineering Communications, 1986, 47(1-3):1-21
    
    [21] Lu W M, Ju S C. Selective Particle Deposition in Cross-Flow Filtration. Separation Science andTechnology, 1989, 24 (7-8):517-540.
    
    [22] Wang L Y, Song L F. Flux Decline in Crossflow Microfiltration and Ultrafiltration: ExperimentalVerification of Fouling Dynamics. Journal of Membrane Science. 1999,160 (1):41-50.
    
    [23] Vyas H K, Bennett R J, Marshall A.D. Cake Resistance and Force Balance Mechanism in theCrossflow Microfiltration of Lactalbumin Particles, Journal of Membrane Science, 2001, 192(1-2):165-176.
    
    [24] Baker R J, Fane A G, Fell C J D et al. Factors Affecting Flux in Cross-Flow Filtration. Desalination,1985, 53 (1-3):81-93.
    
    [25] McCarthy A A, Walsh P K, Foley G. Experimental Techniques for Quantifying the Cake Mass, theCake and Membrane Resistances and the Specific Cake Resistance during Crossflow Filtration ofMicrobial Suspension. Journal of Membrane Science, 2002, 201 (1-2):31-45.
    
    [26] Hamachi M, Mietton-Peuchot M. Experimental Investigations of Cake Characteristics in CrossflowMicrofiltration. Chemical Engineering Science, 1999, 54 (18):4023-4030.
    
    [27] Rushton A. Cake Filtration Theory & Practice: Past, Present and Future. 3th China-JapanInternational Conference on F. & S. Wu-xi, China, 1997:71-73.
    
    [28] Fischer E, Raasch J. Cross Flow Filtration. Chemie Ingenieur Technik, 1984, 56 (8):573-578.
    
    [29] Chella M S,Wiesner M R.Evaluation of crossflow filtration models based on shar-induced diffusionand particle adhesion:Complications induced by feed suspension polydispersi- vity Journal ofMembrane Science, 1998,138:83-97.
    
    [1] Bai R B, Leow H F. Microfiltration of activated sludge wastewater - the effect of system operationparameters. Separation and Purification Technology, 2002, 29 (2): 189-198.
    
    [2] Bai R B, Leow H F. Modeling and experimental study of microfiltration using a composite module.Journal of Membrane Science, 2002,204 (1-2):359-377.
    
    [3] Seminario L, Rozas R, Borquez R et al. Pore blocking and permeability reduction in cross-flowmicrofiltration. Journal of Membrane Science, 2002, 209 (1):121-142.
    
    [4] Kosvintsev S, Holdich R G, Cumming I W et al. Modelling of dead-end microfiltration with poreblocking and cake formation. Journal of Membrane Science, 2002,208 (1-2):181-192.
    
    [5] Yeh H M, Dong J F, Hsieh M J et al. Prediction of permeate flux for ultrafiltration in wire-rodtubular-membrane modules. Journal of Membrane Science, 2002, 209 (1): 19-26.
    
    [6] Kramadhati N N, Mondor M, Moresoli C. Evaluation of the shear-induced diffusion model for themicrofiltration of polydisperse feed suspension. Separation and Purification Technology, 2002, 27(1):11-24.
    
    [7] Nassehi V. Modelling of combined Navier-Stokes and Darcy flows in crossflow membrane filtration.Chemical Engineering Science, 1998, 53 (6):1253-1265.
    
    [8] Broussous L, Schmitz P, Prouzet E et al. New ceramic membranes designed for crossflow filtrationenhancement. Separation and Purification Technology, 2001,25 (1-3):333-339.
    
    [9]封莉,张立秋,马放等.膜堵塞机理研究与膜阻力测定.环境工程.2002,20(6):75-77
    
    [10] Ohya H, Kim J J, Chinen A et al. Effects of pore size on separation mechanisms of microfiltration of oily water, using porous glass tubular membrane. Journal of Membrane Science, 1998,145 (1): 1-14.
    
    [11] Field R W, Wu D, Howell J A et al. Critical Flux Concept for Microfiltration Fouling. Journal of Membrane Science, 1995,100 (3):259-272.
    
    [12] Song C, Wang T, Pan Y, Qiu J. Preparation of coal-based microfiltration carbon membrane and application in oily wastewater treatment. Separation and Purification Technology, 2006, 51:80-84.
    
    [13]中华人民共和国污水排放标准,GB8978-1996.
    
    [14]徐南平、邢卫红、赵宜江.无机膜分离技术及应用.北京:化学工业出版社,2003.
    
    [15] Lin S H, Lan W J. Treatment of Waste Oil/Water Emulsion by Ultrafiltration and Ion Exchange. Water Research, 1998, 32 (9):2680-2688.
    
    [16] Hwang K J, Liu H C. Cross-flow microfiltration of aggregated submicron particles. Journal of Membrane Science, 2002, 201 (1-2):137-148.
    
    [17]金江,陈悦,吴桢.陶瓷膜处理餐饮废水的膜化学清洗再生.南京化工大学学报,2000,22 (1):68-69.
    
    [18] Hermia J. Constant Pressure Blocking Filtration Laws - Application to Power-Law Non-NewtonianFluids. Trans. Inst. Chem. Eng., 1982, 60(10):183-187.
    
    [19] Yuan W, Kocic A, Zydney A L. Analysis of humic acid fouling during microfiltration using a poreblockage-cake filtration model. Journal of Membrane Science, 2002,198 (1):51-62.
    
    [20] Lu W M, Tung K L, Pan C H et al. Crossflow microfiltration of mono-dispersed deformable particlesuspension. Journal of Membrane Science, 2002, 198 (2):225-243.
    
    [1] 宋成文.煤基炭膜的制备、孔结构调控及应用.大连理工大学博士学位论文,2006.
    
    [2] MacElroy J M D, Boyle M J. Nonequilibrium Molecular Dynamics Simulation of a Model CarbonMembrane Separation of CH_4/H_2 Mixture. Chemical Engineering Journal, 1999, 74:85-97.
    
    [3] Xu L, Tsotsis T T, Sahimi M. Nonequilibrium Molecular Dynamics Simulation of Transport andSeparation of Gases Mixtures in Carbon Nanopores. I. Basic Result. Journal of Chemical Physics,1999,111(7):3252-3264.
    
    [4] Nitta T, Yoneya J. Computer Simulation for Adsorption of Benzene Diluted in Supercritical CarbonDioxide. J Chem Eng Japan, 1995, 28:31-37.
    
    [5] Allen M P, Tildesley D J. Computer Simulation of Liquids. Oxford: Clarendon press, 1987.
    
    [6] Steel W A. The Interaction of Gases with Solid Surfaces. Oxford: Pergamon press, 1974.
    
    [7] Verlet L. Computer "experiments" on classical fluids I. Thermodynamical properties ofLennard-Jones molecules. Physical Review, 1967,159:98-103.
    
    [8] Honeycutt R W. The Potential calculation and some application. Methods in Computational Physics,1970,9:136-211.
    
    [9] Gear C W. Numerical Initial Value Problems in Ordinary Difference Equation. Englewood Cliffs, NJ: Prentice-Hall, 1971:1-54.
    
    [10] Hoffmann K H, Schreiber M. Computational Physics. Berlin Heidelberg: Springer-Verlag, 1996:268-326.
    
    [11] Berendsen H J C, Postma J P M, van Gunsteren W F et al. Molecular Dynamics with Coupling to anExternal Bath. Journal of Chemical Physics, 1984, 81 (8):3684-3690.
    
    [12] Nose S. A Unified Formulation of the Constant Temperature Molecular Dynamics Methods. Journalof Chemical Physics, 1984, 81 (1):511-519.
    
    [13] Hoover W G. Canonical Dynamics:Equilibrium Phase-Space Distributions. Physical Review A, 1985,31 (3): 1695-1702.
    
    [14] Parrinello M, Rahman A. Polymorphic Transitions in Single Crystals:a New Molecular DynamicsMethod. Journal of Applied Physics, 1981, 52 (12):7182-7190.
    
    [15] Parrinello M, Rahman A. Strain Fluctuations and Elastic Constants. Journal of Chemical Physics,1982,76(5):2662-2667.
    
    [16] Anderson H C. Molecular dynamics simulations at constant press and/or temperature. The Journal ofChemical Physics, 1980, 72:2384-2393.
    
    [1] Furukawa S, Nitta T. Computer simulation studies on gas permeation through nanoporous carbon membranes by non-equilibrium molecular dynamics. J Chem Eng Jpn, 1997,30 (1):116-122.
    
    [2] Furukawa S, Hayashi K, Nitta T. Effect of surface heterogeneity on gas permeation through slit-like carbon membranes by non-equilibrium molecular dynamics simulations. J Chem Eng Jpn, 1997, 30??(6):1107-1112.
    
    [3] Furukawa S, Sugahara T, Nitta T. Non-equilibrium MD studies on gas permeation through carbonmembrane with belt-like heterogeneous surfaces. J Chem Eng Jpn, 1999, 32 (2):223-228.
    
    [4] MacElroy J M D. Nonequilibrium molecular dynamics simulation of diffusion and flow in thinmicroporous membrane. J Chem Phys, 1994,101 (6):5274-5280.
    
    [5] Xu L, Sedigh M G, Tsotsis T T et al. Nonequilibrium molecular dynamics simulation of transportand separation of gases mixtures in carbon nanopores. II. Binary and ternary mixtures andcomparison with the experimental data. J Chem Phys, 2000,112 (2):910-922.
    
    [6] Xu L, Sahimi M, Tsotsis T T. Non-equilibrium molecular dynamics simulations of transport andseparation of gas mixtures in nanoporous materials. Phys Rev E, 2000, 62 (5):6942-6948.
    
    [7] MacElroy J M D, Friedman S P, Seaton N A. On the origin of transport resistances within carbonmolecular sieves. Chem Eng Sci, 1999, 54:1015-1027.
    
    [8] Furukawa S, Nitta T. Non-equilibrium molecular dynamics simulation studies on gas permeationacross carbon membranes with different pore shape composed of micro-graphite crystallites. JMembr Sci, 2000,178:107-119.
    
    [9] Ohta Y, Takaba H, Nakao S I. A Combinatorial Dynamic Monte Carlo Approach to Finding aSuitable Zeolite Membrane Structure for CO2/N2 Separation. Microporous and MesoporousMaterials, 2007, 101:319-323.
    
    [10] Krishna R, van Baten J M, Using Molecular Simulations for Screening of Zeolites for Separation ofCO2/CH4 Mixtures. Chemical Engineering Journal, 2007,133(1-3):121-131.
    
    [11] Ambegaokar V, Halperin B I, Langer J S. Hopping conductivity in disordered systems. Phys Rev B,1971,4(8):2612-2620.
    
    [12] Vieira-Linhares A M, Seaton N A. Pore network effect on gas separation in a microporous carbonmembrane. Chem Eng Sci, 2003, 58:5251-5256.
    
    [13] Sahimi M. Application of Percolation Theory. London: Taylor&Francis,1994.
    
    [14] Chen S C, Lee EKC, Chang Y I. Effect of the coordination number of the pore-network on thetransport and deposition of particles in porous media. Sep Purif Technol, 2003, 30:11-26.
    
    [15]李小彦,王强,杜新锋等.我国煤层气成分变化及时空分布特征.煤田地质与勘探,2002,30(6): 22-24.
    
    [16]叶建平等.中国煤层气资源.徐州:中国矿业大学出版社,1999.
    
    [17]鲜学福.我国煤层气开采利用现状及其产业化展望.重庆大学学报,2000,23(5):235-236.
    
    [18]赵世晨.新集矿区煤层气的综合利用.煤矿安全与环保,2002,29(4):49-50.
    
    [1] Chiu T Y, James A E. Critical flux enhancement in gas assisted microfiltration. Journal ofMembrane Science, 2006,281 (1-2):274-280.
    
    [2] Smith S R, Cui Z F, Field R W. Upper- and lower-bound estimates of flux for gas-spargedultrafiltration with hollow fiber membranes. Industrial & Engineering Chemistry Research,2005,44 (20):7684-7695.
    
    [3] Cheng T W. Influence of inclination on gas-sparged cross-flow ultratiltration through aninorganic tubular membrane. Journal of Membrane Science, 2002,196 (1):103-110.
    
    [4] Li Q Y, Cui Z F, Pepper D S. Effect of bubble size and frequency on the permeate flux of gassparged ultrafiltration with tubular membranes. Chemical Engineering Journal, 1997, 67(1):71-75.
    
    [5] Ogunbiyi O O, Miles N J, Hilal N. Comparison of different pitch lengths on static promotersfor flux enhancement in tubular ceramic membrane. Separation Science and Technology,2007, 42(9): 1945-1963.
    
    [6] Chung K Y, Lee M S. Flux enhancement in a helical microfiltration module with gasinjection. Separation Science and Technology, 2005, 40 (12):2479-2495.
    
    [7] Chung K Y, Lee M S. Flux enhancement in a helical microfiltration module with gasinjection. Separation Science and Technology, 2005,40 (12):2479-2495.
    
    [8] Ngo Q, Yamada T, Suzuki M et al. Structural and electrical characterization of carbonnanofibers for interconnect via applications. IEEE Transactions on Nanotechnology, 2007, 6(6):688-695.
    
    [1] Gergely S, Molnar E B, Vatai G Y. The use of multiobjective optimization to improve winefiltration. Journal of Food Engineering, 2003, 58:311-316.
    
    [2] Hermia J. Constant Pressure Blocking Filtration Laws - Application to Power-LawNon-Newtonian Fluids. Trans. Inst. Chem. Eng., 1982, 60(10):183-187.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700