热湿地区温湿度独立调节空调系统运行研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济技术的进步,能源和环境问题的日益突出,以及人们对室内环境要求的不断提高,温湿度独立调节空调系统将得到越来越多的关注和应用。研究表明该空调系统具有多方面优势,如室内温度和湿度可单独控制,热湿比可处理的范围较大,处理显热的高温冷源效率较高等。但实际的应用过程中,运行效果如何,会出现哪些主要问题,如何解决,许多设计者和研究人员了解得不够深入、全面。本文在充分调研的基础上,分析南方热湿地区温湿度独立调节空调系统运行过程中出现的主要问题,利用实测数据分析其运行效果,并利用实验方法研究末端装置结露问题,进而提出结露监控系统的设计方法,最后分析该空调系统运行调节方法。
     通过对多个案例现场调研发现,温湿度独立调节空调系统在热湿地区的运行过程中,无论是干式风机盘管还是辐射供冷末端均会产生结露现象,而且空调系统运行调节方法不合理。
     本文通过对深圳建科大楼温湿度独立调节空调系统2010年全年用电量的分析,得出该空调系统具有一定的节能优势。利用实测空调系统各机组设备每天用电量,说明该空调系统运行能耗特点,其中除湿机组用电量占整个空调系统电耗的50%以上,其性能对空调系统电耗水平的影响最大,其次是高温冷水机组。室内温、湿度和CO_2实测数据表明,该空调系统运行期间,室内温湿度能维持较好的水平,且与常规空调系统相比,室内CO_2浓度水平较低,有利于人员的健康。
     以毛细管冷辐射吊顶空调系统为研究对象,分析多种情况下,毛细管吊顶表面结露问题。分析表明:室外热湿空气仅通过门窗缝隙渗透不会导致毛细管表面结露,但会产生结露危险;当开启门窗时,室外热湿空气侵入室内,会导致毛细管表面结露,甚至形成液滴,但毛细管表面开始有凝结水产生至形成液滴需要一定的时间,若门窗及时关闭,毛细管表面形成的水珠等经过一段时间,会蒸发消失;系统正常工作时,室内空气露点温度的分布不均匀,局部毛细管有结露危险。
     为了防止毛细管冷辐射吊顶结露,应安装防结露监控系统,且运行期间应提前开启除湿机组约1个小时,使室内空气含湿量和露点温度降低到一定水平。由于吊顶楼板具有一定的蓄冷能力,空调系统提前关闭1个小时,室内空气温湿度水平仍能满足热舒适度要求。
     本论文研究的内容为温湿度独立调节空调系统的设计、运行提供实际参考,为该空调系统在热湿地区的应用提供依据。
With the development of economic and technological, energy and environmental issues become increasingly prominent. With the requirements of indoor environment improvement, temperature and humidity independent control (THIC) air-conditioning system will be widely used. Studies have shown that THIC air-conditioning system has many advantages, such as temperature and humidity of indoor air can be controlled separately, heat and moisture angle scale can be handled over a large range, high temperature cold source is more efficient. Many designers and researchers is not comprehensive understanding about the actual application process, the main running issues and the solution. In this paper, based on the full investigation and the measured data, the running main problem and operating results of THIC air-conditioning system in hot-humid areas will be discussed. Use experimental methods research condensation of terminal devices, and then propose the condensation control system design method, finally analysis the system running adjustment method.
     Through the multiple-site case study I found that, whether it is dry fan coil or radiant cooling at the end will produce condensation during THIC air conditioning system operating in hot-humid area. The operation adjustment method is unreasonable.
     The annual electricity consumption of THIC air-conditioning in an office building independent shows that THIC air-conditioning system has energy-saving advantages.
     From measured energy consumption every day of each unit of the THIC air-conditioning, energy consumption characteristics of the system are found. Dehumidification unit accounts for more than fifty percent of electricity consumption of the entire air conditioning system and the performance of dehumidification unit has the greatest effects on the system, followed by high-temperature chillers. The measured data show that during THIC air-conditioning system operating temperature and humidity of indoor air maintain a good level and low concentration of carbon dioxide is beneficial to human health compared with conventional air conditioning system.
     Condensation on the surface of the capillary tube being discussed in a variety of conditions based on the radiant cooling ceiling air-conditioning system. Analysis showed that outdoor air infiltration flux through cracks will not lead to condensation on capillary tube surface, but condensation risk. When the doors and windows open, outdoor air intrusion can cause condensate even form droplets. It takes some time from condensed water to droplets on the surface of capillary tube, so if the doors and windows closed on time, after a period of time the condensed water or water film will disappear automatically by evaporation. The distribution of indoor air dew-point temperature is uneven and part of capillary surface has condensation risk when the air-conditioning system is working.
     To prevent condensation on the capillary tube surface, anti-condensation control system should be installed. Dehumidification unit should be started in advance about an hour to reduce the dew-point temperature to a certain level. As the ceiling floor has cool storage capacity, if the air-conditioning system shut down earlier for an hour the levels of indoor air temperature and humidity still meet the thermal comfort requirements.
     The content of the thesis provides practical information for the design and operation of THIC air-conditioning system and provides the basis for application in hot-humid area.
引文
[1]赵荣义,范存养,薛殿华等.空气调节[M] .北京:中国建筑工业出版社, 2000.
    [2]刘晓华,江亿.温湿度独立控制空调系统[M].北京:中国建筑工业出版社, 2006.
    [3]清华大学建筑节能研究中心.温湿度独立控制的空调系统在中国的应用.
    [4]江亿,李震,陈晓阳等.溶液式空调及其应用[J].暖通空调, 2004.
    [5]刘晓华,江亿,谢晓云等.温湿度独立控制空调系统及性能分析[J].建设科技,2008:21-23.
    [6]刘晓华,易晓琴,谢晓云等.基于溶液除湿方式的温湿度独立控制空调系统性能分析[J].中国科技论文在线, 2008,7: 469-475.
    [7]茅以曼.基于溶液除湿的温湿度独立控制空调系统研究[D].南京:南京理工大学, 2010.
    [8]刘晓华,易晓琴,江亿.两种常用液体吸湿剂传质性能的比较[J].化工学报, 2009. 60.
    [9]刘瑞,刘蔚巍.转轮除湿复合式空调系统能耗研究[J].流体机械, 2005. 33: 4.
    [10]毕峰.对冷冻除湿法与转轮除湿法方案的比较[J].洁净与空调技术, 2001. 8: 9-11.
    [11] CUI Guo-gen, D.G., YANG Xiao-xi, YANG Jian-ping. First and second law analysis of a disiccant wheel[J]. Journal of Shaanxi University of Science & Technology, 2009. 27.
    [12]熊珍琴,代彦军,王如竹.两级双溶液除湿/再生模块实验研究.工程热物理学报, 2009. 30:1558-1560.
    [13]陈晓阳,刘晓华,李震等.溶液除湿/再生设备热质交换过程解析解法及其应用[J].太阳能学报, 2004. 25: 509-514.
    [14]刘晓华,张岩,张伟荣等.溶液除湿过程热质交换规律分析[J].暖通空调, 2005. 35: 110-114.
    [15]熊珍琴,代彦军,王如竹等.溶液除湿冷却系统的火用分析[J].化工学报, 2008. 59: 37-41.
    [16] Lof G.O.G. Cooling with solar energy[C]. in 1955 congress on solar energy. Tuscon, Ariz, 1955.
    [17] Robision, H.I. Liquid desiccant solar heat pump for developing nation[C]. in International symposium workshop on solar energy. 1978: Cario, Egypt.
    [18] r, L. Packed bed reconcentration of lithum chloride solution in an open cycle absorption[C]. in Cooling. 1984: Fort Collins.
    [19] V, K.S. Mass transfer in packed bed reconcentration of lithum bromide for open cycle absorption. in Cooling. 1984: Fort Collins.
    [20] S. Y. Ahmad, P.G. A.A.I-Farayedhi, Analysis of liquid desiccants[J]. Solar Energy, 1998. 62:11-19.
    [21] Gabruk,L. The effect of absorber design on the performance of a liquid desiccant air conditioner. ASHRAE Transactions, 1992. 1.
    [22] Kessling,W., E. Laevemann, C. Kapfhammer. Energy storge for desiccant cooling sysems component development. Solar Energy, 1998. 64(4-6): 209-221.
    [23] Gommed,K. Experimental investigation of a liquid desiccant system for solar cooling and dehumidification. Solar Energy, 2007. 81(1): 131-138.
    [24] Treybal, R.E., Adiabatic gas absorption and stripping in packed towers. Industrial and Engineering Chemistry, 1969: 61-69.
    [25] A. L Zografos, C.P., A liquid desiccant dehumidifier performance model. Transaction of ASHRAE, 1991:650-656.
    [26] H. L. Goff, A.R. Modeling the coupled heat and mass transfer in a falling film[J]. Heat Transfer, 1986: 1971-1976.
    [27] Yadav Y K, K.S.C. Psychometric techuono-ecnomics assessment and parametric study of vapor-compression and solid/liquid hybrid air-conditioning sysyem[J]. Heat Recovery Systems and CHP, 1991. 6:563-572.
    [28] SandeepNayak, D.M., Reinhard Radermacher, Experimental and simulation results of integrated engine generator-liquid desiccant system[J]. CHP system, 2005. 4: 234-242.
    [29] Khalid Ahmed C S, G.p., Simulation of a hybrid liquid desiccant based air-conditioning system[J]. Applied Thermal Engineering, 1997. 2:125-134.
    [30] Katejanekarn,T., S. Chirarattananon, S. Kumar, An experimental study of a solar-regenerated liquid desiccant ventilation pre-conditioning system[J]. Solar Energy, 2009. 83(6): p. 920-933.
    [31]方承超.太阳能液体除湿空调系统模型的建立与分析[J].太阳能学报, 1997. 18: 128-133.
    [32]杨英,李惟毅,方承超,齐锡龄.液体除湿性能的实验研究[J].太阳能学报, 2000. 21: 155-159.
    [33]张小松,施明恒,曹毅然.蓄能型溶液除湿蒸发冷却空调系统中除湿器研究[J].东南大学学报(自然科学版), 2003. 33: 72-75.
    [34]孙健,赵云.液体除湿空调再生性能的实验研究[J].工程热物理学报, 2003. 24: 867-869.
    [35]路则锋.逆流填料式液体除湿系统传热传质过程的分析解法及应用[J].太阳能学报, 2000. 21: 139-147.
    [36]李震,陈晓阳,刘晓华.溶液除湿空调及热湿独立处理空调系统[J].暖通空调, 2003. 33: 55-57.
    [37]李震,江亿,陈晓阳.带有溶液热回收器的新风空调机[J].暖通空调, 2003. 33: 26-30.
    [38]刘拴强,江亿.溶液除湿空调系统模拟方法及应用[J].中国勘察设计, 2006: 49-52.
    [39]刘拴强,江亿,刘晓华等.热泵驱动的双级溶液调湿新风机组原理及性能测试[J].暖通空调, 2008. 38: 54-60.
    [40]刘晓华,李震,江亿.溶液全热回收装置及其优化分析[J].太阳能学报, 2007. 28: 762-769.
    [41] Cao Rongquan, Z.X., Yin Yonggao. Performance analysis on a novel water chiller using liquid desiccant. Journal of Southeast University(English Edition), 2010. 126.
    [42] Liang Caihua, Z.X., Zhu Xia, Li Xiuwei. Performance analysis of heat pump based on a new solar air-source heat pump heating system. Journal of Southeast University(English Edition), 2010. 126: 227-231.
    [43]徐征,何海亮.温湿度独立控制空调系统节能性实例分析[J].暖通空调, 2007. 37: 129-132.
    [44]郑洁,崔文盈.利用冷凝热回收的除湿液再生装置研究[J].暖通空调, 2009. 39: 145-148.
    [45]朱鸿志.独立新风与吊顶冷辐射板相结合的新型空调系统研究[D].南京:南京理工大学,2009.
    [46] Mumma, S.A., Chilled ceilings in paralled with dedicated outdoor air systems: Addressing the concerns of condensation, capacity and cost. ASHRAE Transactions, 2002. 108: 12.
    [47] Hao, X., et al., A combined system of chilled ceiling, displacement ventilation and desiccant dehumidification. Building and Environment, 2007. 42(9): 3298-3308.
    [48]杨芳.金属辐射冷却顶板的研究及其应用[D].长沙:湖南大学, 2005.
    [49]马景骏.冷却吊顶系统的热舒适分析[J].哈尔滨工程大学学报, 2001. 22: 27-31.
    [50]孙丽颖,马景骏.冷却吊顶空调系统在我国应用的预测分析[J].应用科技, 2001. 28.
    [51]肖益民,付祥钊.冷却顶板空调系统中用新风承担湿负荷的分析[J].暖通空调, 2002. 32: 15-17.
    [52]田喆,涂光备.冷却顶板系统应用中的一些问题[J].暖通空调, 2004. 34: 73-76.
    [53]王晋生,董涛,王庆莉等.置换通风加冷却顶板系统避免结露和下降气流的方法[J].暖通空调, 2009. 39:27-32.
    [54]朱能,马九贤.冷天花冷却顶板热工性能分析[J].制冷学报, 2000: 19-28.
    [55]权硕,殷勇高.基于溶液除湿的辐射空调系统的初步研究[J].制冷空调与电力机械, 2006: 10-13.
    [56]马玉奇,李永安,薛红香等.海御国际公寓辐射顶板系统设计[J].制冷与空调(四川), 2008. 22: 98-100.
    [57]张燕.太阳能液体除湿处理热湿地区冷却顶板新风湿负荷[J].建筑科学, 2006. 22:70-74.
    [58]段凯,刘俊跃,田智华.辐射吊顶+热泵式溶液除湿系统在夏热冬暖地区的应用[J].制冷与空调(四川), 2008. 22: 58-61.
    [59]孙丽颖,马景骏.冷却吊顶空调系统在我国应用的预测分析[J].哈尔滨商业大学学报(自然科学版), 2002. 18: 678-681.
    [60]深圳市建筑科学研究院有限公司.溶液调湿型温湿度独立控制系统产品市场调研[R].深圳,2009.
    [61]田旭东,杜立卫,宋有强等.温湿度独立控制系统用干式显热风机盘管的研究[J].暖通空调, 2011. 41: 28-32.
    [62]国家质量监督检验检疫总局.室内空气质量标准[S].北京,中国标准出版社, 2002.
    [63]刘拴强,江亿.温湿度独立控制空调系统中独立新风系统的研究(2):送风参数的确定[J].暖通空调, 2010. 40: 85-91.
    [64]刘拴强,江亿.温湿度独立控制空调系统中独立新风系统的研究(1):湿负荷计算[J].暖通空调, 2010. 40: 80-84.
    [65]王厚华.传热学[M].重庆:重庆大学出版社, 2002.
    [66]过增元,姬徐.陈梁.空间飞行器内结露的理论分析及模拟实验[J].航天医学与医学工程, 2000. 13: 355-359.
    [67]张思青,纳学梅,王煜等.水电站供排水管道结露机理及处理技术[J]. 2003. 10: 48-50.
    [68]乐逢宁,马兰,张学聪.使用红外热像仪应注意的问题[J].计测技术, 2010. 30:100-101.
    [69]李艳萍.自动气象站数据处理中的露点温度计算方法探讨[J].广西质量监督导报, 2009.
    [70]段国权.门窗缝隙内渗透空气流动特性和渗风特性系数的研究及应用[D].长沙:中南大学, 2007.
    [71]金梧凤,金光禹.毛细管网系统供冷性能的实验研究[J].暖通空调, 2010. 40: 102-106.
    [72]中华人民共和国建设部.采暖通风与空气调节设计规范[S].北京:中国建筑工业出版社, 2004.
    [73]左远志,丁静.转轮除湿与单元式空调机相结合的空气处理系统[J].建筑科学, 2008. 24: 81-84.
    [74]万建武.干工况风机盘管水系统探讨[J].重庆建筑大学学报,2001.23(4):63-67.
    [75]万建武,钟朝安.干工况风机盘管加新风系统的空调过程设计[J].建筑热能通风空调,2001.3:59-63.
    [76]殷平. "干盘管"误解剖析[J].暖通空调,2008.38(7):44-56.
    [77]殷平.评《对<"干盘管"误解剖析>一文中4个问题的探讨》[J].暖通空调,2009.39(7):59-67.
    [78]陈华,张瑜,李慧玲.香港地区应用干式风机盘管系统节能和室内空气品质分析[J].建筑科学,2011.27(4):60-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700