自由能计算用于环糊精性质及药物分子包结机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环糊精(cyclodextrin,CD)“内疏水、外亲水”的性质使得它可以和许多客体分子形成包结物,在食品、制药等众多领域都有广泛的应用。虽然很多实验手段可以检测环糊精的包结过程,但是对于包结机理仍然存在很多不清楚的问题。而分子模拟方法则可以在原子水平上研究环糊精的结构性质、包结机理、结合自由能等。本论文采用分子模拟的方法对环糊精及其包结体系进行了研究,主要内容包括以下几个方面:
     (1)在研究天然环糊精性质的过程中,β-环糊精溶解度的特异性引起了广泛的关注。为了解释这一实验现象,采用分子动力学模拟分别研究了α-、β-和γ-环糊精在水溶液中的行为。结果表明β-环糊精由于大口端糖单元间氢键的作用,使其大环结构刚性明显增强,引起水化层的结构化程度增高,熵的代价降低了β-环糊精在水中的溶解性。进一步利用自由能微扰的方法计算了α-、β-和γ-环糊精的水化自由能ΔG_(hyd),即环糊精分子从真空转移到水溶液过程中的自由能变化。但是从水化自由能的结果来看,ΔG_(hyd)随着α-、β-、γ-环糊精的顺序逐渐变化,β-环糊精并没有显示出它的特异性。因此,β-环糊精溶解度的反常现象不能仅从水化自由能方面进行解释,这有可能是由于没有考虑到环糊精在溶液中的自聚集行为引起的。
     (2)环糊精分子在与客体分子进行包结时,除了以1:1的比例形成包结物外,还可以形成2:1或2:2的包结物,甚至是n:1式的轮烷分子项链,因此研究两个环糊精分子的聚集方式很重要。采用分子动力学方法模拟了天然α-、β-、γ-环糊精二聚体以及6-O-(4-hydroxybenzoyl)-β-CD(HB-β-CD)二聚体在真空和水溶液环境下的结构和相互作用。利用自由能微扰方法计算了三种取向二聚体的结合自由能,以判断其稳定性差异。结果表明,在真空中由于分子间氢键作用,三种天然环糊精均以大口端-大口端为优势稳定取向,在溶液中时,三种天然环糊精二聚体平衡后的结构因受到水的影响发生了很大的变化,且稳定性降低,而两个HB-β-CD形成的相互包结的二聚体结构变化不大。自由能计算的结果表明,无论在真空还是溶液中,由于包结作用HB-β-CD二聚体的小口端一小口端为明显的优势取向,且稳定性要远远大于天然β-环糊精二聚体。
     (3)甾类化合物广泛存在于动植物体内,对动植物的生命活动起着极其重要的调节作用。但是它们的溶解度较低,生物适应性较差,因此大大限制了它们在医药方面的应用。为了克服这些缺点,可采用环糊精及其衍生物作为载体与其形成内包含复合物,从而增加它们的溶解度与适应新。但是,包结机理以及包结物的具体结构信息还不是非常明确。因此,本工作采用分子动力学、自适应偏置力和自由能微扰的方法研究了氢化可的松(Hyc)、黄体酮(Pro)、睾丸激素(Tes)经由两种可能的取向(Ⅰ和Ⅱ)穿过β-环糊精空腔时自由能的变化。采用自适应偏置力方法计算得到的自由能在包结过程中的变化曲线表明,对于Hyc和Tes,取向Ⅰ(甾核中A环进入环糊精空腔)是有利的,此时Hyc和Tes的A环进入环糊精空腔形成部分包结模式;但是对于Pro,取向Ⅱ(甾核中D环进入环糊精空腔)是有利的,并且出现了两种包结模式,即部分包结和深入包结;无论是哪种取向,β-环糊精对三种甾类化合物的结合能力为:Pro>Tes>Hyc,这与实验结果一致,而这一结果也得到了我们采用自由能微扰方法计算相对自由能变化结果的支持。将自由能分解为不同自由能组分项可知,优势取向的包结驱动力主要为范德华作用。另外,采用分子动力学模拟考察了各稳态点包结结构的稳定性。结果还表明,Pro-β-CD的热力学最稳定构型和第二极小点附近构型之间可以相互转化,这种现象在Hyc-β-CD和Tes-β-CD包结物中并不存在。
     (4)丙咪嗪是三环类抗抑郁药物,但是在治疗过程中显示出一定的毒副作用,为了减少副作用的伤害,可采用β-环糊精作为赋形剂进行包结。为了研究丙咪嗪和环糊精分子的各种可能包结模式,我们采用分子动力学方法与自由能微扰方法结合研究了真空和溶液中环糊精和丙咪嗪以摩尔比分别为2:1、1:1和1:2所形成包结物的性质,其中1:1的情形,又根据包结丙咪嗪的不同部位分为三种模式。首先对所有五种初始结构在真空和溶剂分别进行平衡分子动力学模拟,结果表明除了1:2模式的包结物,其余四种均能稳定存在。基于所得到的平衡结构和所设计的热力学循环过程,利用自由能微扰方法计算相应的结合自由能,寻找优势包结模式和包结位点。结果表明无论真空还是溶液中,环糊精和丙咪嗪的摩尔比为2:1时形成的包结物最稳定,环糊精与苯环间的范德华作用以及两环糊精大口端间形成的分子间氢键是稳定性的主要因素。另外,三种1:1包结模式在真空中的稳定性相当,没有明显的倾向性,而在溶液中,当丙咪嗪的苯环部分进入环糊精的空腔时所形成的包结物相对稳定,且范德华力是稳定包结物的主要作用力。
Cyclodextrins(CDs) have a hydrophilic outer surface and a hydrophobic inner core,conducive for the formation of inclusion complexes through the binding of the small molecules into their cavity.This property has attracted increasing attention in food field,pharmaceutical science,etc.Although experimental methods have been employed to investigate the inclusion process,the association mechanism is until now somewhat fragmentary.Theoretical approaches offer the three-dimension structure, the stability of the complex structure and binding free energy information.In this dissertation,molecular simulations were used toinvestigate the properties of CDs and the complexes of CDs with different guests.
     (1) The molecular dynamics(MD) simulations describing the hydration process forα-,β-andγ-CDs have been performed.The results reported here demonstrate that the anomalous solubility forβ-CD can be essentially rationalized by its greater rigidity conferred by the participating intramolecular hydrogen bonds and the higher density of water molecules of lesser mobility.The hydration free energy ofα-,β-andγ-CD was computed using the free energy perturbation(FEP) method.This quantity is shown to increase with the number of glucose units,thereby suggesting that the anomalous solubility ofβ-CD cannot be explained by its free energy of hydration alone.
     (2) The structures and interactions ofα-,β-,andγ-CD dimers and 6-O-(4-hydroxybenzoyl)-β-CD(HB-β-CD) dimers were simulated by MD methods in vacuum and in an aqueous solution,respectively.The binding free energies of three possible arrangements(head-to-head,head-to-tail,and tail-to-tail) of each dimer were calculated using the FEP method.The results show that the stable arrangements forα-,β-,andγ-CD dimers in vacuum are head-to-head motifs due to the contribution of the intermolecular hydrogen bonds.In the aqueous solution,the solvent exerts more influence on the structures of the natural CD dimers than on the HB-β-CD dimer, resulting in a decrease of the stability of the formers.From the calculated binding free energies,the HB-β-CD dimer in the aqueous solution is much more stable than theβ-CD dimer.
     (3) Free-energy calculations characterizing the inclusion of three steroidal drugs, viz.hydrocortisone(Hyc),progesterone(Pro) and Testosterone(Tes),intoβ-CD, following two possible relative orientations,have been carried out,employing adaptive biasing force(ABF) and FEP methods.In the light of the analysis of the free-energy profiles determined using the ABF method along the chosen model reaction coordinate,orientationⅠis suggested to be favored for Hyc and Tes,albeit orientationⅡappears to be favored for Pro.Moreover,van der Waals interactions are shown to constitute the main driving forces responsible for the inclusion process in the preferred orientation.Additional MD simulations of the complexes at the global minimum of the free-energy surface were also performed.Analysis of the trajectories suggests that in contrast with Hyc-β-CD and Tes-β-CD,transition between the most thermodynamically stable structure of Pro-β-CD and the second stable structure can be witnessed.
     (4) The inclusion complexes and interactions ofβ-CD and imipramine(IMI) with stoichiometries of 1:2,1:1,and 2:1 were simulated by MD methods in the gas phase and in an aqueous solution,respectively.The binding free energies of four possible complexes were calculated using the FEP method based on pre-designed thermodynamic cycles,suggesting that the 2:1 inclusion mode is the most energetically favorable,both in the gas and aqueous phases.The van der Waals interactions and intermolecular hydrogen-bond interactions between twoβ-CDs constitute the main contribution to the stability of the complex.In addition,at variance with in the gas phase,among three possible 1:1β-CD-IMI structures,two orientations of IMI with benzene ring located inside the cavity ofβ-CD are more favorable than that with the side chain inside the cavity in the aqueous solution.The van der Waals interactions are shown to play a major role in stabilizing the 1:1 complex structure in the two phases.
引文
[1]Villiers A.Cyclodextrins and theire use.Compt Rend,1891,112:536-540
    [2]Szejtli J.Past,present,and future of cyclodextrin research.Pure Appl Chem,2004,76:1825-1845
    [3]Li S,Purdy W C.Cyclodextrins and their applications in analytical-chemistry.Chem Rev,1992,92:1457-1470.
    [4]Buschmann H J,Schollmeyer E.Applications of cyclodextrins in cosmetic products:A review.J Cosmet Sci,2002,53:185-191
    [5]Buschmann H J,Knittel D,Schollmeyer E.New textile applications of cyclodextrins.J Inclusion Phenom Macrocyclic Chem,2001,40:169-172
    [6]Maeda N,Kokai Y,Ohtani S,et al.Inhibitory effects of preventive and curative orally administered spinach glycoglycerolipid fraction on the tumor growth of sarcoma and colon in mouse graft models.Food Chem,2009,112:205-210
    [7]刘育,尤长城,张衡益.超分子化学-合成受体的分子识别与组装.天津,南开大学出版社,2001
    [8]Johnson R R,Kohlmeyer A,Johnson A T C,et al.Free energy landscape of a DNA-carbon nanotube hybrid using replica exchange molecular dynamics.Nano Lett,2009,9:537-541
    [9]Lapelosa M,Gallicchio E,Arnold G F,et al.In silico vaccine design based on molecular simulations of rhinovirus chimeras presenting HIV-1 gp41 epitopes.J Mol Biol,2009,385:675-691
    [10]Bartlett DW,Davis M E.Physicochemical and biological characterization of targeted,nucleic acid-containing nanoparticles.Bioconjugate Chem,2007,18:456-468
    [11]Uekama K.Cyclodextrins in drug delivery system.Adv Drag Deliv Rev,1999,36:1-2
    [12]Uekama K.Design and evaluation of cyclodextrin-based drug formulation.Chem Pharm Bull,2004,52:900-915
    [13]Szejtli J.Approval status of CDs in 2003/2004,CD-News,2004,18:1-3
    [14]Thompson D O.Cyclodextrins-enabling excipients:their present and future use in pharmaceuticals.CRC Crit Rev Ther Drag Carrier Syst,1997,14:1-108
    [15]Jordheim L P,Degobert G,Diab R,et al.Inclusion complexes of a nucleotide analogue with hydroxypropyl-beta-cyclodextrin. J Incl Phenom Macro, 2009, 63: 11-16
    [16] Irie T, Uekama K. Cyclodextrins in peptide and protein delivery. Adv Drug Deliv Rev, 1999, 36:101-123
    [17] Brewster M E, Loftsson T. Cyclodextrins as pharmaceutical solubilizers. Adv Drug Deliv Rev, 2007, 59: 645-666
    [18] Echezarreta-Lopez M M, Otero-Mazoy I, Ramirez H L, et al. Solubilization and stabilization of sodium dicloxacillin by cyclodextrin inclusion. Curr Drug Discov Technol, 2008, 5: 140-145
    [19] Alexanian C, Papademou H, Vertzoni M, et al. Effect of pH and water-soluble polymers on the aqueous solubility of nimesulide in the absence and presence of beta-cyclodextrin derivatives. J Pharm Pharmacl, 2008, 60: 1433-1439
    
    [20] Fremont L. Minireview - Biological effects of resveratrol. Life Sci, 2000, 663-673
    [21] Paceasciak C R, Hahn S, Diamandis E P, et al. The red wine phenolics trans-resveratrol and quercetin block human platelet aggregation and eicosanoids synthesis: Implications for protection against coronary heart disease. Clin ChimActa, 1995,235: 207-219
    [22] Lu Z, Cheng B, Hu Y L, et al. Complexation of resveratrol with cyclodextrins: Solubility and antioxidant activity. Food Chem, 2009, 113: 17-20
    [23] Grillo R, Melo N F S, Moraes C M, et al. Hydroxymethylnitrofurazone: Dimethyl-beta-cyclodextrin Inclusion Complex: A Physical-Chemistry Characterization. J Biol Phys, 2007, 33: 445-453
    [24] Pitha J, Pitha J. Amorphous water-soluble derivatives of cyclodextrins: Nontoxic dissolution enhancing excipients. J Pharm Sci, 1985, 74 987-990
    [25] Okada Y, Matsuda K, Hara K, et al. Properties and the inclusion behavior of 6-O-alpha-D-galactosyl- and 6-O-alpha-D-mannosyl-cyclodextrins. Chem Pharm Bull, 1999, 47:1564-1568
    [26] Szente L, Szejtli J. Hightly soluble cyclodextrin derivatives:chemistry,properties, and trends in development. Adv Drug Deliv Rev, 1999, 36:17-28
    [27] Kale R, Tayade P, Saraf M, et al. Molecular encapsulation of thalidomide with sulfobutyl ether-7 beta-cyclodextrin for immediate release property: Enhanced in vivo antitumor and anti angiogenesis efficacy in mice. Drug Dev Ind Pharm, 2008, 34: 149-156
    [28] Brewster M E, Vandecruys R, Peeters J, et al. Comparative interaction of 2-hydroxypropyl-β-cyclodextrin and sulfobutylether-β-cyclodextrin with itraconazole: Phase-solubility behavior and stabilization of supersaturated drug solutions. Eur J Pharm Sci, 2008, 34, 94-103
    [29] Uekama K. Recent aspects of pharmaceutical application of cyclodextrins. J Incl Phenom Macro, 2002,44: 3-7
    [30] Rajewski R A, Stella V J. Pharmaceutical applications of cyclodextrins.2. In vivo drug delivery. J Pharm Sci, 1996, 85:1142-1169
    [31] Irie T, Uekama K. Pharmaceutical applications of cyclodextrins .3. Toxicological issues and safety evaluation. J Pharm SCI-US, 1997, 86: 147-162
    [32] Uekama K, Hirayama F, Irie T. Cyclodextrin drug carrier systems. Chem Rev, 1998, 98: 2045-2076
    [33] Hirayama F, Uekama K. Cyclodextrin-based controlled drug release system. Adv Drug Deliv Rev, 1999, 36: 125-141
    [34] Anibarro M, Gessler K, Uson I, et al. Effect of peracylation of β-cyclodextrin on the molecular structure and on the formation of inclusion complexes: an x-ray study. J Am Chem Soc, 2001, 123: 11854-11862
    [35] Kollman P A, Free energy calculations: applications to chemical and biochemical phenomena. Chem Rev, 1993, 93: 2395-2417
    
    [36] Kirkwood J G. Statistical mechanics of fluid mixtures. J Chem Phys, 1935, 3: 300-313
    [37] Zwanzig R W. High-temperature equation of state by a perturbation method. I. Nonpolar gases. J Chem Phys, 1954, 22: 1420-1426
    [38] Berg B A, Neuhaus T. Multicanonical ensemble: a new approach to simulate first-order phase transitions. Phys Rev Lett, 1992, 68: 9-12
    [39] Bennett C H. Efficient estimation of free energy differences from Monte Carlo data. J Comput Phys, 1976,22: 245-268
    [40] Zwanzig R W. High-temperature equation of state by a perturbation method. I. Nonpolar gases. J Chem Phys, 1954, 22: 1420-1426
    [41] Darve E, Pohorille A. Calculating free energies using average force. J Chem Phys, 2001, 115: 9169-9183
    [42] Henin J, Chipot C. Overcoming free energy barriers using unconstrained molecular dynamics simulations. J Chem Phys, 2004, 121: 2904-2914
    [43] Eric Darve. Adaptive biasing force method for scalar and vector free energy calculations. J Chem Phys, 128: 144120
    [44] Henin J, Pohorille A, Chipot C. Insights into the recognition and association of transmembrane α-helices. The free energy of α-helix dimerization in glycophorin A. J Am Chem Soc, 2005,127:8478-8484
    [45] Chipot C, Henin J, Exploring the free-energy landscape of a short peptide using an average force. J Chem Phys, 2005,123, Art. No. 244906.
    [46] Zheng P J, Wang C, Hu X, et al. Supramolecular complexes of azocellulose and alpha-cyclodextrin: Isothermal titration calorimetric and spectroscopic studies. Macromolecules, 2005, 38: 2859-2864
    [47] Scalia S, Tursilli R, Iannuccelli V. Complexation of the sunscreen agent, 4-methylbenzylidene camphor with cyclodextrins: Effect on photostability and human stratum corneum penetration. J Pharm Biomed Anal, 2007,44: 29-34
    [48] Ma S, Shen S, Haddad Nizar, et al. Chromatographic and spectroscopic studies on the chiral recognition of sulfated beta-cyclodextrin as chiral mobile phase additive Enantiomeric separation of a chiral amine. J Chromatogr A, 2009,1216: 1232-1240
    [49] De Araujo M V G, Macedo O F L, Nascimento C D. Characterization, phase solubility and molecular modeling of α-cyclodextrin/pyrimetharnine inclusion complex. Spectrochim Acta A Mol Biomol Spectrosc, 2009, 72: 165-170
    [50] Leclercq L, Schmitzer A R. Supramolecular encapsulation of 1,3-bis(1-adamantyl)imidazolium chloride by beta-cyclodextrins: towards inhibition of C(2)-H/D exchange. J Phys Org Chem, 2009,22: 91-95
    [51] Polovyanenko D N, Marque S R A, Lambert S. Electron paramagnetic resonance spin trapping of glutathiyl radicals by PBN in the presence of cyclodextrins and by PBN attached to beta-cyclodextrin. J Phys Chem B, 2008, 112: 13157-13162
    [52] Bolcer J D, Hermann R B. In reviews in computational chemistry. Lipkowitz K B, Boyd D B, Eds. New York: VCH Publishers, 1994, 5: 1-63
    [53] Smith S J, Sutcliffe B T. In reviews in computational chemistry. Lipkowitz K B, Boyd D B, Eds. New York: VCH Publishers, 1997; 10: 271-316
    [54] Leach A R. In reviews in computational chemistry. Lipkowitz K B, Boyd D B, Eds. New York: VCH Publishers, 1991, 2: 1-55
    [55] Scheraga H A. In reviews in computational chemistry. Lipkowitz K B, Boyd D B, Eds. New York: VCH Publishers. 1992, 3: 73-142
    [56] Prabhakaran M, Harvey S C. Asymmetric oscillations in cyclodextrin - a molecular dynamics study. Biopolymers, 1987, 26: 1087-1096
    [57] Prabhakaran M. Conformational space of a 1-4 glycosidic linkage: A molecular dynamics study. Biochem Biophys Res Commun, 1991, 178: 192-197
    [58] Koehler J E H, Saenger W, Gunsteren W F. A molecular dynamics simulation of crystalline α-cyclodextrin hexahydrate. Eur Biophys J, 1987,15: 197-210
    [59] Koehler J E H, Saenger W, Gunsteren W F. Molecular dynamics simulation of crystalline β-cyclodextrin dodecahydrate at 293 K and 120 K. Eur Biophys J, 1987, 15: 211-224
    [60] Koehler J E H, Saenger W, Gunsteren W F. The flip-flop hydrogen bonding phenomenon. Eur Biophys J, 1988,16: 153-168
    [61] Koehler J E H, Saenger W, Gunsteren W F. Conformational differences between α-cyclodextrin in aqueous solution and in crystalline form: A molecular dynamics study. J Mol Biol, 1988, 203: 241-250
    [62] Vanhelden S P, Vaneijck B P, Janssen L H M. The conformational behaviour of complexes of alpha-cyclodextrin with p- chlorophenol and p-hydroxybenzoic acid in water as studied by molecular dynamics simulations. J Biomol Struct Dynam, 1992, 9: 1269-1283
    [63] Shikata T, Takahashi R, Onji T, et al. Solvation and dynamic behavior of cyclodextrins in dimethyl sulfoxide solution. J Phys Chem B, 2006,110: 18112-18114
    [64] Shikata T, Takahashi R, Satokawa Y. Hydration and dynamic behavior of cyclodextrins in aqueous solution. J Phys Chem B, 2007, 111: 12239-12247
    [65] Rodriguez J, Rico D H, Domenianni L, et al. Confinement of polar solvents within β-cyclodextrins. J Phys Chem B, 2008,112: 7522-7529
    [66] Naidoo K J, Chen J Y J, Jansson J L M, et al. Molecular properties related to the anomalous solubility of β-cyclodextrin. J Phys Chem B, 2004, 108: 4236-4238
    [67] Matsui Y. Molecular mechanical calculation on cyclodextrin inclusion complexes. I. The structures of α-cyclodextrin complexes estimated by van der Waals interaction energy calculation. Bull Chem Soc Jpn, 1982, 55: 1246-1249
    [68] Kitagawa M, Hoshi H, Sakurai M, et al. A molecular orbital study of cyclodextrin inclusion complexes. I. The calculation of the dipole moments of α-cyclodextrin aromatic uest complexes.Bull Chem Soc Jpn,1988,61:4225-4229
    [69]Inoue Y,Kitagawa M,Hoshi H,et al.Geometry of α-cyclodextrin inclusion complex with m-nitrophenol deduced from quantum chemical analysis of carbon-13chemical shifts.J Inclusion Phenom,1987,5:55-58
    [70]Rudiger V,Eliseev A,Simova S,et al.Conformational,calorimetric and NMR spectroscopic studies on inclusion complexes of cyclodextrins with substituted phenyl and adamantane derivatives.J Chem Soc,Perkin Trans 2,1996,2119-2123
    [71]Myles A M C,Barlow D J,France G,et al.Analysis and modelling of the structures of beta-cyclodextrin complexes.Biochim Biophys Acta,1994,1199:27-36
    [72]Raffaini G,Ganazzoli F.Molecular dynamics study of host-guest interactions in cyclodextrins:methodology and data analysis for a comparison with solution data and the solid-state structure.J Incl Phenom Macrocycl Chem,2007,57:683-688
    [73]Varady J,Wu X W,Wang S M.Competitive and reversible binding of a guest molecule to its host in aqueous solution through molecular dynamics simulation:benzyl alcohol/β-cyclodextrin system.J Phys Chem B,2002,106:4863-4872
    [74]Al-Sou'od K A.Molecular mechanics study of the inclusion complexes of some 1,2,4-oxadiazole derivatives of 3,3'-bis(1,2,4-oxadiazol-5(4H)-one) with beta-cyclodextrin,J Incl Phenom Macrocycl Chem,2006,54:123-127
    [75]Fujimoto T,Uejima Y,Imaki H,et al.The first lipophilic face-to-face dimers of permethylated α-cyclodextrin-azobenzene dyads through a p-xylylene spacer.Chem Lett,2000,29:564-565
    [76]Liu Y,You C C,Zhang M,et al.Molecular interpenetration within the columnar structure of crystalline anilino-β-cyclodextrin.Org Lett,2000,2:2761-2763
    [77]Bonnet P,Jaime C,Morin-Allory L.α-,β-,and γ-cyclodextrin dimers,molecular modeling studies by molecular mechanics and molecular dynamics simulations.J Org Chem,2001,66:689-692
    [78]Boonet P,Jaime C,Morin-Allory L.Structure and thermodynamics of α-,β-,and γ-cyclodextrin dimers.Molecular dynamics studies of the solvent effect and ree binding energies.J Org Chem,2002,67:8602-8609
    [79]Yu V,Rudyak V G,Avakyan V B,et al.Russian Chemical Bulletin,International Edition,2006,55:1337-1345
    [80] Avakyan V G, Nazarov V B, Alfimov M V, et al. The role of intra- and intermolecular hydrogen bonds in the formation of beta-cyclodextrin head-to-head and head-to-tail dimers. The results of ab initio and semiempirical quantum-chemical calculations. Russ Chem B+, 2001, 50: 206-216
    [81] Rodriguez J, Semino R, Laria D. Building up nanotubes: Docking of "Janus" cyclodextrins in solution. J Phys Chem B, 2009, 113: 1241-1244
    [82] Leggio C, Anselmi M, Di Nola A, et al. Study on the structure of host-uest supramolecular polymers. Macromolecules, 2007, 40: 5899-5906
    [83] Pozuelo J, Mendicuti F, Saiz E. Conformations and mobility of polyethylene and trans-polyacethylene chains confined in alpha-cyclodextrins channels. Polymer, 2002, 43: 523-531
    [84] Briquet L, Staelens N, Leherte L. Structural, energetic, and dynamical properties of rotaxanes constituted of alpha-cyclodextrins and an azobenzene chain. J Mol Graph Model, 2007, 26: 104-116
    [85] Yu Y M, Cai W S, Chipot C, et al. Spatial arrangement of r-cyclodextrins in a rotaxane. Insights from free-energy calculations. J Phys Chem B, 2008, 112: 5268-5271
    [86] Lipkowitz K B. Applications of computational chemistry to the study of cyclodextrins. Chem Rev, 1998, 98: 1829-1873
    [87] Lipkowitz K B, Coner R, Peterson M A, et al. The principle of maximum chiral discrimination: chiral recognition in permethyl-β-cyclodextrin. J Org Chem, 1998, 63: 732-745
    [88] Kahle C, Deubner R, Schollmayer C, et al. NMR spectroscopic and molecular modelling studies on cyclodextrin-dipeptide inclusion complexes. Eur J Org Chem, 2005, 8: 1578-1589
    [89] Cai W S, Yu Y M, Shao X G. Studies on the Interaction of α-Cyclodextrin with phospholipid by a flexible docking algorithm. Chemometer Intell Lab, 2006, 82: 260-268
    [90] Franchi P, Lucarini M, Mezzina E, et al. Combining magnetic resonance spectroscopies, mass spectrometry, and molecular dynamics: Investigation of chiral recognition by 2,6-di-O-methyl-β-cyclodextrin. J Am Chem Soc, 2004, 126: 4343-4354
    [91] Zwanzig R W. High-temperature equation of state by a perturbation method. I. Nonpolar gases. J Chem Phys, 1954, 22: 1420-1426
    [92] Kirkwood J G. Statistical mechanics of fluid mixtures. J Chem Phys, 1935, 3: 300-313
    [93] Torrie G M, Valleau J P. Nonphysical sampling distributions in Monte Carlo free energy estimation: umbrella sampling. J Comput Phys, 1977, 23: 187-199
    [94] Tembe B L, McCammon J A. Ligand-receptor interactions. Comput Chem, 1984, 8: 281-283
    [95] Jorgensen W L, Ravimohan C. Monte Carlo simulation of differences in free energies of hydration. J Chem Phys, 1985, 83: 3050-3054
    [96] Jorgensen W L, Briggs J M, Gao J. A priori calculations of pKa's for organic compounds in water. The pKa of ethane. J Am Chem Soc, 1987, 109: 6857-6858
    [97] Jorgensen W L, Briggs J M. A priori pKa calculations and the hydration of organic anions. J Am Chem Soc, 1989,111:4190-4197
    [98] Sellner B, Zifferer G, Kornherr A, et al. Molecular dynamics simulations of β-cyclodextrin-aziadamantane complexes in water. J Phys Chem B, 2008, 112: 710-714
    [99] Caballero J, Zamora C, Aguayo D, et al., Study of the interaction between progesterone and β-cyclodextrin by electrochemical techniques and steered molecular dynamics. J Phys Chem B,2008, 112: 10194-10201
    [100] El-Barghouthi M I, Schenk M, Zughul M B, et al. Comparison of estimates of free energy for binding of mono- and di-substituted benzenes with a-cyclodextrin obtained by singlestep perturbation and thermodynamic integration. J Incl Phenom Macrocycl Chem 2007, 57: 375-377
    [101] Al Omari M M, Zughul M B, Davies J E D, et al. Cisapride/β-cyclodextrin complexation: stability constants, thermodynamics, and guest-host interactions probed by ~1H-NMR and molecular modeling studies. J Incl Phenom Macrocycl Chem, 2007, 57: 511-517
    [102] Salvatierra D, Sanchez-Ruiz X, Garduno R, et al. Enantiodifferentiation by Complexation with β-Cyclodextrin: Experimental (NMR) and Theoretical (MD, FEP) Studies. Tetrahedron, 2000, 56: 3035-3041
    [103] Luzhkov V, Aqvist J. Free-energy perturbation calculations of binding and transition-state energies: hydrolysis of phenyl esters by β-cyclodextrin. Chem Phys Lett, 1999, 302: 267-272
    [104] Yu Y M, Chipot C, Cai W S, et al. Molecular dynamics study of the inclusion of cholesterol into cyclodextrins. J Phys Chem B, 2006, 110: 6372-6378
    [105] Rodriguez J, Elola M D. Encapsulation of small ionic molecules within α-cyclodextrins. J Phys Chem B,2009,113:1423-1428
    [106]Bea I,Gotsev M G,Ivanov P M,et al.Chelate effect in cyclodextrin dimers:A computational(MD,MM/PBSA,and MM/GBSA) study.J Org Chem,2006,71:2056-2063
    [107]Choi Y,Jung S.Molecular dynamics(MD) simulations for the prediction of chiral discrimination of N-acetylphenylalanine enantiomers by cyclomaltoheptaose(β-cyclodextrin,β-CD) based on the MM-PBSA(molecular mechanics-Poisson-Boltzmann surface area)approach,Carbohydrate Research 339 2004,339:1961-1966
    [108]El-Barghouthi M I,Jaime C,Al-Sakhen N A,et al.Molecular dynamics simulations and MM-PBSA calculations of the cyclodextrin inclusion complexes with 1-alkanols,para-substituted phenols and substituted imidazoles.J Mol Struc-Theochem,2008,853:45-52
    [1] Wallimann P, Marti T, Furer A, et al. Steroids in molecular recognition. Chem Rev, 1997, 97, 1567-1608
    [2] French D, Levine D, Pazur J H, et al. Studies on the schardinger dextrins. The preparation and solubility characteristics of alpha, beta and gamma dextrins. J Am Chem Soc, 1949, 71: 353-356
    [3] Coleman A W, Nicolis I, Keller N, et al. Aggregation of cyclodextrins: An explanation of the abnormal solubility of β-cyclodextrin. J Incl Phenom Macro, 1992,13:139-143
    [4] Szente L, Szejtli J, Kis G L. Spontaneous opalescence of aqueous γ-CD solutions: complex formation or self-aggregation? J Pharm Sci, 1998, 87: 778-781
    [5] Danil de Namor A F, Traboulssi R, Lewis D F, Host properties of cyclodextrins towards anion constituents of antigenic determinants. A thermodynamic study in water and in N,N-dimethylformamide. J Am Chem Soc, 1990,112: 8442-8447
    [6] Jozwiakowski M J, Connors K A. Aqueous solubility behavior of three cyclodextrins. Carbohydr Res, 1985, 143: 51-59
    [7] Naidoo K J, Chen J Y J, Jansson J L M, et al. Molecular properties related to the anomalous solubility of β-cyclodextrin. J Phys Chem B, 2004, 108: 4236-4238
    [8] Winkler R G, Fioravanti S, Ciccotti G, et al. Hydration of β-cyclodextrin: A molecular dynamics simulation study. J Comput Aid Mol Des, 2000,14: 659-667
    [9] Linert W, Margl P, Renz F. Solute-solvent interactions between cyclodextrin and water: a molecular mechanical study. Chem Phys, 1992,161: 327-338
    [10] Saenger W, Steiner T. Cyclodextrin inclusion complexes: host-guest interactions and hydrogen-bonding networks. Acta Crystallogr Sect A, 1998, 54: 798-805
    
    [11] Westergren J, Lindfors L, Holglund T, et al. In silico prediction of drug solubility: 1. free energy of hydration. J Phys Chem B, 2007, 111: 1872-1882
    
    [12] Lulder K, Lindfors L, Westergren J, et al. In silico prediction of drug solubility: 2. Free energy of solvation in pure melts. J.Phys Chem B, 2007, 111:1883-1892
    
    [13] Lulder K, Lindfors L, Westergren J, et al. In silico prediction of drug solubility. 3. Free energy of solvation in pure amorphous matter. J Phys Chem B, 2007, 111: 7303-7311
    [14] Thompson J D, Cramer C J, Truhlar D G. Predicting aqueous solubilities from aqueous free energies of solvation and experimental or calculated vapor pressures of pure substances. J Chem Phys, 2003, 119: 1661-1670
    [15] Huang M J, Watts J D, Bodor N. Theoretical studies of inclusion complexes of beta-cyclodextrin with methylated benzoic acids. Int J Quantum Chem, 1997, 64: 711-719
    [16] Bako I, Jicsinszky L. Semiempirical calculations on cyclodextrins. J Incl Phenom Mol Recogn Chem, 1994,18: 275-289
    [17] Botsi A, Yannakopoulou K, Hadjoudis E, et al. AMI calculations on inclusion complexes of cyclomaltoheptaose (β-cyclodextrin) with l,7-dioxaspiro[5.5]undecane and nonanal, and comparison with experimental results. Carbohydr Res, 1996,283: 1-16
    [18] Lipkowitz K B. Symmetry breaking in cyclodextrins: a molecular mechanics investigation. J Org Chem, 1991, 56: 6357-6367
    [19] Ohashi M, Kasatani K, Shinohara H, et al. Molecular mechanics studies on inclusion compounds of cyanine dye monomers and dimers in cyclodextrin cavities. J Am Chem Soc, 1990, 112: 5824-5830
    [20] Chipot C, Angyan J G, Maigret B, et al. Modeling amino acid side chains. 3. Influence of intra- and intermolecular environment on point charges. J Phys Chem, 1993, 97: 9797-9807
    [21] Frisch M J, Trucks G W, Schlegel H B, et al. GAUSSIAN 03, Revision C.02; Gaussian, Inc., Wallingford CT, 2004
    [22] Angyan J G, Chipot C, Dehez F, et al. OPEP: A tool for the optimal partitioning of electric properties. J Comput Chem, 2003,24: 997-1008
    [23] Phillips J C, Braun R, Wang W, et al. Scalable molecular dynamics with NAMD. J Comput Chem, 2005,26: 1781-1802
    [24] Kuttel M, Brady J W, Naidoo K J. Carbohydrate solution simulations: Producing a force field with experimentally consistent primary alcohol rotational frequencies and populations. J Comput Chem, 2002, 23: 1236-1243
    [25] Berendsen H J C, Grigera R J, Straatsma T P. The missing term in effective pair potentials. J Phys Chem, 1987, 91: 6269-6271
    [26] Harata K. The structure of the cyclodextrin complex. I. The crystal and molecular structure of the α-cyclodextrin- p-iodoaniline complex. Bull Chem Soc Jpn, 1975,48: 2409-2413
    [27] Lindner K, Saenger W. Crystal and molecular structure of cyclohepta-amylose dodecahydrate. Carbohydr Res, 1982,99: 103-115
    [28] Harata K. The Structure of the cyclodextrin complex. XX. Crystal structure of uncomplexed hydrated γ-cyclodextrin. Bull Chem Soc Jpn, 1987, 60: 2763-2767
    [29] Feller S E, Zhang Y, Pastor R W, et al. Constant pressure molecular dynamics simulation: The Langevin piston method. J Chem Phys, 1995, 103: 4613-4621
    [30] Allen M P, Tildesley D. Computer Simulation of Liquids; Oxford: Clarendon, 1987
    [31] Darden T, York D, Pedersen L. Particle mesh Ewald: An N-log(N) method for Ewald sums in large systems. J Chem Phys, 1993, 98: 10089-10092
    [32] Lindner K, Saenger W. Acta Crystallogr, Sect B, 1982, 38: 203-210
    [33] Chipot C, Pohorille A. (Eds.) Free energy calculations - Theory and applications in chemistry and biology; Springer-Verlag: Berlin, 2007
    [34] Leimkuhler B, Chipot C, Elber R, et al. (Eds.), New algorithms for macromolecular simulation, Springer-Verlag: Berlin, 2006
    [35] Chipot C, Millot C, Maigret B. et al. Molecular dynamics free energy perturbation calculations. Influence of nonbonded parameters on the free energy of hydration of charged and neutral species. J Phys Chem, 1994, 98: 11362-11372
    [36] Mark P, Nilsson L. Structure and dynamics of the TIP3P, SPC, and SPC/E water mdels at 298 K. J Phys ChemA, 2001, 105: 9954-9960
    [37] Jorgensen W L, Chandrsekhar J, Madura J D, et al. Comparison of simple potential functions for simulating liquid water. J Chem Phys, 1983, 79: 926-935
    [38] Chitra R, Yashonath S. Estimation of error in the diffusion coefficient from molecular dynamics simulations. J Phys Chem B, 1997,101: 5437-5445
    [39] Mills R, Harris K R. The effect of isotopic substitution of diffusion in liquids. Chem Soc Rev, 1976,5:215-231
    [40] Humphrey W, Dalke A, Schulten K. VMD — Visual Molecular Dynamics. J Molecular Graphics, 1996,14: 33-38
    [41] Betzel C, Saenger W, Hingerty B E, et al. Topography of cyclodextrin inclusion complexes, part 20. Circular and flip-flop hydrogen bonding in β-cyclodextrin undecahydrate: a neutron diffraction study. J Am Chem Soc, 1984, 106: 7545-7557
    [42] Harata K, in "Cyclodextrins and their complexes", H. Dodziuk, Ed., Wiley-VCH: Weinheim, 2006, pp. 53.
    [43] Manor P C, Saenger W. Topography of cyclodextrin inclusion complexes. III. Crystal and molecular structure of cyclohexaamylose hexahydrate, the water dimer inclusion complex. J Am Chem Soc, 1974, 96: 3630-3639
    [44] Koehler J E, Saenger W, van Gunsteren W F, Conformational differences between alpha-cyclodextrin in aqueous solution and in crystalline form. A molecular dynamics study. Eur Biophys J, 1988,16: 153-168
    [1]Szejtli J.Introduction and general overview of cyclodextrin chemistry.Chem Rev,1998,98:1743-1753
    [2]Hedges AR.Industrial applications of cyclodextrins.Chem Rev,1998,98:2035-2044
    [3]Loftsson T,Duchene D.Cyclodextrins and their pharmaceutical applications.Int J Pharm,2007,329:1-11
    [4]Hicks KB,Haines RM,Tong CBS,et al.Inhibition of enzymatic browning in fresh fruit and vegetable juices by soluble and insoluble forms of β-cyclodextrin alone or in combination with phosphates.J Agric Food Chem,1996,44:2591-2594
    [5]Dodziuk H.Cyclodextrins and their complexes:Chemistry,analytical methods,applications.Wiley-VCH Verlag GmbH & Co.KGaA,Weinheim,2006
    [6]Eliadou K,Yarmakopoulou K,Rontoyianni A,et al.NMR detection of simultaneous formation of[2]-and[3]pseudorotaxanes in aqueous solution between α-cyclodextrin and linear aliphatic α,ω-amino acids,an α,ω-diamine and an α,ω-diacid of similar length,and comparison with the solid-state structures.J Org Chem,1999,64:6217-6226
    [7]Miyake K,Yasuda S,Harada A,et al.Formation process of cyclodextrin necklace-analysis of hydrogen bonding on a molecular level.J Am Chem Soc,2003,125:5080-5085
    [8]Liu Y,Li L,Chen Y,et al.Molecular recognition thermodynamics of bile salts by β-cyclodextrin dimers:factor governing the cooperative binding of cyclodextrin dimers.J Phys Chem B,2005,109:4129-4134
    [9]Harada A.Supramolecular polymers based on cyclodextrins.J Polym Sci Part A:Polym Chem,2006,44:5113-5119
    [10]Arakawa R,Yamaguchi T,Takahashi A,et al.Identification of face-to-face inclusion complex formation of cyclodextrin bearing an azobenzene group by electrospray ionization mass spectrometry.J Am Soc Mass Spectrom,2003,14:1116-1122
    [11]Bonnet P,Jaime C,Morin-Allory L.α,β-,and γ-Cyclodextrin Dimers.Molecular modeling studies by molecular mechanics and molecular dynamics simulations.J Org Chem,2001,66:689-692
    [12]Boonet P,Jaime C,Morin-Allory L.Structure and thermodynamics of α-,β-,and γ-cyclodextrin dimers. molecular dynamics studies of the solvent effect and free binding energies. J Org Chem, 2002, 67: 8602-8609
    [13] Pozuelo J, Mendicuti F, Mattice W L. Inclusion complexes of chain molecules with cycloamyloses. 2. molecular dynamics simulations of polyrotaxanes formed by poly(ethylene glycol) and α-cyclodextrins. Macromolecules, 1997, 30: 3685-3690
    [14] Pozuelo J, Mendicuti F, Mattice W L. Inclusion complexes of chain molecules with cycloamyloses III. molecular dynamics simulations of polyrotaxanes formed by poly(propylene glycol) and β-cyclodextrins. Polym J, 1998, 30: 479-484
    [15] Rudyak V Y, Avakyan V G, Nazarov V B, et al. DFT calculation of α-cyclodextrin dimers. contribution of hydrogen bonds to the energy of formation Russ Chem Bull, 2006, 55: 1337-1345
    [16] Nascimento C S, Anconi C P A, Dos Santos H F, et al. Theoretical study of the a-cyclodextrin dimer. J Phys Chem A, 2005, 109, 3209-3219
    [17] Avakyan V G, Nazarov V B, Alfimov M V, et al. The role of intra- and intermolecular hydrogen bonds in the formation of β-cyclodextrin head-to-head and head-to-tail dimers. the results of ab initio and semiempirical quantum-chemical calculations. Russ Chem Bull, 2001, 50:206-216
    [18] Harata K. The Structure of the Cyclodextrin Complex. I. The crystal and molecular structure of the α-cyclodextrin- p-iodoaniline complex. Bull Chem Soc Jpn, 1975,48: 2409-2413
    [19] Lindner K, Saenger W. Crystal and molecular structure of cyclohepta-amylose dodecahydrate. Carbohydr Res, 1982, 99: 103-115
    [20] Harata K. The Structure of the cyclodextrin complex. XX. crystal structure of uncomplexed hydrated γ-cyclodextrin. Bull Chem Soc Jpn, 1987, 60: 2763-2767
    [21] Insight II User Guide, Accelrys Software Inc: San Diego, CA, 2005.
    [22] Jorgensen W L, Chandrasekhar J, Madura J D, et al. Comparison of simple potential functions for simulating liquid water. J Chem Phys, 1983, 79: 926-935
    [23] Phillips J C, Braun R, Wang W, et al. Scalable molecular dynamics with NAMD. J Comput Chem, 2005, 26: 1781-1802
    [24] Kuttel M, Brady J W, Naidoo K J. Carbohydrate solution simulations: producing a force field with experimentally consistent primary alcohol rotational frequencies and populations. J Comput Chem, 2002, 23: 1236-1243
    [25] Darden T, York D, Pedersen L. Particle mesh Ewald: An N · log(N) method for Ewald sums in large systems. J Chem Phys, 1993, 98: 10089-10092
    [26] Chipot C, Pohorille A. Free energy calculations - Theory and applications in chemistry and biology, Berlin: Springer-Verlag, 2007
    [27] Liu Y, Fan Z, Zhang HY, et al. Supramolecular self-assemblies of β-cyclodextrins with aromatic tethers: factors governing the helical columnar versus linear channel superstructures. J Org Chem, 2003, 68: 8345-8352
    [1] Fernandez J, Escorsell A, Zabalza M, et al. Adrenal insufficiency in patients with cirrhosis and septic shock: Effect of treatment with hydrocortisone on survival. Hepatology 2006, 44: 1288-1295
    [2] Buntner B, Nowak M, Kasperczyk J, et al. The application of microspheres from the copolymers of lactide and E-caprolactone to the controlled release of steroids. J Control Release. 1998, 56: 159-167
    [3] Latha M S, Lal A V, Kumary T V, et al. Progesterone release from glutaraldehyde cross-linked casein microspheres: in vitro studies and in vivo response in rabbits. Contraception, 2000, 61: 329-334
    [4] McLaren D, Siemens D R, Izard J, et al. Clinical practice experience with testosterone treatment in men with testosterone deficiency syndrome. Bju Int. 2008, 102: 1142-1146
    [5] Szejtli J. Introduction and General Overview of Cyclodextrin Chemistry. Chem Rev. 1998, 98: 1743-1753
    [6] Sigurdsson H H, Magnusdottir A, Masson M, et al. The effects of cyclodextrins on hydrocortisone permeability through semi-permeable membranes. J Incl Phenom Macro. 2002,44: 163-167
    [7] Wallimann P, Marti T, Furer A, et al. Steroids in molecular recognition. Chem. Rev. 1997, 97: 1567-1608
    [8] Duchene D, Wouessidjewe D, Ponchel G J. Cyclodextrins and carrier systems. Control Release 1999,62: 263-268
    [9] Uekama K, Fujinaga T, Hirayama F, et al. Inclusion complexations of steroid hormones with cyclodextrins in water and in solid phase. Int J Pharm. 1982,10:1-15
    [10] Liu F Y, Kildsig D O, Mitra A K. Beta-cyclodextrin steroid complexation effect of steroid structure on association equilibria. Pharm Res, 1990, 7: 869-873
    
    [11] Zarzycki P K, Ohta H, Saito Y, et al. Interaction of native α-cyclodextrin, β-cyclodextrin and γ-cyclodextrin and their hydroxypropyl derivatives with selected organic low molecular mass compounds at elevated and subambient temperature under RP-HPLC conditions. Anal Bioanal Chem, 2008, 391: 2793-2801
    [12] Forgo P, Vincze I, Kover K E. Inclusion complexes of ketosteroids with β-cyclodextrin. Steroids, 2003, 68: 321-327
    [13] Forgo P, Gondos G. A study of β-Cyclodextrin inclusion complex with progesterone and hydrocortisone using rotating frame overhauser spectroscopy. Monatsh Chem, 2002, 133: 101-106
    [14] Caballero J, Zamora C, Aguayo D, Yanez C, Gonzalez-Nilo F D. Study of the interaction between progesterone and cyclodextrin by electrochemical techniques and steered moleculardynamics. J Phys Chem B, 2008, 112: 10194-10201
    [15] Al~Sou'od K A. Investigation of the Hydrocortisone-β-Cyclodextrin Complex by Phase Solubility Method: Some Theoretical and Practical Considerations. J Solution Chem, 2008, 37:119-133
    [16] Darve E, Pohorille A. Calculating free energies using average force. J. Chem. Phys. 2001, 115:9169-9183
    [17] Rodriguez-Gomez D, Darve E, Pohorille A. Assessing the efficiency of free energy calculation methods. J Chem Phys, 2004,120: 3563-3578
    [18] Henin J, Chipot C. Overcoming free energy barriers using unconstrained molecular dynamics simulations. J Chem Phys, 2004,121: 2904-2914
    [19] Yu Y M, Chipot C, Cai W S, et al. Molecular dynamics study of the inclusion of cholesterol into cyclodextrins. J Phys Chem B, 2006,110: 6372-6378
    [20] Gorfe A A, Babakhani A, McCammon J A. Free energy profile of H-ras membrane anchor upon membrane insertion. Angew Chem Int Edit, 2007,46: 8234-8237
    [21] Dehez F, Pebay~Peyroula E, Chipot C. Binding of ADP in the mitochondrial ADP/ATP carrier is driven by an electrostatic funnel. J Am Chem Soc, 2008,130: 12725-12733
    [22] Spiegel K, Magistrate A, Carloni P, et al. Azole-bridged diplatinum anticancer compounds. Modulating DNA flexibility to escape repair mechanism and avoid cross resistance. J Phys Chem B, 2007, 111: 11873-11876
    [23] Gao J, Kuczera K, Tidor B, et al. Hidden thermodynamics of mutant proteins: a molecular dynamics analysis. Science, 1989, 244: 1069-1072
    [24] Lindner K, Saenger W. Crystal and molecular structure of cyclohepta~amylose dodecahydrate. Carbohydr Res, 1982, 99: 103-115
    [25] MacKerell A D, Jr, Bashford D, et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B, 1998,102: 3586-3616
    [26] Pavelites J J, Gao J L, Bash P A, et al. A molecular mechanics force field for NAD+, NADH, and the pyrophosphate groups of nucleotides. J Comput Chem, 1997, 18: 221-239
    [27] Foloppe N, MacKerell A D. All-Atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data. J Comput Chem, 2000, 21: 86-104
    [28] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 03; Revision C.02; Gaussian: Wallingford, CT, 2004
    [29] Vaiana A C, Cournia Z, Costescu I B, et al. AFMM: A molecular mechanics force field vibrational parametrization program. Comput Phys Commun. 2005, 167: 34-42
    [30] Scott A P, Radom L. Harmonic vibrational frequencies: An evaluation of Hartree-Fock, moller-plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors. J Phys Chem, 1996, 100: 16502-16513
    [31] Phillips J C, Braun R, Wang W, et al. Scalable molecular dynamics with NAMD. J Comput Chem, 2005,26: 1781-1802
    [32] Kuttel M M, Brady J W, Naidoo K J J. Carbohydrate solution simulations: Producing a force field with experimentally consistent primary alcohol rotational frequencies and populations. Comput Chem, 2002,23:1236-1243
    [33] Jorgensen W L, Chandrsekhar J, Madura J D, et al. Comparison of simple potential functions for simulating liquid water. J Chem Phys, 1983, 79: 926-935
    [34] Pitman M C, Suits F, MacKerell A D, et al. Molecular-level organization of saturated and polyunsaturated fatty acids in a phosphatidylcholine bilayer containing cholesterol. Biochemistry, 2004,43: 15318-15328
    [35] Feller S E, Zhang Y, Pastor R W, et al. Constant pressure molecular dynamics simulation: The Langevin piston method. J Chem Phys, 1995, 103: 4613-4621
    [36] Ryckaert J P, Ciccotti G, Berendsen H J C, et al. Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys, 1977, 23: 327-341
    [37]Andersen H C. RATTLE: a 'velocity' version of the SHAKE algorithm for molecular dynamics calculations. J Comput Phys, 1983, 52: 24-34
    [38] Allen M P, Tildesley D J. Computer Simulation of Liquids, Oxford, Clarendon, 1987.
    [39] Darden T, York D, Pedersen L. Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems. J Chem Phys, 1993, 98: 10089-10092
    [40] Chipot C, Pohorille A. Eds. Free energy calculations-theory and applications in chemistry and biology, Springer-Verlag: Berlin, 2007
    [41] Lu N D, Kofke D A. Accuracy of free-energy perturbation calculations in molecular simulation. I. Modeling. J Chem Phys, 2001,114: 7303-7311
    [42] Lu N D, Kofke D A. Accuracy of free-energy perturbation calculations in molecular simulation. II. Heuristics. J Chem Phys, 2001, 115: 6866-6875
    [43] Shoup D, Szabo A. Role of diffusion in ligand binding to macromolecules and cell-bound receptors. Biophys J, 1982,40: 33-39
    [44] Auletta T, de Jong M R, Mulder A, et al. β-cyclodextrin host-guest complexes probed under thermodynamic equilibrium: Thermodynamics and AFM force spectroscopy. J Am Chem Soc, 2004, 126: 1577-1584
    
    [45] Onsager L. Electric moments of molecules in liquids. J Am Chem Soc. 1936, 58: 1486-1493
    [46] Szeman J, Ueda H, Szejtli J, et al. Complexation of several drugs with water soluble cyclodextrin polymer. Chem Pharm Bull, 1987, 35: 282-288
    [47] Szeman J, Fenyvesi E, Szejtli J, et al. Water-soluble cyclodextrin polymers-Their interaction with drugs. J. Inclusion Phenom. 1987, 5: 427-431
    [48] Szejtli J J. Water soluble cyclodextrin polymers: Their interaction with drugs. Inclusion Phenom Mol Recognit Chem, 1992,14: 25-36
    [49] Dixit S B, Chipot C. Can absolute free energies of association be estimated from molecular mechanical simulations? The biotin-steptavidin system revisited. J Phys Chem A 2001, 105: 9795-9799
    [50] Zwanzig R W. High-temperature equation of state by a perturbation method. I. Nonpolar gases. J. Chem. Phys. 1954,22: 1420-1426
    [51] Javierre I, Nedyalkov M, Petkova V, et al. Direct investigation of the vectorization properties of amphiphilic cyclodextrins in phospholipid films. J Colloid Interface Sci, 2002, 254: 120-128
    [1] Wong M L, Licinio J. From monoamines to genomic targets: a paradigm shift for drug discovery in depression. Nat Rev Drug Discovery, 2004, 3: 136-151
    [2]. Bowman W C, Rand M J. Textbook of Pharmacology. Blackwell Sci Pubs, Cambridge, 1990
    [3] Hall C M, Nugent R A. Encyclopedia of Chemical Technology, vol 2. John Wiley & Sons, New York, 1992
    [4] Rosenbaum T G, Kou M. Are one or two dangerous? Tricyclic antidepressant exposure in toddlers. J Emerg Med, 2005, 28: 169-174
    [5] Wallimann P, Marti T, Furer A, et al. Steroids in molecular recognition. Chem Rev, 1997, 97: 1567-1608
    [6] French D, Levine D, Pazur J H, et al. Studies on the schardinger dextrins. The preparation and solubility characteristics of alpha, beta and gamma dextrins. J Am Chem Soc, 1949, 71: 353-356
    [7] Funasaki N, Okuda T, Neya S. Mechanisms and surface chemical prediction of mipramine induced hemolysis suppressed by modified cyclodextrins. J Pharm Sci-us, 2001, 90: 1056-1065
    [8] Cano J, Rodriguez A, Aicart E, et al. Temperature effect on the complex formation between tricyclic antidepressant drugs (amitriptyline or imipramine) and
    
    hydroxypropyl-β-cyclodextrin in water. J Incl Phenom Macrocycl Chem, 2007 59:279-285
    [9] Junquera E, Romero J C, Aicart E. Behavior of tricyclic antidepressants in aqueous solution: Self-aggregation and association with β-cyclodextrin. Langmuir 2001, 17: 1826-1832
    [10] Bonini M, Rossi S, Karlsson G, et al. Self-assembly of beta-cyclodextrin in water. Part 1: Cryo-TEM and dynamic and static light scattering. Langmuir, 2006, 22: 1478-1484
    
    [11] Loftsson T, Ma'sson M, Brewster M E. Duodenal administration of solid lipid nanoparticles loaded with different percentages of tobramycin. J Pharm Sci, 2003, 92: 1091-1099
    
    [12] Frederico B De S, Angelo M. L D, Ivana S L, et al. Supramolecular self-sssembly of cyclodextrin and higher water soluble guest: Thermodynamics and topological studies. J Am Chem Soc, 2008, 130: 8426-8436
    
    [13] Varady J, Wu X W, Wang S M, Competitive and reversible binding of a guest molecule to its host in aqueous solution through molecular dynamics simulation: Benzyl alcohol/beta-cyclodextrin system, J Phys Chem B, 2002, 106: 4863-4872
    [14] Franchi P, Lucarini M, Mezzina E, et al. Combining magnetic resonance spectroscopies, mass spectrometry, and molecular dynamics: Investigation of chiral recognition by 2,6-di-O-methyl-beta-cyclodextrin, J Am Chem Soc, 2004,126: 4343-4354
    [15] Dodziuk H, Demchuk C M, Bielejewska A, et al. A study of multiple complexation of α-, β- and γ-cyclodextrins: Surprisingly differing stoichiometries of β- and γ-cyclodextrin complexes, Supramol Chem, 2004,16: 287-292
    [16] Lindner K, Saenger W. Crystal and molecular structure of cyclohepta-amylose dodecahydrate. Carbohydr Res, 1982, 99: 103-115
    [17] Phillips J C, Braun R, Wang W, et al. Scalable molecular dynamics with NAMD. J Comput Chem, 2005,26: 1781-1802
    [18] Kuttel M, Brady J W, Naidoo K J. Carbohydrate solution simulations: Producing a force field with experimentally consistent primary alcohol rotational frequencies and populations. J Comput Chem, 2002, 23: 1236-1243
    [19] MacKerell A D, Jr, Bashford D, et al. All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins, J Phys Chem B, 1998,102: 3586-3616
    [20] Feller S E, Zhang Y, Pastor R W, et al. Constant pressure molecular dynamics simulation: The Langevin piston method. J Chem Phys, 1995, 103: 4613-4621
    [21] Ryckaert J P, Ciccotti G, Berendsen H J C, et al. Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys, 1977, 23: 327-341
    [22]Andersen HC. RATTLE: a 'velocity' version of the SHAKE algorithm for molecular dynamics calculations. J Comput Phys, 1983, 52: 24-34
    [23] Darden T, York D, Pedersen L. Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems. J Chem Phys, 1993, 98: 10089-10092
    [24] Chipot C, Pohorille A. (Eds.) Free Energy Calculations - Theory and Applications in Chemistry and Biology; Springer-Verlag: Berlin, 2007
    [25] Lu N D, Kofke D A. Accuracy of free-energy perturbation calculations in molecular simulation. I. Modeling. J Chem Phys, 2001, 114: 7303-7311
    [26] Lu N D, Kofke D A. Accuracy of free-energy perturbation calculations in molecular simulation. II. Heuristics. J Chem Phys, 2001, 115: 6866-6875

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700