阴离子光化学传感器的合成及对阴离子选择性识别的传感性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阴离子广泛存在于自然界和生物体内,对人类和生物的生存起到了十分重要的作用,阴离子识别和检测在医学,药学和生物学上具有十分重要意义,设计和合成具有选择性识别不同阴离子的超分子主体化合物成为超分子化学研究的重要内容之一。相对于阳离子,阴离子具有大的离子半径,复杂几何构型,高的溶剂化能和易受pH影响等特点,阴离子客体的选择性识别要比金属阳离子的识别存在更大更多的挑战。
     通过设计和合成超分子主体化合物并用于阴离子选择性检测近年来取得了重要的进展。基于超分子化合物主体的预组织性和主客体空间互补性,主体化合物通过氢键,疏水作用,范德华力等分子间非共价键与客体阴离子相结合。具有光学响应的阴离子受体在阴离子识别研究中起到十分重要的作用,通过主体分子的信号单元所输出的荧光,紫外等信号,可以方便快捷的获得主客体相互作用信息。
     手性是大多数生物分子的基本属性,手性阴离子识别是指手性主体化合物对外消旋客体化合物阴离子中的一种对映体在空间和能量上存在有利的作用力,而另一种则存在空间和能量上较不利作用力的识别作用。通过手性识别可以帮助了解一些生物体内的生物催化过程;通过手性识别可以检测手性分子的对映体纯度,在手性药物和手性催化剂的筛选和开发上起到重要作用。
     自然界和生物体内重要阴离子都是存在于水溶液环境中的,对于大多数已报道阴离子受体,在有机溶剂中(DMSO,乙腈,氯仿等)能够通过氢键与阴离子产生选择性识别,尽管这些中性阴离子受体展现出对不同结构的阴离子客体优良的选择性识别和光学响应性能,但这些受体与阴离子的相互作用只能在有机介质中进行,在极性质子性溶剂(水,醇)中,由于溶剂对氢键的破坏作用,这就极大地限制了这类受体在水或生理pH介质中的实际应用。因此合成水溶性的阴离子传感器具有十分重要意义。
     本论文设计合成了十一个手性或非手性的阴离子受体,包括四个含有硫脲单元的手性阴离子受体和七个水溶性金属络合物受体。通过核磁,红外,质谱等方法对其结构进行了表征。通过使用紫外光谱,荧光光谱,核磁氢谱,质谱和圆二色谱等检测方法研究了这些受体对客体阴离子的识别性能。
     本论文一共分为六章,主要内容如下:
     1.综述了阴离子光化学传感器的设计原理和近年来的发展状况,介绍各种不同类型的阴离子光化学传感器及其与各种客体阴离子作用原理,并在此基础上提出了本论文的设计思路。
     2.通过将手性丙氨酸,硫脲和信号单元引入到吡啶和苯骨架中,合成了四种超分子主体化合物Ⅱ-1、Ⅱ-2、Ⅱ-3、Ⅱ-4,分别通过荧光(Ⅱ-1、Ⅱ-2)、紫外(Ⅱ-3、Ⅱ-4)光谱和核磁研究了主体对客体的手性识别性能。主客体通过多重氢键相互作用,形成1:1络合。主体化合物Ⅱ-1和Ⅱ-2对客体阴离子对映体不同的荧光响应,表现出对客体阴离子一定的对映选择性识别能力;而主体Ⅱ-3和Ⅱ-4,由于对硝基苯的拉电子作用,使得体系硫脲酸性增强,表现出对客体更强的结合能力,对手性客体阴离子也显示出对映选择性识别能力,特别是主体化合物Ⅱ-3,对扁桃酸和丙氨酸表现出良好的手性识别能力。由于对D-,L-构型扁桃酸和丙氨酸不同的生色响应,受体Ⅱ-3可用作这两种手性阴离子的生色传感器。由于受体Ⅱ-3对Boc-谷氨酸和天冬氨酸Boc-NH的手性裂分,可用作Boc-谷氨酸和天冬氨酸阴离子的手性溶解试剂,用于检测客体对映体纯度。
     3.合成了基于蒽和手性氨基酸的水溶性荧光受体Ⅲ-1、Ⅲ-2和Ⅲ-1-Cu2+,通过荧光滴定和圆二色谱研究了在水溶液中的主客体相互作用性质。通过非线性拟合,表明主客体形成1:1络合物。受体Ⅲ-1、Ⅲ-2表现出对Cu2+的高度选择性识别效果,受体对Cu2+的加入表现为灵敏的荧光猝灭现象,受体Ⅲ-1、Ⅲ-2可用作在水溶液中(pH7.4, Tris-HCl buffer)对二价铜离子的荧光探针。金属络合物受体Ⅲ-1-Cu2+对扁桃酸具有很好的手性识别能力,对L-构型的扁桃酸阴离子荧光增强响应要明显高于对D-构型扁桃酸阴离子,其对映选择性Kass(L)/Kass(D=15.2;通过非线性拟合,受体与L-,D-扁桃酸形成1:1络合物。通过圆二色谱测定,L-构型扁桃酸阴离子对受体Ⅲ-1-Cu2+构象的影响要大于D-扁桃酸阴离子,说明受体具有对L-构型扁桃酸阴离子更好的选择性识别能力。受体Ⅲ-1-Cu2+有望使用作为生理条件下对扁桃酸阴离子对映体的对映选择性的荧光化学传感器。
     4.合成了含蒽的多氮杂配体Ⅳ-1和Ⅳ-2,其中配体Ⅳ-2出对金属离子Cd2+、Zn2+、Cu2+表现出不同的荧光响应,可用作为金属离子光化学传感器。受体Ⅳ-1-Zn2+表现出对Pi和PPi阴离子灵敏的荧光猝灭现象,通过质谱和核磁研究了主客体相互作用过程,受体对PPi阴离子的络合常数要大于Pi。而络合物受体Ⅳ-2-Eu3+和Ⅳ-2-Tb3+在水溶液中表现出对PPi阴离子专一的的化学选择性,受体可以用作为水溶液中PPi阴离子PET荧光传感器。
     5.合成了两种金属络合物受体V-1-2Zn2+和V-1-2Cu2+,通过竞争取代机理检测了三元络合物主体Ⅴ-1-2Zn2+(PV)和Ⅴ-1-2Cu2+(PV)对客体阴离子的识别性能,紫外检测结果表明了主体Ⅴ-1-2Zn2+(PV)和Ⅴ-1-2Cu2+(PV)对PPi阴离子的优良的化学选择性识别,识别过程中表现出明显的肉眼可见的颜色变化,我们通过圆二色谱验证了主体对客体的选择性识别作用。这两种主体可以用作为生理pH条件下PPi阴离子的生色化学传感器。
     6.合成了手性配体Ⅵ-1和Ⅵ-2,通过与镧系金属Eu3+和Tb3+配位,生成了金属络合物主体Ⅵ-1-Tb3+,Ⅵ-2-Tb3+,Ⅵ-1-Eu3+,Ⅵ-2-Eu3+并将其用于阴离子的识别研究中。由于主体分子中的吡啶单元的光敏天线作用,通过激发吡啶单元(266nm),使激发态能量转移到金属f轨道激发态,发射出特征的金属荧光。在水溶液中,通过光谱变化研究了主体对客体阴离子的识别性质,发现这四种主体化合物均表现出对F-的荧光猝灭现象,而对其他阴离子的响应微弱,表现出对氟离子优良的化学选择性识别。
Anions exist vastly in the nature and biosystem and play important roles in the maintaining of the humans and other organisms. Due to the importance of anions in pharmacy and biological science, the design and synthesis of efficient anion receptors attracts intensive interest of scientist and become a significant issue in the field of supramolucular chemistry. Compared with cation, anion has its own feature (larger dimension, complicated geometric structure and high hydration energy) that make the recognition of anions difficult and challenging.
     However, despite of these obvious difficulties, variety species of anion selective receptors have been developed in the recent years. Based on the theory of preorganization of the receptor and the complementary structure between the host and guest, the supramolecular complex was usually formed utilizing the hydrogen bonding, electrostatic interaction, hydrophobic effect or Van der Waals force. Receptors have optical response to anions make the anion sensing process much sensitive and convenient using the detection of UV-vis or fluorescent signals.
     Chiral recognition is one of the most fundamental and significant process in living system. The study of enantiometric recognition of biological important substrate is a very important research area since it can provide valuable information for understanding the mechanism of interaction in biological system, and for developing useful molecular devices in biochemical and pharmaceutical studies, catalysis and sensing.
     Many important biological anions existed in the aqueous solution, for many reported receptors, their binding ability to both chiral and achiral anion guest have been studied by 1H NMR, UV-vis spectra, fluorescence and electrochemical analysis. But most of the receptors are mainly studied in the organic solvent such as chloroform, CH3CN and DMSO. For the competing effect of the water, receptors of these kinds based on hydrogen bonding have little interaction with guests in the aqueous solution. The synthesis and study of water soluble receptor became a challenging work in the recent years.
     In this thesis, for the recognition of anions, a series of novel artificial receptors were synthesized, including four receptors based on thiourea and seven metal-ligand complex receptors. Their binging properties to anions (chiral dicarboxylates and biological important anions) were evaluated by UV-vis, fluorescence emission, 1HNMR, MS and circular dichlorisim methods.
     In charpter 1, describes the mechanism of the anion sensing and various types of anion receptors. Review the research progress of fluorescent and colorimetric anion receptors and their recognition abilities to anion guests.
     In charpter 2, through introduce the chial alanine, thiourea and signal units to the pyridine or benzyl skeleton, novel chiral receptorsⅡ-1、Ⅱ-2、Ⅱ-3、Ⅱ-4 were synthesized. Their discriminating abilities to chiral carboxylate anion enantiomers were examined by the UV-vis and fluorescent spectral and 1H NMR study. These receptors formed the 1:1 shoichiometriy complex with anion guests through the multiple hydrogen bonding interactions. PET sensorsⅡ-1 andⅡ-2 showed different fluorescence response to each anion enantiomers, and have certain chiral recognition abilities. For the electron-withdrawing effect of the p-nitrophenyl groups, the colorimetric sensorsⅡ-3 andⅡ-4 showed much stronger binding abilities to anion guests. Especially for the receptorⅡ-3, it shows a good recognition ability to mandelate and alanine anions, it can be used for discriminating these two chiral anions by the different colure changes. By split the Boc-NH signals of racemic glutamate and aspartate by 1H NMR, the receptorⅡ-3 can be used in the detecting the ee. value of these two anions.
     In charpter 3, two chiral fluorescent receptorsⅢ-1 andⅢ-2 were synthesized. ReceptorⅢ-1 andⅢ-2 showed a good selective binding ability to Cu2+. The hostⅢ-1-Cu2+ complex revealed an excellent enantioselective recognition ability to L-/D-mandelate anions in aqueous solution (Kass(L)/Kass(D)=15.2) and formed 1:1 stoichiometry complex. The obvious different changes in the fluorescence intensity of the interaction between theⅢ-1-Cu2+ and enantiomers of mandelate exhibited that hostⅢ-1-Cu2+ can be used as a good enantioselective fluorescent chemosensor for the chiral mandelate anions in the physiological pH condition.
     In chapter 4, two receptorsⅣ-1 andⅣ-2 were synthesized. Metal complexⅣ-1-Zn2+ showed good binding abilities to phosphate and pyrophosphate anions in aqueous solution and formed 1:1 stochiometric complex with anion guest. ReceptorⅣ-2 showed a selective recognition ability to metal ions such as Cd2+, Zn2+ and Cu2+ in aqueous solution with different fluorescent changes. The metal complex receptorsⅣ-2 -Eu3+ andⅣ-2-Tb3+ exhibited an excellent selective recognition ability and quenching response to the pyrophosphate anions (PPi) in the water solution (10mM HEPES buffer, H2O/MeOH=9:1). The better preorganization structure of the metal-complex receptorsⅣ-2-Eu3+ andⅣ-2-Tb3+, and larger charge density of anion guest may be responsible for the selective recognition of PPi anion. The good fluorescent response in the interaction between host and guest illustrate that these two receptors may be used as the fluorescent chemosensor for the PPi anion in the physiological pH condition.
     In charpter 5, two dinuclear metal complexⅤ-1-2Zn2+ andⅤ-1-2Cu2+ were synthesized and used as the receptor to anions. With the addition of equal amount of pyrocatechol violet (PV) as the indicator to theⅤ-1-2Zn2+ orⅤ-1-2Cu2+ solution, the complexⅤ-1-2Zn2+(PV) orⅤ-1-2Cu2+(PV) were formed with a dark blue color. While the pyrophosphate anion was added to the mixture, the color was changed to bright yellow, which indicate that PV was displaced by PPi from the ternary complex. The color of the complex was not changed when other anions were added even in the same amounts. It is clear that the pre-organized structure of the receptorsⅤ-1-2Zn2+ andⅤ-1-2Cu2+, and that the space complementary between receptor and anion guest resulted in the selective recognition for PPi. The obvious different changes of color and CD spectra indicated that two receptorsⅤ-1-2Zn2+ andⅤ-1-2Cu2+ may be used as efficient PPi sensors in aqueous solution.
     In charpter 6, the lanthanide metal complexesⅥ-1-Tb3+,Ⅵ-2-Tb3+,Ⅵ-1-Eu3+ andⅥ-2-Eu3+ were synthesized. Their recognition abilities to anion guests were examined by the lanthanide emission spectrum through the excitation of the pyridine unite of the ligand. Through the non-linear curve fitting, the receptor formed the 1:1 stoichiometry complex anion guest. These four receptors showed selectively fluorescent quenching to the fluoride anions in aqueous solution.
引文
[1]Pedersen, C. J. Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc.1967,89,2495-2496.
    [2]Cram, D. J.; Cram, J. M. Host-guest chemistry. Science,1974,183,803-809.
    [3]Lehn, J. M.; Sauvage, J. P. [2]-Cryptates. Stability and selectivity of alkali and alkaline-earth macrobicyclic complexes. J. Am. Chem. Soc.1975,97,6700-6707.
    [4](a)刘育,尤长城,张衡益,超分子化学—合成受体的分子识别与组装,南开大学出版社,2001. (b) Steed, J. W.; Atwood, J. L.著,赵耀鹏,孙震译,超分子化学,化学工业出版社,2006.
    [5]Lehn, J-M.超分子化学—概念和展望(沈兴海译),北京大学出版社,2002.
    [6](a) Lehn, J-M. Supramolecular chemistry-molecules, supermolecules, and molecular functional units. Angew. Chem.1988,100,91-116. (b) Lehn, J-M. Perspectives in supramolecular chemistry:from molecular recognition to molecular information processing and self organization. Angew. Chem., Int. Ed. Engl.1990,29, 1304.
    [7]Behr, J. P. The Lock-and-key principle. The state of the Art-100 years on. Chichester:J. Wiley&Sons,1994.
    [8]Atwood, J. L.; Davies, J. E. D.; MacNicol, D. D. et al. Comprehensive Supra-molecular Chemistry, Elsevier, Oxford, UK,1996.
    [9]Blanchi, A.; Bowman-James and Garcia-Espana. Supramolecular chemistry of anions. New York:Wiley,1997.
    [10]Beer, P. D.; Gale, P. A. Anion recognition and sensing:The state of the art and future perspective. Angew. Chem. Int. Ed.2001,40,486-516.
    [11]Beer, P. D.; Hayes, E. J. Transition metal and organometallic anion complexation agents. Coord. Chem. Rev.,2003,240,167-189.
    [12]Davis, F.; Collyer, S. D.; Higson, S. P. J. The construction and operation of anions sensors:Current status and future perspectives. Top. Curr. Chem.; 2005,255, 97-124.
    [13](a) Gale, P. A. Pyrrolic and polypyrrolic anion binding agents. Coord. Chem. Rev., 2003,240,17-55; (b) Fabbrizzi, L.; Licchelli, M.; Taglitti, A. The design of fluorescent sensors for anions:taking profit from the metal-ligand interaction and exploiting two distinct paradigms. Dalton Trans.,2003,3471-3479.
    [14]Dietrich, B. Design of anions receptors:Applications. Pure. Appl. Chem.,1993, 65,1457-1464.
    [15]Dietrich, B.; Guilhem, J.; Lehn, J-M. et al. Molecular recognition in anion coordination chemistry. Helv. Chim. Acta.,1984,67,91-104.
    [16]Schemidtchen, F. P. Artificial host molecules for the sensing of anions. Top. Curr. Chem.; 2005,255,1-29.
    [17](a) Pu, L. Fluorescence of organic molecules in chiral recognition. Chem. Rev., 2004,104,1687-1716; (b) Kubo, Y.; Hirota, N.; Maeda, S.; Kokita, S. Naked-eye detectable chiral recognition using a chromogenic receptor. Analytical Science,1998, 14,183-189; (c) Kyne, J. M.; Light, M. E.; Hursthouse, M. B.; Mendoza, J.; Kilburn, J. D. Enantioselective amino acid recognition using acyclic thiourea receptors. J. Chem. Sco., Perkin Trans.1,2001,1258-1263.
    [18]Kim, J. S.; Quang, D. T. Calix-arene derived fluorescence probes. Chem. Rev., 2007,107,3780-3799.
    [19]Gunnaugsson, T.; Glynn, M.; Tocci, G. M.; Kruger, P. E.; Pfeffer, F. M. Anion recognition and sensing in organic and aqueous media using luminescent and colorimetric sensors. Coord. Chem. Rev.,2006,250,3094-3117.
    [20]Martinez-Manez, R.; Sancenon, F. Fluorogenic and Chromogenic Chemosensors and Reagents for Anions. Chem. Rev,2003,103,4419-4476.
    [21]Bissell, R.A.; de Silva, A.P.; Gunaratne, H.Q.N.; Lynch, P.L.M.; Maguire, G.E.M.; Sandanayake, K.R.A.S. Molecular fluorescent signalling with 'fluor-spacer-receptor' systems:approaches to sensing and switching devices via supramolecular photophysics. Chem. Soc. Rev.1992,21,187-195.
    [22](a) Houk, R. J. T.; Tobey, S. L.; Anslyn, E. V. Abiotic Guanidinium Receptors for Anion Molecular Recognition and Sensing. Top. Curr. Chem.; 2005,255,199-229; (b) Beer, P. D.; Baily, S. R. Anion Sensing by Metal-Based Receptors. Top. Curr. Chem.; 2005,255,125-162.
    [23]Wiskur, S. L.; Ait-Haddou, H.; Lavigne, J. J.; Anslyn, E. V. Teaching old indicators new tricks. Acc. Chem. Res.,2001,963-972.
    [24]Chae, M. Y.; Czarnik, A. W. Fluorometric chemodosimetry. Mercury(Ⅱ) and silver(Ⅰ) indication in water via enhanced fluorescence signaling. J. Am. Chem. Soc., 1992,114,9704-9705.
    [25]Chang, K. C.; Su, I. H.; Senthilvelan, A.; Chung, W. S. Trizaole-modifide calyx [4] crown as a novel fluorescent on-off swithable chemosensor. Org. Lett.,2007,9, 3363-3366.
    [26]Arimori, S.; Bell, M. L.; Oh, C. S.; James, T. D. A modular fluorescence intramolecular energy transfer sccharide sensor. Org. Lett.,2002,4,4249-4251.
    [27](a) Gunnlaugsson, T.; Lee, T. C.; Parkesh, R. Cd(Ⅱ) sensing in warter using novel aromatic iminodiacetate based fluorescent chemosensors. Org. Lett.,2003,5, 4065-4068; (b) Allendorf, M. D.; Bauer, C. A.; Bhakta, R. K.; Houk, R. J. T. Luminiscence metal-organic frameworks. Chem. Soc. Rev.,2009,38,1330-1352.
    [28](a) Liu, W. X.; Jiang, Y. B. N-amidothiourea based PET chemosensors for anions. Org. Biomol. Chem.,2007,5,1771-1775; (b) Miao, R.; Zheng, Q. Y.; Chen, C. F.; Huang, Z. T. A novel calix[4]arene based fluorescent receptor for selective recognition of acetate anion. Tetrahedron Letters,2005,46,2155-2158.
    [29]Kubo, K.; Mori, A. PET fluoroionophores for Zn2+ and Cu2+:complexation and fluorescence behavior of anthracene derivatives having diethylamine, N-methylpiperazine and N, N-bis (2-picolyl) amine units. J. Mater. Chem.,2005,15, 2902-2907.
    [30](a) Khatua, S.; Choi, S. H.; Lee, J.; Kim, K.; Do, Y.; Churchill, D. G. Aqueous fluorometric and colorimetric sensing of phosphate ions by a fluorescent dinuclear zinic complex. Inorg. Chem.,2009,48,2993-2999. (b) Qing, G. Y.; Sun, T. L.; He, Y. B.; Wang, F.; Chen, Z. H.; Highly selective fluorescence recognition of phenyl alcohol based on ferrocenyl macrocyclic derivatives. Tetrahedron:Asymmetry,2009,20, 575-583.
    [31](a) Ghosh, K.; Sarkar, A. R. Anthrancene-based macrocycle fluorescent chemosensor for selective sensing of dicarboxylate. Tetrahedron Letters,2009,50, 85-88. (b) Shiraishi, Y.; Kohno, Y.; Hirai, T. Bis-azamacrocyclic anthracene as a fluorescence chemosensor for cation in aqueous solution. J. Phys. Chem. B,2005,109, 19139-19147; (c) Lee, H. N.; Swamy, K. M. K.; Kim, S. K.; Kwon, J. Y. Simple but effective way to sense pyrophosphate and inorganic phosphate by fluorescence changes. Org. Lett.2007,9,243-246.
    [32]de Silva, A.P; Gunaratne, H.Q.N.; Gunnlaugsson,T.; Huxley, A.J.M; McCoy, C.P.; Rademacher, J. T.; Rice, T. E. Signaling Recognition Events with Fluorescent Sensors and Switches. Chem. Rev.,1997,97,1515-1566.
    [33]Ghosh, K.; Adehikari, S. Fluorescence sensing of tartaric acid:a case of excimer emission caused by hydrogen bond-mediated complexation. Tetrahedron Letters, 2006,47,3577-3581.
    [34]B. Valeur, I. Leray, Design Principles of Fluorescent Molecular Sensors for Cation Recognition, Coord. Chem. Rev.2000,205,3.
    [35]Speiser, S. Photophysics and Mechanisms of Intramolecular Electron Energy Transfer in Bichromophoric Molecular Systems:Solution and Supersonic Jet Studies, Chem. Rev.1996,96,1953-1976.
    [36]P. D. Beer, Transition-Metal Receptor Systems for the Selective Recognition and Sensing of Anionic Guest Species, Acc. Chem. Res.1998,31,71-80.
    [37]Gunnlaugsson, T.; Davis, A. P.; Hussey, G. M.; Tierney, J.; Glynn, M. Design, synthesis and photophysical studies of simple fluorescent anion PET sensor using charge neutral thiourea receptors. Org. Biomol. Chem.,2004,2,1856-1863.
    [38]Xu, Z.; Singh, N. J.; Lim, J.; Pan, J.; Kim, H. N.; Park, S.; Kim, K. S.; Yoon, J. Unique sandwich stacking of pyrene-adenine-pyrene for selective and ratiomertic fluorescent sensing of ATP at physiological pH. J. Am. Chem. Soc.,2009,131, 15528-15533.
    [39](a) Kitamura, M.; Shabbir, S. H.; Anslyn, E. V. Guidelines for pattern recognition using differential receptors and indicator displacement assay. J. Org. Chem.,2009,74, 4479-4489; (b) Mccleskey, S.C.; Grinffin, M. J.; Shneider, S. E.; Mcdevitt, J. T.; Anslyn, E. V. Differential receptors create patterns diagnostic for ATP and GTP. J. Am. Chem. Soc.,2003,125,1114-1115.
    [40]Fabbrizzi, L.; Marcotte, N.; Stomeo, F.; Tagnietti, A. Pyrrophosphate detection in water by fluorescent competition assays:inducing selectivivity through the choice of the indicator. Angew. Chem. Int. Ed.2002,41,3811-3814.
    [41]Wu, J.S.; Wang, F.; Liu, W.M.; Wang,P.F.; Wu, S.K.; Wu, X.H.; Zhang, X.H. Light-on fluorescent chemosensor for fluoride in aqueous solution based on ternary complex of Zr-EDTA and 4'-N,N-dimethylamino-6-methyl-3-hydroxylflavone. Sensors and Actuators. B, Chemical,2007,125,447-452.
    [42]Yang, D.; Wang, H. L.; Sun, Z. N.; Chung, N. W.; Shen, J. G. A highly selective fluorescent probe for the detection and imaging of peroxynitrite in living cells. J. Am. Chem. Soc.,2006,128,6004-6005.
    [43]Suksai, C.; Tuntulani, T. Chromogenic Anion Sensors. Top. Curr. Chem.; 2005, 255,163-198.
    [44](a) Zollinger, H. Color Chemistry; VCH:Weinheim,1991. (b) Zhou, Z.; Xiao, S.; Xu, J.; Liu, Z.; Shi, M.; Li, F.; Yi, T.; Huang, C. Modulation of the photochromic property in an organoboron-based diarylethene by a fluoride ion. Org. Lett.2006,8, 3911-3914. (c) Kim, H. J.; Kim, S. K.; Lee, J. Y.; Kim, J. S. Fluoride-Sensing Calix-luminophores Based on Regioselective Binding. J. Org. Chem.2006,71, 6611-6614.
    [45](a) Beer, P. D. Transition-Metal Receptor Systems for the Selective Recognition and Sensing of Anionic Guest Species. Acc. Chem. Res.1998,31,71-80. (b) Amendola, V.; Fabbrizzi, L.; Mangano, C.; Pallavicini, P.; Poggi, A.; Taglietti, A. Anion recognition by dimetallic cryptates. Coord. Chem. Rev.2001,219-221,821-837. (c) Rice, C. R. Metal-assembled anion receptors. Coord. Chem. Rev.2006,250, 3190-3199.
    [46]Suksai, C.; Tuntulani, T. Chromogenic anion sensors. Chem. Soc. Rev.2003,32, 192-202.
    [47](a) Li, Z.; Wu, F. Y.; Guo, L.; Li, A. F.; Jiang, Y. B. Enhanced anion binding of N-(anilino)thioureas. Contribution of the N-anilino-NH proton acidity. J. Phys. Chem. B,2008,112,7071-7079; (b) Chauhan, S. M. S.; Bisht, T.; Garg, B. 1-arylazo-5, 5-dimethyl dipyrromethanes:versatile chromogenic probe for anions. Sensors and Actuators. B, Chemical,2009,141,116-123. (c) Kumar, S.; Luxami, V.; Kumar, A. Chromofluorescent probes for selective detection of fluoride and acetate ions. Org Lett.,2008,10,5549-5552.
    [48](a) Shao, J.; Lin, H.; Lin, H. K. A simple and efficient colorimetric anion receptor for H2PO4-. Spectrochimica Acta Part A,2008,70,682-685; (b) Esteban-Gomez, D.; Fabbrizzi, L.; Liechelli, M. J. Org. Chem.2005,70,5717-5720. [49] (a) Hu, S.; Guo, Y.; Xu, J.; Shao, S. A selective chromogenic molecular sensor for acetate anions in a mixed acetonitrile-water medium. Org. Biomol. Chem.,2008,6, 2071-2075; (b) Hu, S.; Guo, Y.; Xu, J.; Shao, S. Tunability of anion binding strength based on acyl-thiourea receptors containing isatin group. Spectrochimica Acta Part A, 2009,72,1043-1046.
    [50](a) Shao, J.; Wang, Y. Lin, H.; Lin, J.; Lin, H. A novel indole phenylhydrazone receptor:Synthesis and recognition for acetate anion. Sensors and Actuators. B, Chemical,2008,134,849-853; (b) Wang, Y. Lin, H.; Shao, J.; Cai, Z. S.; Lin, H. K. A phenylhydrazone-based indole receptor for sensing acetate. Talanta,2008,74, 1122-1125.
    [51]Tseng, Y. P.; Tu. G. M.; Lin, C. H.; Chang, C. T.; Lin, C. Y.; Yen, Y. P. Synthesis of colorimetric sensors for isomeric dicarboxylate anions:selective discrimination between maleate and fumarate. Org. Biomol. Chem.,2007,5,3592-3598.
    [52]Lee, J. H.; Park, J.; Lah, M. S.; Chin, J.; Hong, J. High-affinity pyrophosphate receptor by asynergistic effect between metal coordination and hydrogen bonding in water. Org. Lett.2007,9,3729-3731.
    [53]Han, M. S.; Kim, D. H. Naked-eye detection of phosphate ions in water at physiological pH:A remarkably selective and easy-to-assemble colorimetric phosphate-sensing probe. Angew. Chem. Int. Ed,2002,41,3809-3811.
    [54]Niu, H. T.; Su, D.; Jiang, X.; Yang, W.; Yin, Z.; He, J.; Cheng, J. P. A simple yet highly selective colorimetric sensor for cyanide anion in an aqueous environment. Org. Biomol. Chem.,2008,6,3038-3040.
    [55](a) Amendola, V.; Gomez, D. E.; Fabbrizzi, L.; Licchelli, M.; Monzani, E.; Sancenon, F. Metal-enhanced H-bond donor tendencies of urea and thiourea toward anions:ditopic receptors for silver(I) salts. Inorg. Chem.,2005,44,8690-8698; (b) Schmidtchen, F. P.; Berger, M. Artificial organic host molecules for anions. Chem. Rev.,1997,97,1609-1649.
    [56](a) Gale, P. A. Synthetic indole, carbazole, biindole and indolo carbazole-based receptors:applications in anion complex ation and sensing. Chem. Commun.,2008, 4525-4540; (b) Liu, W. X.; Jiang, Y B. Intramolecular Hydrogen Bonding and Anion Binding of N-Benzamido-N'-benzoylthioureas. J. Org. Chem.,2008,73,1124-1127; (c) Duke, R. M.; Gunnlaugsson, T. Selective fuorescent PET sensing of fluoride (F-) using naphthalimide-thiourea and-urea conjugates. Tetrahedron Letters,2007,48, 8043-8047.
    [57]Hu, Z. Q.; Cui, C. L.; Lu, H. Y.; Ding, L.; Yang, X. D. A highly selective fuorescent chemosensor for fuoride based on an anthracene diamine derivative in corporating indole. Sensors and Actuators. B, Chemical,2009,141,200-204.
    [58]Lhotak, P. Anion receptors based on calixarenes. Top. Curr. Chem.; 2005,255, 65-95.
    [59]Singh, N.; Lee, G. W.; Jang, D. O. p-tert-Butylcalix[4]arene-based fuororeceptor for the recognition of dicarboxylates. Tetrahedron,2008,64,1482-1486.
    [60](a) Ali, H. D. P.; Kruger, P. E.; Gunnlaugsson, T. Colorimetric 'naked-eye' and fuorescent sensors for anions based on amidourea functionalised 1,8-naphthalimide structures:anion recognition via either deprotonation or hydrogen bonding in DMSO. New. J. Chem.,2008,32,1153-1161; (b) Veale, E. B.; Tocci, G. M.; Pfeffer, f. M.; Kruger, P. E.; Gunnlaugsson, T. Demonstration of bidirectional photo induced electron transfer(PET) sensing in 4-amino-1,8-naphthalimide based thiourea anion sensors. Org. Biomol. Chem.,2009,7,3447-3454.
    [61]Stibor, I.; Zlatuskova, P. Chiral recognition of anions. Top. Curr Chem.; 2005, 255,31-63.
    [62](a) Ragusa, A.; Rossi, S.; Hayes, J. M.; Stein, M.; Kilburn, J. D. Novel enantioselective receptors for N-protected glutamate and aspartate. Chem. Eur. J. 2005,11,5674-5388; (b) Kyne, J. M.; Light, M. E.; Hursthouse, M. B.; Mendoza, J.; Kilburn, J. D. Enantioselective amino acid recognition using acyclic thiourea receptors.J.Chem. Sco., Perkin Trans.1,2001,1258-1263.
    [62]Yang, D.; Li, X.; Fan,Y. F.; Zhang, D. W. Enantioselective recognition of carboxylates:A receptor derived from alpha-aminoxy acids functions as a chiral shift reagent for carboxylic acids. J. Am. Chem. Soc.2005,127,7996-7997.
    [63](a) Qin, H.; He, Y.; Hu, C.; Chen, Z.; Hu, L. Enantioselective fluorescent sensor for dibenzoyl tartrate anion based on chiral binaphthyl derivatives bearing amino acid unit. Tetrahedron:Asymmetry 2007,18,1769-1774; (b) Xu, K. X.; He, Y. B.; Qin, H. J.; Qing, G. Y.; Liu, S. Y. Enantioselective recognition by optically active chiral fluorescence sensors bearing amino acid units. Tetrahedron:Asymmetry 2005,16, 3042-3048; (c) Qin, H.; He, Y.; Qing, G.; Hu, C.; Yang, X. Novel Chiral fluorescent macrocyclic receptors:synthesis and recognition for amino acid anions. Tetrahedron: Asymmetry,2006,17,2143-2148.
    [64]Schmuck, C. Side chain selective binding of N-acetyl-a-amino acid carboxylates by a 2-(guanidiniocarbonyl) pyrrole receptor in aqueous solvents. Chem. Commun., 1999,843-844.
    [65]Schmuck, C.; Schwegmann, M. Recognition of anionic carbohydrates by an artificial receptor in water. Org. Lett.2005,7,3517-3520.
    [66]Nishizawa, S.; Kato, Y.; Terame, N. Fluorescence sensing of anions via intramolecular excimer formation in a pyrophosphate induced self-assembly of a pyrene-functionalized guanidinium receptor. J. Am. Chem. Soc.1999,121,
    9463-9464.
    [67]Yoon, J.; Kim, S. K.; Singh, N. J.; Kim, K. S. Imidazolium receptors for the recognition of anions. Chem. Soc. Rev,2006,35,355-360.
    [68]Yuan, Y.; Gao, G.; Jiang, Z. L.; You, J. S.; Zhou, Z. Y.; Yuan, D. Q.; Xie, R. G. Synthesis and selective anion recognition of imidazolium cyclophanes. Tetrahedron, 2002,58,8993-8999.
    [69](a) Kim, S. K.; Singh, N. J.; Kim, S. J.; Kim, H. G.; Kim, J. K.; Lee, J. W.; Kim, K. S.; Yoon, J. New fluorescent photo induced electron transfer chemosensor for the recognition of H2PO4-. Org. Lett.,2003,5,2083-2086; (b) Yoon, J.; Kim, S. K.; Singh, N. J.; Lee, J. W.; Yang, Y. J.; Chellappan, K.; Kim, K. S. Highly efficient fluorescent sensor for H2PO4-. J. Org. Chem.,2004,69,581-583; (c) Xu, Z.; Kim, S.; Lee, K. H.; Yoon, J. A highly selective fuorescent chemosensor for dihydrogenphosphate via unique excimer formation and PET mechanism. Tetrahedron Letters,2007,48, 3797-3800; (d) Singh, N. J.; Jun, E. J.; Chellappan, K.; Thangadurai, D.; Chandran, R. P.; Hwang, I. C.; Yoon, J.; Kim, K. S. Quinoxaline-imidazolium receptors for unique sensing of pyrophosphate and acetate by charge transfer. Org. Lett.2007,9,485-488.
    [70]Lu, Q. S.:Dong, L.; Zhang, J.; Li, J.; Jiang, L.; Huang, Y.; Qin, S.; Hu, C. W.; Yu, X. Q. Imidazolium-functionalized BINOL as a multifunctional receptor for chromogenic and chiral anion recognition. Org. Lett.2009,11,669-672.
    [71]Fitzmaurice, R. J.; Kyne, G. M.; Douheret, D.; Kilburn, J. D. Synthetic receptors for carboxylic and carboxylates. J. Chem. Soc., Perkin Trans.1,2002,841-864.
    [72]Kimura, E.; Sakonaka, A.; Yatsunami, T.; Kodama, M. Macromonocyclic polyamines as specific receptors for tricarboxylate-cycle anions. J. Am.Chem. Soc., 1981,103,3041-3045.
    [73]Dietrich, B.; Hosseini, M. W.; Lehn, J-M.; Sessions, R. B. Anion receptor molecules. Synthesis and anion-binding properties of polyammonium macrocycles. J. Am. Chem. Soc.,1981,103,1282-1283.
    [74]Gonzalez-Alvarez, A.; Afonso, I.; Diaz, P.; Garcia-Espana, E.; Gotor, V. A highly enantioselective abiotic receptor for malate dianion in aqueous solution. Chem. Commun.2006,1227-1229.
    [75]Vance. D. H.; Czarnik, A. W.; Real-time assay of inorganic pyrophosphatase using a high-affinity chelation-enhanced fluorescence chemosensor. J. Am. Chem. Soc.,1994,116,9397-9398.
    [76]Li, C.; Numata, M.; Takeuchi, M.; Shinka, S. A sensitive colorimetric and fluorescent probe based on a polythiophene derivative for the detection of ATP. Angew. Chem. Int. Ed.2005,44,6371-6374.
    [77](a) Melaimi, M.; Gabbai, F. P. A heteronuclear bidentate lewis acid as a phosphorescent fluoride sensor. J. Am. Chem. Soc.,2005,127,9680-9681; (b)Edwards, N. Y.; Sager, T. W.; Mcdevitt, J. T.; Anslyn, E. V. Boronic acid based peptidic receptors for pattern-based saccharide sensing in neutral aqueous media, an application in real-life samples. J. Am. Chem. Soc.,2007,129,13575-13583.
    [78]Hudnall, T. W.; Gabbai, F. P. Ammonium boranes for the selective complexation of cyanide or fluoride Ions in water. J. Am. Chem. Soc.,2007,129,11978-11986.
    [79]Kim, S. Y.; Hong, J. I. Chromogenic and fluorescent chemodosimeter for detection of fluoride in aqueous solution. Org. Lett.2007,9,3109-3112.
    [80]Kano, K.; Kamo, H.; Negi, S.; Kitae, T.; takaoka, R.; Yamaguchi, M.; Okubo, H.; Hirama, M. Chiral recognition of an anionic tetrahelicene by native cyclodextrins. enantioselectivity dominated by location of a hydrophilic group of the guest in a cyclodextrin cavity. J. Chem. Soc. Perkin. Trans.2,1999,15-22.
    [81]Zhao, Y. L.; Zhang, H. Y.; Wang, M.; Yu, H. M.; Yang, H.; Liu, Y Organic anion recognition of naphthalenesulfonates by steroid-modified β-cyclodextrins:enhanced molecular binding ability and molecular selectivity. J. Org. Chem.,2006,71 6010-6019.
    [82](a) O'Neil, E. J.; Smith, B. D. Anion recognition using dimetallic coordination complexes. Coord. Chem. Rev.2006,250,3068-3080; (b) Fabbrizzi, L.; Licchelli, M.; Taglietti, A. The design of fi fuorescent sensors for anions:taking profit from the metal-ligand interaction and exploiting two distinct paradigms. Dalton Trans.,2003, 3471-3479.
    [83]Sakamoto, T.; Ojida, A.; Hamachi, I. Molecule recognition, fluorescence sensing, and biological assay of phosphate anion derivatives using artificial Zn(Ⅱ)-Dpa complexes. Chem. Cummun.,2009,141-152.
    [84]Huang, X.; Guo. Z.; Zhu, W.; Xie, Y.; Tian, H. A colorimetric and fluorescent turn-on sensor for pyrophosphate anion based on a dicyanomethylene-4H-chromene framework. Chem. Cummun.,2008,5143-5145.
    [85](a) Ojida, A.; Mito-oka, Y.; Sada, K.; Hamachi, I. Molecular recognition and fluorescence sensing of monophosphorylated peptides in aqueous solution by bis(zinc(Ⅰ)-dipicolylamine)-based artificial receptors J. Am. Chem. Soc.2004,126, 2454-2463; (b) Ojida, A.; Takashima, I.; Kohira, T.; Nonaka, H.; Hamachi, I. Turn-on fluorescence sensing of Nucleoside polyphosphates using a xanthene-base Zn(Ⅱ) complex chemosensor. J. Am. Chem. Soc.,2008,130,12095-12101.
    [86](a) Lee, D. H.; Im, J. H.; Son, S. U.; Chung, Y. K.; Hong, J. I. An azophenol-based chromogenic pyrophosphate sensor in water. J. Am. Chem. Soc., 2003,125,7752-7753; (b) Lee, D. H.; Kim, S. Y.; Hong, J. A fluorescent pyrophosphate sensor with high selectivity over ATP in water. Angew. Chem. Int. Ed. 2004,43,4777-4780; (c) Jang, Y. J.; Jun, E. J.; Lee, Y. J.; Kim, Y. S.; Kim, J. S.; Yoon, J. Highly effective fluorescent and colorimetric sensors for pyrophosphate over H2PO4- in 100% aqueous solution. J. Org. Chem.,2005,70,9603-9606.
    [87]Lee, H. N.; Xu, Z.; Kim, S. K.; Swamy, K. M. K.; Kim, Y.; Kim, S.; Yoon, J. Pyrophosphate-selective fluorescent chemosensor at physiological pH:formation of unique excimer upon addition of pyrophosphate. J. Am. Chem. Soc.,2007,129, 3828-3829.
    [88](a) Gunnlaugsson, T.; Harte, A. J.; Jensen, P.; Nieuwenhuyzen, M. Delayed lanthanide luminescence sensing of aromatic carboxylates using heptadentate triamide Tb(Ⅲ) cyclen complexes:the recognition of salicylic acid in water. Chem. Commun., 2002,2134-2135; (b) Bruce, J. I.; Dickins, R. S.; Govenlock, L. J.; Gunnlaugsson, T.; Lopinski, S.; Lowe, M. P.; Parker, D.; Peacock, R. D.; Perry, J. J. B.; Aime, S.; Botta, M. The selectivity of reversible oxy-anion binding in aqueous solution at a chiral Europium and Terbium center:signaling of carbonate chelation by changes in the form and circular polarization of luminescence emission. J. Am. Chem. Soc.,2000, 122,9674-9684; (c) Bonnet, C. S.; Devocelle, M.; Gunnlaugsson, T. Structure studies in aqueous solution of new dinuclear lanthanide luminescent peptide conjugates. Chem. Commun.,2008,4552-4554.
    [89](a) Leung, D.; Folmer-Andersen, J. F.; Lynch, V. M.; Anslyn, E. V. Using enantioselective indicator displacement assays to determine enantiomeric excess of a-amino acids. J. Am. Chem. Soc.,2008,130,12318-12327; (b) Folmer-Andersen, J. F.; Lynch, V. M.; Anslyn, E. V. Colorimetric enantiodiscrimination of a-amino acids in protic media. J. Am. Chem. Soc.,2005,127,7986-7987.
    [90]Leung, D.; Anslyn, E. V. Transitioning enantioselective indicator displacement assays for a-amino acids to protocols amenable to high-throughput screening. J. Am. Chem. Soc.,2008,130,12328-12333.
    [1](a) Pu, L. Fluorescence of organic molecules in chiral recognition. Chem. Rev., 2004,104,1687-1716; (b) Kubo, Y.; Hirota, N.; Maeda, S.; Kokita, S. Naked-eye detectable chiral recognition using a chromogenic receptor. Analytical Science,1998, 14,183-189; (c) Kyne, J. M.; Light, M. E.; Hursthouse, M. B.; Mendoza, J.; Kilburn, J. D. Enantioselective amino acid recognition using acyclic thiourea receptors. J. Chem. Sco., Perkin Trans.1,2001,1258-1263.
    [2](a) Beer, P. D.; Hayes, E. J. Transition metal and organometallic anion complexation agents. Coord. Chem. Rev.,2003,240,167-189; (b) Beer, P. D.; Gale, P. A. Anion recognition and sensing:The state of the art and future perspective. Angew. Chem. Int. Ed.2001,40,486-516; (c) Gale, P. A. Pyrrolic and polypyrrolic anion binding agents. Coord. Chem. Rev.,2003,240,17-55; (d) Fabbrizzi, L.; Licchelli, M.; Taglitti, A. The design of fluorescent sensors for anions:taking profit from the metal-ligand interaction and exploiting two distinct paradigms. Dalton Trans.,2003, 3471-3479.
    [3](a) Zhang, X. X.; Bradshaw, J. S.; Izatt, R. M. Enantiomeric recognition of amine compounds by chiral macrocyclic receptors. Chem. Rev.1997,97,3313; (b) Finn, M. G. Emerging methods for the rapid determination of enantiomeric excess. Chirality 2002,14,534; (c) Jennings, K.; Diamond, D. Enantioselective molecular sensing of aromatic amines using tetra-(S)-di-2-naphthylprolinol calix[4]arene. Analyst,2001, 126,1063-1067; (d) Yadav, G. D.; Sivakumar, P. Enzyme-catalysed optical resolution of mandelic acid via RS (-/+)-methyl mandelate in non-aqueous media. Bio. Eng. J. 2004,19,101-107; (e) Schmidtchen, F. P. Artificial host molecules for the sensing of anions. Top. Curr. Chem.,2005,255,1-29.
    [4](a) Kubo, Y.; Maeda, S.; Tokita, S.; Kubo, M. Colorimetric chiral recognition by a molecular sensor. Nature,1996,382,522-524; (b) Murakakami, Y.; Kikuchi, J.; Hisaeda, Y.; Hayahsida, O. Artificial enzymes. Chem. Rev.,1996,96,721-758; (c) Philp, D.; Stoddart, J. F. Self-assembly in natural and unnatural systems. Angew. Chem. Int. Ed. Engl,1996,35,1155-1196; (d) Izatt, R. M.; Pawlak, K.; Bradshaw, J. S.; Bruening, R. L. Thermodynamic and kinetic data for macrocycle interaction with cations, anions, and neutral molecules. Chem. Rev.1995,95,2529-2586; (e) Naemura, K.; Tobe, Y.; Kaneda, T. Preparation of chiral and meso-crown ethers incorporating cyclohexane-1,2-diol derivatives as a steric barrier and their complexation with chiral and achiral amines. Coord. Chem. Rev.1996,148,199-219; (d) Pieters, R. J.; Cuntze, J.; Bonnet, M.; Diederich. F. Enantioselective recognition with C-3-symmetric cage-like receptors in solution and on a stationary phase. J. Chem. Soc., Perkin Trans. 2,1997,1891-1900; (e) Ngola, S. M.; Kearney, P. C.; Mecozzi, S.; Russell, K.; Dougherty, D. A. A selective receptor for arginine derivatives in aqueous media. Energetic consequences of salt bridges that are highly exposed to water. J. Am. Chem. Soc.1999,121,1192-1201; (f) Maletic, M.; Wennemers, H.; Mcdonald, D. Q. Selective Binding of the Dipeptides L-Phe-D-Pro and D-Phe-L-Pro to P-Cyclodextrin. Angew. Chem., Int. Ed. Engl.1996,35,1490-1492; (g) Liu, Y.; Li, L.; Zhang, H.Y.; Fan, Z.; Guan, X. D. Selective binding of chiral molecules of cinchona alkaloid by beta- and gamma-cyclodextrins and organoselenium-bridged bis(beta-cyclodextrin)s. Bioorg. Chem.2003,11-23.
    [5](a) Bois, J.; Bonnamour, I.; Duchamp, C.; Parrot-Ropez, H.; Dabost, U.; Felix, C. Enantioselective recognition of amino acids by chiral peptide-calix [4] arenes and thiacalix [4] arenas. New. J. Chem.,2009,33,2128-2135; (b) Wang, H.; Chan, W. H.; Lee, A. W. M. Cholic acid-based fluorescent probes for enantioselective recognition of trifunctional amino acids. Org. Biomol. Chem.,2008,6,929-934; (c) Willener, Y.; Joly, K. M.; Moody, C. J.; Tucker, J. An exploration of ferrocenyl ureas as enantioselective electrochemical sensors for chiral carboxylate anions. J. Org. Chem., 2008,73,1225-1233; (d) Laurent, P.; Miyaji, H.; Collinson, S. R.; Prokes, I.; Moody, C. J.; Tucker, J.; Slawin, A. Asymmetric synthesis of chiral alpha-ferrocenylalkylamines and their use in the preparation of chiral redox-active receptors. Org. Lett.,2002,4,4037-4040.
    [6](a) Kim, Y. K.; Lee, H. N.; Singh, N. J.; Choi, H. J.; Xue, J. Y.; Kim, K. S.; Yoon, J.; Hyun, M. Anthrancene derivatives bearing thiourea and glucopyranosyl groups for the highly selective chiral recognition for amino acids:opposite selectivities from similar binding units. J. Org. Chem.,2008,73,301-304; (b) Liu, S. Y.; Law, K. Y.; He, Y. B.; Chan,W. H. Fluorescent enantioselective receptor for S-mandelate anion based on cholic acid. Tetrahedron Lett.2006,47,7857-7860; (c) Wei, L. H.; He, Y. B.; Xu, K. X.; Liu, S. Y.; Meng, L. Z. Chiral fluorescent receptors based on (R)-1,1 '-binaphthylene-2,2 '-bisthiourea:Synthesis and chiral recognition. Chin. J. Chem., 2005,23,757-761; (d) Xu, K. X.; Wu, X. J.; He, Y. B.; Liu, S. Y.; Qing, G. Y.; Meng, L. Z. Synthesis and chiral recognition of novel chiral fluorescence receptors bearing 9-anthryl moieties. Tetrahedron:Asymmetry,2005,16,833-839.
    [7]Choi. M. K.; Kim, H. N.; Choi, H. J.; Yoon, J.; Hyun, M. H. Chiral anion recognition by color change utilizing thiurea, azophenol, and glucopyranosyl groups. Tetrahedron Lett.,2008,49,4522-4525.
    [8]Macro, H. R.; Eusebio, J. Structurally simple chiral thiourea as chiral solvating agents in the enantiodiscrimination of a-hydroxyl anda-amino carboxylic acids. Tetrahedron,2007,7673-7678.
    [9](a) Gunnlaugsson, T.; Lee, T. C.; Parkesh, R. Cd(Ⅱ) sensing in warter using novel aromatic iminodiacetate based fluorescent chemosensors. Org. Lett.,2003,5, 4065-4068; (b) Chang, K. C.; Su, I. H.; Senthilvelan, A.; Chung, W. S. Trizaole-modifide calyx [4] crown as a novel fluorescent on-off swithable chemosensor. Org. Lett.,2007,9,3363-3366.
    [10]Quinlan, E.; Matthews, S. E.; Gunnlaugsson, T. Anion sensing using colorimetric amidourea based receptors incorporated into a 1,3-disubstituted calyx [4] arene, Tetrahedron Lett.2006,47,9333-9338.
    [11]Choi, C. S.; Kim, M. K.; Jeon, K. S.; Lee, K. H. A functionized dianthryl tetraaza macrocycle having the recognizing and switching ability. Journal of Luminiscence 2004,109,121-124.
    [12]Valeur, B.; Pouget, J.; Bourson. J.; Tuning of photoinduced energy transfer in a bichromophoric coumarin supermolecule by cation binding. J. Phys. Chem.1992,96, 6545-6549.
    [13]Qing, G. Y.; He, Y. B.; Zhao, Y.; Hu, C. G.; Liu, S. Y.; Yang, X. Calix[4]arene-based chromogenic chemosensor for the alpha-phenylglycine anion: Synthesis and chiral recognition. Eur. J. Org. Chem.2006,1574-1580.
    [14]Nishizawa, S.; Kato, R.; Hayashita, T.; Teramae, N. Anal. Sci.1998,14,595.
    [15]Schneider, H. J.; Yatsimirsky, A. K. Principles and Methods in Supramolecular Chemistry; John Wiley & Sons:New York,2000.
    [16](a) Ragusa, A.; Rossi, S.; Hayes, J. M.; Stein, M.; Kilburn, J. D. Novel enantioselective receptors for N-protected glutamate and aspartate. Chem. Eur. J. 2005,11,5674-5388; (b) Yang, D.; Li, X.; Fan,Y. F.; Zhang, D. W. Enantioselective recognition of carboxylates:A receptor derived from alpha-aminoxy acids functions as a chiral shift reagent for carboxylic acids. J. Am. Chem. Soc.,2005,127, 7996-7997.
    [17](a) Qin, H.; He, Y.; Hu, C.; Chen, Z.; Hu, L. Enantioselective fluorescent sensor for dibenzoyl tartrate anion based on chiral binaphthyl derivatives bearing amino acid unit. Tetrahedron:Asymmetry 2007,18,1769-1774; (b) Zheng, Y. S.; Zhang, C. Exceptional chiral recognition of racemic carboxylic acids by calix[4]arenes bearing optically pure (alpha, s s-amino alcohol groups. Org. Lett.2004,6,1189-1192; (c) Liu, X. X.; Zheng, Y S. Chiral nitrogen-containing calix[4]crown-an excellent receptor for chiral recognition of mandelic acid. Tetrahedron Lett.2006,47,6357-6360.
    [18]Campaigne, E.; Archer, W. L. The use of Dimethylformamide as a formylation reagent. J. Am. Chem. Soc.1953,75,989.
    [19]Sket, B.; Zupan, M. Side chain bromination of aromatic molecules with a bromine complex of poly(styrene-co-4-vinylpyridine),J. Org. Chem.,1986,51, 929-931.
    [20]Andreas, H.; Deogratius, J.; Orde, Q. M.; Gunter, L.; Rudi, V. E. Electronic tuning of the lability of Pt (Ⅱ) complexes through π-acceptor effects. correlations between thermodynamic, kinetic, and theoretical parameters. Inorg. Chem.,2003,42, 1688-1700.
    [21]Du, C. P.; You, J. S.; Yu, X. Q.; Liu, C. L.; Lan, J. B.; Xie, R. G. Homochiral Molecular Tweezers as Hosts for the Highly Enantioselective Recognition of Amino Acid Derivatives. Tetrahedron:Asymmetry 2003,14,3651-3656.
    [1](a) Zhang, X. X.; Bradshaw, J. S.; Izatt, R. M. Enantiomeric recognition of amine compounds by chiral macrocyclic receptors. Chem. Rev.1997,97,3313; (b) Finn, M. G. Emerging methods for the rapid determination of enantiomeric excess. Chirality 2002,14,534-540; (c) Jennings, K.; Diamond, D. Enantioselective molecular sensing of aromatic amines using tetra-(S)-di-2-naphthylprolinol calix[4]arene. Analyst,2001, 126,1063-1067; (d) Yadav, G. D.; Sivakumar, P. Enzyme-catalysed optical resolution of mandelic acid via RS (-/+)-methyl mandelate in non-aqueous media. Bio. Eng. J. 2004,19,101-107.
    [2](a) Pu, L. Fluorescence of organic molecules in chiral recognition. Chem. Rev., 2004,104,1687-1716; (b) Kubo, Y.; Hirota, N.; Maeda, S.; Kokita, S. Naked-eye detectable chiral recognition using a chromogenic receptor. Analytical Science,1998, 14,183-189; (c) Kyne, J. M.; Light, M. E.; Hursthouse, M. B.; Mendoza, J.; Kilburn, J. D. Enantioselective amino acid recognition using acyclic thiourea receptors. J. Chem. Sco., Perkin Trans.1,2001,1258-1263; (d) Schmidtchen, F. P. Artificial host molecules for the sensing of anions. Top. Curr. Chem.2005,255,1-29.
    [3](a) Kubo, Y.; Maeda, S.; Tokita, S.; Kubo, M. Colorimetric chiral recognition by a molecular sensor. Nature,1996,382,522-524; (b) Philp, D.; Stoddart, J. F. Self-assembly in natural and unnatural systems. Angew. Chem. Int. Ed. Engl.1996,35, 1155-1196; (c) Izatt, R. M.; Pawlak, K.; Bradshaw, J. S.; Bruening, R. L. Thermodynamic and kinetic data for macrocycle interaction with cations, anions, and neutral molecules. Chem. Rev.1995,95,2529-2586; (d) Naemura, K.; Tobe,Y.; Kaneda, T. Preparation of chiral and meso-crown ethers incorporating cyclohexane-1,2-diol derivatives as a steric barrier and their complexation with chiral and achiral amines. Coord. Chem. Rev.1996,148,199-219; (e) Pieters, R. J.; Cuntze, J.; Bonnet, M.; Diederich. F. Enantioselective recognition with C-3-symmetric cage-like receptors in solution and on a stationary phase. J. Chem. Soc., Perkin Trans. 2,1997,1891-1900; (f) Ngola, S. M.; Kearney, P. C.; Mecozzi, S.; Russell, K.; Dougherty, D. A. A selective receptor for arginine derivatives in aqueous media. Energetic consequences of salt bridges that are highly exposed to water. J. Am. Chem. Soc.1999,121,1192-1201.
    [4](a) Gunnaugsson, T.; Glynn, M.; Tocci, G. M.; Kruger, P. E.; Pfeffer, F. M. Anion recognition and sensing in organic and aqueous media using luminescent and colorimetric sensors. Coord. Chem. Rev.2006,250,3094-3117; (b) Liu, S. Y.; Fang, L.; He, Y. B.; Chan, W. H.; Yeung, K. T.; Cheng, Y. K.; Yang, R. H. Cholic-acid-based fluorescent sensor for dicarboxylates and acidic amino acids in aqueous solution. Org. Lett.2005,7,5825-5828; (c) Arimori, S.; Bell, M. L.; Oh, C. S.; James, T. D. A modular fluorescence intramolecular energy transfer saccharide sensor. Org. Lett. 2002,4,4249.
    [5](a) Liu, Y.; Song, Y.; Chen, Y.; Li, X. Q.; Ding, F.; Zhong, R. Q. Biquinolino-modified β-cyclodextrin dimmers and their metal complexes as efficient fluorescent sensors for the molecular recognition of steroids. Chem. Eur. J.2004,14, 3685-3696; (b) Shinoda, S.; Okazaki, T.; Player, T. N.; Misaki, H.; Hori, K.; Tsukube, H. Cholesterol-armed cyclens for helical metal complexes offering chiral self-aggregation and sensing of amino acid anions in aqueous solutions. J. Org. Chem. 2005,70,1835-1843; (c) Peczuh, M. W.; Hamilton, A. D. Peptide and protein recognition by designed molecules. Chem. Rev.2000,100,2479-2494. (d) Zhang, T.; James, T. D. Using an indicator displacement assay to monitor glucose oxidase activity in blood serum. Org. Lett.2007,9,1627-1629.
    [6](a) Gonzalez-Alvarez, A.; Afonso, I.; Diaz, P.; Garcia-Espana, E.; Gotor, V. A highly enantioselective abiotic receptor for malate dianion in aqueous solution. Chem. Commun.2006,1227-1229; (b) Barzzicalupi, C.; Bencini, A.; Bianchi, A.; Borsari, L.; Giorgi, C.; Valtancoli, B. J. Org. Chem.2005,70,4257-4266.
    [7]Schmuck, C.; Schwegmann, M. Recognition of anionic carbohydrates by an artificial receptor in water. Org. Lett.2005,7,3517-3520.
    [8]Zhao, J.; Davidson, M. G.; Mahon, M. F.; Kociok-Kohn, G.; James, T. D. An enantioselective fluorescent sensor for sugar acids. J. Am. Chem. Soc.2004,126, 16179-16186.
    [9]a) Han, M. S.; Kim, D. H. Naked-eye detection of phosphate ions in water at physiological pH:A remarkably selective and easy-to-assemble colorimetric phosphate-sensing probe. Angew. Chem. Int. Ed,2002,41,3809-3811; (b) Fabbrizzi, L.; Marcotte, N.; Stomeo, F.; Tagnietti, A. Pyrrophosphate detection in water by fluorescent competition assays:inducing selectivivity through the choice of the indicator. Angew. Chem. Int. Ed.2002,41,3811-3814; (c) O'Neil, E. J.; Smith, B. D. Anion recognition using dimetallic coordination complexes. Coord. Chem. Rev.2006, 250,3068-3080.
    [10]Wu, J. S.; Wang, F.; Liu, W. M.; Wang, P. F.; Wu, S. K.; Wu, X.; Zhang, X. H. Light-on fluorescent chemosensor in aqueous solution based on ternary complex of Zr-EDTA and 4'-N,N-dimethylamino-6-methyl-3-hydroxyflavone. Sensors and Actuators B 2007,125,447-452.
    [11](a) Lavigne, J. J.; Anslyn, E. V. Teaching Old Indicators New Tricks A Colorimetric Chemosensing Ensemble for TartrateMalate in Beverages. Angew. Chem. Int. Ed.1999,38,3666-3669. (b) Gray, C. W; Houston, T. A. Boronic acid receptors for alpha-hydroxycarboxylates:High affinity of Shinkai's glucose receptor for tartrate. J. Org. Chem.2002,67,5426-5428.
    [12]Zhang, T.; Anslyn, E. V. A colorimetric boronic acid based sensing ensemble for carboxy and phopho sugars. Org. Lett.2006,8,1649-1652.
    [13]Hayashida, O.; Ogawa, N.; Uchiyama,M. Surface recognition and fluorescent sensing of histone by dansyl-appended cyclophane-based resorcinarene trimer. J. Am. Chem. Soc.2007,129,13698-13705.
    [14](a) Lee, D. H.; Kim, S. Y.; Hong, J. A fluorescent pyrophosphate sensor with high selectivity over ATP in water. Angew. Chem. Int. Ed.2004,43,4777-4780; (b) Jose, D. A.; Mishra, S.; Ghosh, A.; Shrivastav, A.; Mishra, S.; Das, A. Colorimetric sensor for ATP in aqueous solution. Org. Lett.,2007,9,1979-1982; (c) Li, C.; Numata, M.; Takeuchi, M.; Shinka, S. A sensitive colorimetric and fluorescent probe based on a polythiophene derivative for the detection of ATP. Angew. Chem. Int. Ed.2005,44, 6371-6374.
    [15]Shao, N.; Jin, J. Y.; Cheung, S. M.; Yang, R. H.; Chan, W. H.; Mo, T. A spiropyran-based ensemble for visual recognition and quantification of cysteine and homocysteine at physiological levels. Angew. Chem. Int. Ed.2006,45,4944-4948.
    [16](a) Zhao, J.; Fyles, T. M.; James, T. D. Chiral Binol-bisboronic acid as fluoresce sensor for sugar acids. Angew. Chem. Int. Ed,2004,43,3461-3464.
    [17](a) Xu, K. X.; Wu, X. J.; He, Y. B.; Liu, S. Y.; Qing, G. Y.; Meng, L. Z. Synthesis and chiral recognition of novel chiral fluorescence receptors bearing 9-anthryl moieties. Tetrahedron:Asymmetry,2005,16,833-839; (b) Qing, G. Y.; He, Y. B.; Zhao, Y.; Hu, C. G.; Liu, S. Y.; Yang, X. Calix[4]arene-based chromogenic chemosensor for the alpha-phenylglycine anion:Synthesis and chiral recognition. Eur. J. Org. Chem.2006,1574-1580.
    [18]Kubo, K.; Mori, A. PET fluoroionophores for Zn2+ and Cu2+:complexation and fluorescence behavior of anthracene derivatives having diethylamine, N-methylpiperazine and N, N-bis (2-picolyl) amine units. J. Mater. Chem.,2005,15, 2902-2907.
    [19]Khatua, S.; Choi, S. H.; Lee, J.; Kim, K.; Do, Y.; Churchill, D. G. Aqueous fluorometric and colorimetric sensing of phosphate ions by a fluorescent dinuclear zinic complex. Inorg. Chem.,2009,48,2993-2999.
    [20]Qing, G. Y.; Sun, T. L.; He, Y. B.; Wang, F.; Chen, Z. H.; Highly selective fluorescence recognition of phenyl alcohol based on ferrocenyl macrocyclic derivatives. Tetrahedron:Asymmetry,2009,20,575-583.
    [1](a) Beer, P. D.; Gale, P. A. Anion recognition and sensing:The state of the art and future perspective. Angew. Chem. Int. Ed.2001,40,486-516; (b) Schmidtchen, F. P.; Berger, M. Artificial organic host molecules for anions. Chem. Rev.,1997,97, 1609-1646.
    [2]Pflugrath, J. W.; Quiocho, F. A.; The 2-A resolution structure of the sulfate-binding protein involves in active transport in salmonella typhimurium. J. Mol. Bio.,1988,200,163-180.
    [3](a) Gunnaugsson, T.; Glynn, M.; Tocci, G. M.; Kruger, P. E.; Pfeffer, F. M. Anion recognition and sensing in organic and aqueous media using luminescent and colorimetric sensors. Coord. Chem. Rev.2006,250,3094-3117; (b) Liu, S. Y.; Fang, L.; He, Y. B.; Chan, W. H.; Yeung, K. T.; Cheng, Y. K.; Yang, R. H. Cholic-acid-based fluorescent sensor for dicarboxylates and acidic amino acids in aqueous solution. Org. Lett.2005,7,5825-5828; (c) Arimori, S.; Bell, M. L.; Oh, C. S.; James, T. D. A modular fluorescence intramolecular energy transfer saccharide sensor. Org. Lett. 2002,4,4249; (d) Zhang, T.; Anslyn, E. V. Using an indicator displacement assay to monitor glucose oxidase activity in blood serum. Org. Lett.2007,9,1627-1629.
    [4](a) Lee, D. H.; Kim, S. Y.; Hong, J. A fluorescent pyrophosphate sensor with high selectivity over ATP in water. Angew. Chem. Int. Ed.2004,43,4777-4780; (b) Zyryanov, G. V.; Palacios, M. A.; Anzenbacher, P. A. Rational design of a fluorescence-turn-on sensor array for phosphates in blood serum. Angew. Chem. Int. Ed.2007,46,7849-7852; (c) Xu, Z.; Kim, S.; Lee, K. H.; Yoon, J. A highly selective fluorescent chemosensor for dihydrogen phosphate via unique excimer formation and PET mechanism. Tetrahedron Lett.2007,48,3797-3800.
    [5](a) Han, M. S.; Kim, D. H. Naked-eye detection of phosphate ions in water at physiological pH:A remarkably selective and easy-to-assemble colorimetric phosphate-sensing probe. Angew. Chem. Int. Ed,2002,41,3809-3811; (b) Fabbrizzi, L.; Marcotte, N.; Stomeo, F.; Tagnietti, A. Pyrrophosphate detection in water by fluorescent competition assays:inducing selectivivity through the choice of the indicator. Angew. Chem. Int. Ed.2002,41,3811-3814.
    [6](a) Du, J.; Wang, X.; Jia, M.; Li, T.; Mao, J.; Guo, Z. Recognition of phosphate anions in aqueous solution by a dinuclear Zinc(Ⅱ) complex of a cyclen-tethered terpyridine ligand. Inorg. Chem. Commun.,2008,11,999-1002; (b) Ojida, A.; Mito-oka, Y.; Sada, K.; Hamachi, I. Molecular recognition and fluorescence sensing of monophosphorylated peptides in aqueous solution by bis(zinc(Ⅱ)-dipicolylamine)-based artificial receptors J. Am. Chem. Soc.2004,126, 2454-2463.
    [7]O'Neil, E. J.; Smith, B. D. Anion recognition using dimetallic coordination complexes. Coord. Chem. Rev.2006,250,3068-3080.
    [8](a) Shao, N.; Jin, J.; Wang, G.; Zhang, Y.; Yang, R. Yuan, J. Europium(Ⅲ) complex-based luminescent sensing probes for multi-phosphate anions:modulating selectivity by ligand choicew. Chem. Commun.2008,1127-1129; (b) Ojida, A.; Takashima, I.; Kohira, T.; Nonaka, H.; Hamachi, I. Turn-on fluorescence sensing of Nucleoside polyphosphates using a xanthene-base Zn(Ⅱ) complex chemosensor. J. Am. Chem. Soc.,2008,130,12095-12101.
    [9]Lee, H. N.; Swamy, K. M. K.; Kim, S. K.; Kwon, J. Y. Simple but effective way to sense pyrophosphate and inorganic phosphate by fluorescence changes. Org. Lett. 2007,9,243-246.
    [10]Jose, D. A.; Mishra, S.; Ghosh, A.; Shrivastav, A.; Mishra, S. K.; Das, A. Colorimetric sensor for ATP in aqueous solution. Org. Lett.2007,9,1979-1982.
    [11](a) Shiraishi, Y.; Kohno, Y.; Hirai, T. Bis-azamacrocyclic anthracene as a fluorescence chemosensor for cation in aqueous solution. J. Phys. Chem. B,2005,109, 19139-19147; (b) Ranyuk, E.; Douaihy, C. M.; Bessmertnykh, A.; Denat, F.; Averin, A.; Beletskaya, I.; Guilard, R. Diaminoanthraquinone-linked polyazamacrocycles: efficient and simple colorimetric sensor for lead ion in aqueous solution. Org. Lett. 2009,11,987-990.
    [12]Shiraishi, Y.; Kohno, Y.; Hirai, T. Fluorometric detection of pH and metal cations by 1,4,7,10-tetraazacyclododecane (cyclen) bearing two anthrylmethyl groups. Ind. Eng. Chem. Res.,2005,44,847-851.
    [13]Kubo, K.; Mori, A. PET fluoroionophores for Zn2+ and Cu2+:complexation and fluorescence behavior of anthracene derivatives having diethylamine, N-methylpiperazine and N, N-bis (2-picolyl) amine units. J. Mater. Chem.,2005,15, 2902-2907.
    [14]Lakowics, J.R. Principles of Fluorescence Spectrometry,2nd ed.; Kluwer Academic/Publishers:New York,1999, P237.
    [15]Khatua, S.; Choi, S. H.; Lee, J.; Kim, K.; Do, Y.; Churchill, D. G. Aqueous fluorometric and colorimetric sensing of phosphate ions by a fluorescent dinuclear zinic complex. Inorg. Chem.,2009,48,2993-2999.
    [16]Aoki, S.; Kawatani, H.; Goto, T.; Kimura, E.; Shiro, M. A double-functionalized cyclen with carbamoyl and dansyl groups (cyclen=1,4,7,10-tetraazacyclododecane): a selective fluorescent probe for Y3+ and La3+. J. Am. Chem. Soc.,2001,123, 1123-1132.
    [17]Bruce, J. I.; Dickins, R. S.; Govenlock, L. J.; Gunnlaugsson, T.; Lopinski, S.; Lowe, M. P.; Parker, D.; Peacock, R. D.; Perry, J. J. B.; Aime, S.; Botta, M. The selectivity of reversible oxy-anion binding in aqueous solution at a chiral Europium and Terbium center:signaling of carbonate chelation by changes in the form and circular polarization of luminescence emission. J. Am. Chem. Soc.,2000,122, 9674-9684.
    [18]Lee, H. N.; Xu, Z.; Kim, S. K.; Swarmy, K. M. K.; Kim, Y.; Kim, S. J.; Yoon, J. Pyrophosphate-selective fluorescent chemosensor at physiological pH:formation of a unique excimer upon addition of pyrophosphate. J. Am. Chem. Soc.,2007,129, 3828-3829.
    [19]Woods, M.; Kiefer, G. E.; Bott, S.; Castillo-Muzquiz, A.; Eshelbrenner, C.; Mechaudet, L.; Mcmillian, K.; Mudigunda, S. D. K.; Ogrin, D.; Tircso, G.; Zhang, S.; Zhao, P.; Sherry, A. D. Synthesis, relaxometric and photophysical property of a new pH responsive MRI contrast agent:the effect of other ligating groups on dissociation of a p-nitrophenolic pendant arm. J. Am. Chem. Soc.,2004,126,9248-9256.
    [20]Sclafani, J. A.; Maranto, M. T.; Sisk, T. M.; Arman, S. A. Terminal akylation of linear polyamine. J. Org. Chem.1996,61,3221-3222.
    [21]Kohno, Y.; Shiraishi, Y.; Hirai, T. Effects of proton and metal cations on the fluorescence properties of anthracene bearing macrocyclic polyamine receptors. Jouranl of photochemistry and photobiology A:Chemistry,2008,195,267-276.
    [1](a) Schmidtchen, F. P.; Berger, M. Artificial organic host molecules for anions. Chem. Rev.,1997,97,1609-1646; (b) Gunnaugsson, T.; Glynn, M.; Tocci, G. M.; Kruger, P. E.; Pfeffer, F. M. Anion recognition and sensing in organic and aqueous media using luminescent and colorimetric sensors. Coord. Chem. Rev.2006,250, 3094-3117; (c) Gale, P. A. Pyrrolic and polypyrrolic anion binding agents. Coord. Chem. Rev.,2003,240,17-55; (d) Fabbrizzi, L.; Licchelli, M.; Taglitti, A. The design of fluorescent sensors for anions:taking profit from the metal-ligand interaction and exploiting two distinct paradigms. Dalton Trans.,2003,3471-3479.
    [2](a) Pu, L. Fluorescence of organic molecules in chiral recognition. Chem. Rev., 2004,104,1687-1716; (b) Kubo, Y.; Hirota, N.; Maeda, S.; Kokita, S. Naked-eye detectable chiral recognition using a chromogenic receptor. Analytical Science,1998, 14,183-189; (c) Liu, S. Y.; Fang, L.; He, Y. B.; Chan, W. H.; Yeung, K. T.; Cheng, Y. K.; Yang, R. H. Cholic-acid-based fluorescent sensor for dicarboxylates and acidic amino acids in aqueous solution. Org. Lett.2005,7,5825-5828; (d) Arimori, S.; Bell, M. L.; Oh, C. S.; James, T. D. A modular fluorescence intramolecular energy transfer saccharide sensor. Org. Lett.2002,4,4249.
    [3](a) Kitamura, M.; Shabbir, S. H.; Anslyn, E. V. Guidelines for pattern recognition using differential receptors and indicator displacement assay. J. Org. Chem.,2009,74, 4479-4489; (b) Mccleskey, S.C.; Grinffin, M. J.; Shneider, S. E.; Mcdevitt, J. T.; Anslyn, E. V. Differential receptors create patterns diagnostic for ATP and GTP. J. Am. Chem. Soc.,2003,125,1114-1115; (c) Leung, D.; Folmer-Andersen, J. F.; Lynch, V. M.; Anslyn, E. V. Using enantioselective indicator displacement assays to determine enantiomeric excess of a-amino acids. J. Am. Chem. Soc.,2008,130,12318-12327.
    [4]Fabbrizzi, L.; Marcotte, N.; Stomeo, F.; Tagnietti, A. Pyrrophosphate detection in water by fluorescent competition assays:inducing selectivivity through the choice of the indicator. Angew. Chem. Int. Ed.2002,41,3811-3814.
    [5](a) Folmer-Andersen, J. F.; Lynch, V. M.; Anslyn, E. V. Colorimetric enantiodiscrimination of a-amino acids in protic media.J. Am. Chem. Soc.,2005,127, 7986-7987; (b) Lee, J. H.; Park, J.; Lah, M. S.; Chin, J.; Hong, J. High-affinity pyrophosphate receptor by asynergistic effect between metal coordination and hydrogen bonding in water. Org. Lett.2007,9,3729-3731.
    [6]Zhang, T.; Anslyn, E. V. A colorimetric Boronic acid based sensing assemble for carboxy and phosphor sugars. Org. Lett.2006,8,1649-1652.
    [7]Zhang, T.; Anslyn, E. V. Using an indicator displacement assay to monitor glucose oxidase activity in blood serum. Org. Lett.2007,9,1627-1629.
    [8](a) Lee, D. H.; Kim, S. Y.; Hong, J. A fluorescent pyrophosphate sensor with high selectivity over ATP in water. Angew. Chem. Int. Ed.2004,43,4777-4780; (b) Zyryanov, G. V.; Palacios, M. A.; Anzenbacher, P. A. Rational design of a fluorescence-turn-on sensor array for phosphates in blood serum. Angew. Chem. Int. Ed.2007,46,7849-7852; (c) Xu, Z.; Kim, S.; Lee, K. H.; Yoon, J. A highly selective fluorescent chemosensor for dihydrogen phosphate via unique excimer formation and PET mechanism. Tetrahedron Lett.2007,48,3797-3800.
    [9](a) Ojida, A.; Mito-oka, Y.; Sada, K.; Hamachi, I. Molecular recognition and fluorescence sensing of monophosphorylated peptides in aqueous solution by bis(zinc(II)-dipicolylamine)-based artificial receptors J. Am. Chem. Soc.2004,126, 2454-2463. (b) Ojida, A.; Takashima, I.; Kohira, T.; Nonaka, H.; Hamachi, I. Turn-on fluorescence sensing of Nucleoside polyphosphates using a xanthene-base Zn(Ⅱ) complex chemosensor. J. Am. Chem. Soc.,2008,130,12095-12101; (c) Lee, H. N.; Xu, Z.; Kim, S. K.; Swamy, K. M. K.; Kim, Y; Kim, S.; Yoon, J. Pyrophosphate-selective fluorescent chemosensor at physiological pH:formation of unique excimer upon addition of pyrophosphate. J. Am. Chem. Soc.,2007,129, 3828-3829; (d) Nonaka, A.; Horie, S.; James, T. D.; Kubo, Y Pyrophosphate-induced reorganization of a reporter-receptor assembly via boronate esterification; a new stratagem for the turn-on fluorescent detection of multi-phosphates in aqueous solution. Org. Biomol. Chem.,2008,6,3621-3625.
    [10]Sakamoto, T.; Ojida, A.; Hamachi, I. Molecule recognition, fluorescence sensing, and biological assay of phosphate anion derivatives using artificial Zn(Ⅱ)-Dpa complexes. Chem. Cummun.,2009,141-152.
    [11]Han, M. S.; Kim, D. H. Naked-eye detection of phosphate ions in water at physiological pH:A remarkably selective and easy-to-assemble colorimetric phosphate-sensing probe. Angew. Chem. Int. Ed,2002,41,3809-3811.
    [12]Khatua, S.; Choi, S. H.; Lee, J.; Kim, K.; Do, Y.; Churchill, D. G. Aqueous fluorometric and colorimetric sensing of phosphate ions by a fluorescent dinuclear zinic complex. Inorg. Chem.,2009,48,2993-2999.
    [1](a) Ziessel, R.; Charbonniere, L. J. Lanthanide probes for luminescence microscopy and anion sensing. Journal of Alloys and Compounds,2004,374,283-288; (b) Atkinson, P.; Bretonniere, Y.; Parker, D. Chemoselective signaling of selected phosphor-anions using lanthanide luminescence. Chem. Commun.,2004,438-439; (c) Gunnlaugsson, T.; Leonard, J. P. Responsive lanthanide luminescence cyclen complex: from switching/sensing to supramolecular architectures. Chem. Commun.,2005, 3114-3131; (d) Pope, S. J. A.; Laye, R. H. Design, synthesis and photophysical studies of an emissive, europium based, sensor for zinc. Dalton, Trans.,2006,3108-3113; (e) Parker, D.; Dickins, R. S.; Puschmann, H.; Crossland, C.; Howard, J. A. K., Chem. Rev.,2002,102,1977-2010; (f) Tsukube, H.; Shinoda, S. Lanthanide complexes in molecular recognition and chirality sensing of biological substrate. Chem. Rev.,2002, 102,2389-2403.
    [2](a) Harte, A. J.; Jensen, P.; Plush, S. E.; Kruger, P. E.; Gunnlaugsson, T. A diluclear lanthanide complex for the recognition of bis(carboxylates):formation of a Terbium (Ⅲ) luminescent self-assembly ternary complex in aqueous solution. Inorg. Chem.,2006,45,9465-9474; (b) Gunnlaugsson, T.; Harte, A. J.; Jensen, P.; Nieuwenhuyzen, M. Delayed lanthanide luminescence sensing of aromatic carboxylates using heptadentate triamide Tb (Ⅲ) cyclen complexes:the recognition of salicylic acid in water. Chem. Commun.,2002,2134-2135; (c) Bruce, J. I.; Dickins, R. S.; Govenlock, L. J.; Gunnlaugsson, T.; Lopinski, S.; Lowe, M. P.; Parker, D.; Peacock, R. D.; Perry, J. J. B.; Aime, S.; Botta, M. The selectivity of reversible oxy-anion binding in aqueous solution at a chiral Europium and Terbium center: signaling of carbonate chelation by changes in the form and circular polarization of luminescence emission. J. Am. Chem. Soc.,2000,122,9674-9684; (d) Bonnet, C. S.; Devocelle, M.; Gunnlaugsson, T. Structure studies in aqueous solution of new dinuclear lanthanide luminescent peptide conjugates. Chem. Commun.,2008, 4552-4554.
    [3](a) Leonard, J. P.; Gunnlaugsson, T.; Luminescent Eu(Ⅲ) and Tb (Ⅲ) complexes: Developing lanthanide luminescent-based devices. Journal of Fluorescence,2005,15, 585-595. (b) Santos, C. M. G.; Harte, A. J.; Quinn, S. J.; Gunnlaugsson, T. Recent developments in the field of supramolecular lanthanide luminescent sensors and self-assembly. Coord. Chem. Rev.,2008,252,2512-2527.
    [4]Lin, Z.; Wu, M.; Wolfbeis, O. S. Time-resolved fluorescent chirality sensing and imaging of malate in aqueous solution. Chirality,2005,17,464-469.
    [5](a) Senechal-David, K.; Jensen, P.; Plush, S. E.; Gunnlaugsson, T. Supramolecular self-assembly of mixed f-d metal ion conjunction. Org. Lett.,2006,8,2727-2730; (b) Leonard, J. P.; Santos, C. M. G.; Plush, S. E.; McCabe, T.; Gunnlaugsson, T. pH-driven self-assembly of a ternary lanthanide luminescence complex:the sensing of anions using a β-diketonate Eu(Ⅲ) displacement assay. Chem. Commun.,2007, 129-131.
    [7]Allendorf, M. D.; Bauer, C. A.; Bhakta, R. K.; Houk, R. J. T. Luminiscence metal-organic frameworks. Chem. Soc. Rev.,2009,38,1330-1352.
    [8]Masaki, M. E.; Paul, D.; Nakamura, R.; Kataoka, Y.; Shinoda, S.; Tsukube, H. Chiral tripode approach toward multiple anion sensing with lanthanide complex. Tetrahedron,2009,65,2525-2530.
    [9]Yamada, T.; Shinoda, S.; Sugimoto, H.; Uenish, J.; Tsukube, H. Luminescence lanthanide complexes with sterocontrolled tris-(2-pyridylmetheyl) amine ligands: chirality effects on lanthanide complexations and luminescence prosperities. Inorg. Chem.,2003,42,7932-7937.
    [10]Gunnlaugsson, T.; Floriana, S. Recent advances in the formation of luminescence lanthanide architectures and self-assemblies from structurally defined ligands. Org. Biomol. Chem.,2007,5,1999-2009.
    [11]Hanaoka, K.; Kikuchi, K.; Kojima, H.; Urano, Y.; Nagano, T. Development of a zinc ion-selective luminescence lanthanide chemosensor for biological applications. J. Am. Chem. Soc.,2004,126,12470-12476.
    [12](a) Yamada, T.; Shinoda, S.; Tsukube, H. Anion sensing with luminance lanthanide complexes of tris(2-pyridylmethyl)amines:pronounce effects of lanthanide center and ligand chirality on anion selectivity and sensitivity. Chem. Commun.,2002, 1218-1219; (b) Kataoka, Y.; Paul, D.; Miyake, H.; Shinoda, S.; Tsukube, H. A Cl-anion-responsive luminescent Eu3+ complex with a chiral tripod; ligand substituent effects on ternary complex stoichiometry and anion sensing selectivity. Dalton, Trans., 2007,2784-2791; (c) Kataoka, Y.; Paul, D.; Miyake, H.; Yaita, T.; Miyoshi, E.; Mori, H.; Tsukamoto, S.; Tatevaki, H.; Shinoda, S.; Tsukube, H. Experimental and theoretical approaches toward anion-responsive tripod-lanthanide complexes: mixed-donor ligand effects on lanthanide complexation and luminescence sensing profiles. Chem. Eur. J.,2008,14,5258-5266.
    [13]Massue, J.; Quinn, S. J.; Gunnlaugsson, T. Lanthanide luminescent displacement assays:the sensing of phosphate anion using Eu (Ⅲ)-cyclen-conjugated gold nanooarticles in aqueous solution. J. Am. Chem. Soc.,2008,130,6900-6901.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700