长江流域地区小型除湿系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们对居住环境要求的提高以及节能与环境保护意识的增强,建筑、能源与环境三者之间的矛盾也愈来愈激烈。目前,我国建筑已成为国民经济中能源消费增长最快的部门,建筑能耗占全国总能耗的比例将快速上升到社会总能耗的1/3左右,其中主要是采暖空调能耗,而除湿能耗又占到空调能耗的20%~50%。结合到我国长江流域地区,由于特殊的地理条件,加上经济与城镇化的高速发展,建筑热环境与建筑节能之间的矛盾日益凸显。这一地区在我国建筑气候区划上为夏热冬冷地区,主要表现为夏季潮热、冬季阴冷,且长年湿度很高。除湿在长江流域地区有着极为重要的意义。区别于其他除湿方式,转轮除湿与液体除湿属于吸湿剂吸附(收)除湿方式,具有可再生的特点。转轮除湿器主要设备为除湿转轮和再生加热器,除湿器80%的能量消耗在除湿剂再生上;液体除湿空调利用低品位热源,有利于节约电资源,保护环境,提高室内空气品质,亦可实现除菌和蓄能,作为一种崭新的空调技术,各国已加强研究力度,以期作为传统空调方式的替代方案之一。
     温湿度独立控制空调系统是降低能耗,改善室内环境与能源结构匹配的有效途径。本文从这一观点出发,首先对长江流域地区气候特点进行总结并对这一区域九大城市室内外湿负荷进行分析,确定了冬夏两季室内外热环境设计指标。分别基于室外设计计算参数和基于典型年逐时气象参数进行了数值计算与模拟。结果分析中得到了长江流域地区九大城市的湿负荷特点:冬季的平均加湿量为696g/h,夏季的平均除湿量为3.8kg/h,其中夏季室外新风湿负荷占到总湿负荷的85%~88%。根据不同的建筑面积,得出了湿负荷的回归方程。本文还针对不同设计温度和相对湿度对湿负荷的影响进行了分析,分析表明,室内设定温度每改变1℃,湿负荷改变125~194g/h;设定相对湿度每改变10%,湿负荷则改变450~750g/h。对基于两种指标的计算进行比较,发现两者的湿负荷计算值误差在15%内,具有一致性。
     温湿度独立控制空调方式的设备区别于传统空调方式。本文从冷热源和系统末端对温湿独控进行了总结。系统不仅可以对天然冷源进行利用,也可提高制冷机效率,减少能耗;末端的控制方式分为温度控制与湿度控制,将各类控制方式针对不同工况进行搭配,即可构成温湿度独控空调系统。本文根据这一理念提出了一项实用新型设计,并对其可行性进行验证。这一技术在长江流域地区具有广阔的发展前景。
     本文还对小型液体除湿空调系统进行了实验研究。首先进行了无水CaCl2潮解性能实验。实验表明,CaCl2具有强吸湿性,在48h内受空气含湿量影响显著。另外,还搭建了一个小型液体除湿空调系统实验台,进行CaCl2除湿/再生性能实验研究,研究发现除湿与再生的三个重要因素为溶解温度、溶液浓度和空气进口含湿量。在实验工况下,CaCl2溶液的除湿量为3.38g/kg,再生性能优于除湿性能,约为除湿的1.3~2.9倍。对实验进行总结后,认为CaCl2作为除湿剂进行液体除湿还有很大改进空间和推广潜力。
With the rising requirement for living conditions and intensification on energy saving or environmental protection by public, the conflicts among architecture, energy and environment become more and more drastic. Nowadays, architecture has already ranked the fastest increasing section in energy consumption. The portion of energy consumption by construction will rapidly increase to about 1/3 of total, at the same time, heating and air-conditioning consumption played the most important role in this portion. And dehumidifying energy consumption occupies 20~50% of the air-condition energy consumption. As to Yangtze River valley, the conflict between thermal environment and energy consumption of building is growing day after day, owning to its special geographical conditions and rapid development in economy and urbanization. Also, this zone is called hot in summer and cold in winter zone, according to climate subarea. It’s hot and damp in summer, cold and bleak in winter, with high humidity all over the whole year round. So dehumidify is significance in this area. Differing from other dehumidifying methods, rotary and liquid dehumidifications belong to absorption (sorption) dehumidifying method, as they have an advantage of regeneration. Rotary dehumidifier is composed of dehumidifying wheel and regenerative heater. 80% energy consumption is used for regeneration of dehumidizer. Liquid desiccant air conditioning is able to use low-grade heat; and that helps to saving energy, protecting environment, and improving indoor air quality, it has abilities of removing germs and energy accumulation as well. Because it’s a brand new air conditioning technology, many countries have already plunged into its researching and designing.
     Humiture independent controlling AC system is regarded as an efficient way which benefits reducing energy consumption, improving indoor air quality and optimizing energy structure. According to this conception, characteristics of climate along Yangtze River Valley were summarized. Indoors and outdoors humidity loads among nine big cities in this area were analyzed as well. Then the thermal environment designing index of indoor and outdoor in both winter and summer could be determined. After that numerical calculation and simulation were proceed respectively based on designing parameters of outdoor and meteorological parameters of typical year. The results showed humidity loads’characteristics in these cities: the average humidification load is 696g/h in winter, mean dehumidification load is 3.8kg/h in summer. Furthermore, dehumidification load of fresh air shares 85~88% of the whole humidification load. According to various areas, regression equations were deduced. Moreover, the influences of designing temperature and RH were counted in. And the results indicated that once there is 1℃change of interior setting temperature, the humidity load will change by 125~194g/h. if the interior setting RH changes 10%, then humidity load will change by 450~750g/h. The comparison between results of two measures fingered out that calculating error is within 15 percent, so they have consistency.
     The devices of humiture independent controlling AC system are discrepant from traditional ones. This article summed up cold/heat sources and terminals of humiture independent controlling system. System can not only make full use of natural cold source, but also increase the efficiency of air conditioning, and it reduces energy consumption. The terminals could be divided into two parts: temperature control and humidity control. Each controlling method could be mated, thus, certain humiture independent controlling system could be established to fit certain conditions. The article released a new practical designing patent based on this conception. Its feasibility was verified. Anyway, this technology has a bright future to be generalized in Yangtze River Valley.
     Experiments of small-scaled liquid desiccant AC system were described in this article. Firstly, we did the experiment on moisture absorpting performance of anhydrous CaCl2.The result indicated that CaCl2 has strong capacity of hygroscopy, and humidity of air has an crucial effect on its hygroscopy. Besides, we built up an experimental device of small-scaled liquid desiccant AC system to research on dehumidification and regeneration of CaCl2 solution. Experimental results shows that there are 3 factors which mainly works on performance of CaCl2 solution, they are temperature of solution, concentration of solution and humidity of inlet air. The capacity of CaCl2 solution’dehumidification is 3.38g/kg in experimental condition. And the regenerating performance is about 1.3~2.9 times than that of dehumidifying. After summarizing, liquid desiccant dehumidification with CaCl2 solution has large potential to be improved and generalized.
引文
[1] 吴良镛. 北京宪章(稿), 北京宪章. 分题报告. 1999
    [2] 潘尤贵. 长沙市居住室内环境及其能耗的实测与调查分析研究. 湖南大学硕士学位论文, 2004
    [3] 龙惟定. 试论我国暖通空调业的可持续发展. 空调暖通技术, 1999,2: 1-9
    [4] 重庆市建设技术发展中心, 重庆市建筑节能协会. 建筑节能设计标准培训辅导教材, 2005.7
    [5] 李娟. 改善夏季室内热环境的节能措施. 西安建筑科技大学学报(自然科学版). 2001, 33(4): 365-374
    [6] 金招芬, 朱颖心. 建筑环境学. 2001.12
    [7] 马晓雯. 深圳市居住建筑节能设计与审查方法的研究和软件的开发. 重庆大学硕士学位论文. 2003
    [8] 李百战. 改善重庆住宅热环境质量的研究. 1999
    [9] 纪秀玲. 室内热环境舒适性的影响因素及预测评价研究发展.卫生研究.2003.5
    [10] 陆耀庆. 供暖通风设计手册[M]. 北京:中国建筑工业出版社,1987
    [11] 李娟. 底层居室室内环境质量评价与改善研究[D]. 重庆:重庆建筑工程学院,1993
    [12] 涂逢祥, 王庆一. 建筑节能: 中国节能战略之重. 建设科技, 2004, (5): 13-15
    [13] 张立志. 除湿技术. 化学工业出版社. 2004.12: 8
    [14] 李震, 江亿, 刘晓华, 等. 从建筑物内除湿过程的能效分析. 暖通空调. 第 35 卷第 1 期. 2005 年. P90-96
    [15] 欧阳应秀, 王剑锋, 刘建强, 等. 空气压缩除湿闭式干燥循环研究. 流体机械. 2000,28(9):P44-47
    [16] Zhang L Z, Jiang Y. Heat and mass transfer in a membrane-based energy recovery ventilator. J Membrane Sci, 1999,163(1):29-38
    [17] Waugaman K G, Kini A, Kettleborough C F, A review of desiccant cooling systems. J of Energy Resources Technology,1993, 115(1)
    [18] Zeljko Knez, Zoran Novak. [J]. J. Chem, Eng. Data, 2001, 46:858~860
    [19] Chung T W, Honda W. [J]. Separation Science and Technology, 2000, 35(10): 1503~1515
    [20] 张立志,江亿. 膜法空气除湿的研究与进展[J]. 暖通空调,1999,29(6):28~32
    [21] 余晓平, 付祥钊. 夏热冬冷地区民用建筑除湿方式的适用性分析. 建筑热能通风空调. 第25 卷第 2 期. 2006 年 4 月. P65-69
    [22] Kossmehl G, NIemitz M. Preparation and controlled wettability of poly(2,2’-bithienyl-5,5’-diyl)layers. Synthetic Metals, 1991, 41-43:1065-1071
    [23] Maeda M, Suzuki S, Tomura S, et al. [J]. J. Ceram. Soc. Jpn., 2002, 110(2):121~125
    [24] 李鑫, 李忠, 韦利飞, 等.除湿材料研究进展. 化工进展. 第 23 卷第 8 期. 2004 年. P811-815
    [25] 雪海燕. 刘雪玲. 固体吸附式除湿空调系统及其研究进展. 天津理工大学学报. 第 21 卷第3 期. 2005 年 6 月. P49-51
    [26] 代彦军,俞金娣. 扩散及吸附剂特性系数对转轮除湿器性能的影响[J]. 太阳能学报,1998,19(4):388-393
    [27] 代彦军,俞金娣. 转轮式干燥冷却系统的参数分析与性能预测[J]. 太阳能学报,1998,19(1):60-65
    [28] Chung T W, Chung C C. [J]. Chem. Eng. Sci.,1998,53:2967~2972
    [29] 丁静, 杨晓西, 李国权, 等. 多微孔活性硅胶吸附特性及其对吸附式除湿轮性能的影响[J]. 化学工程. 1998,26:11~13
    [30] Zeljko Knez, Zoran Novak.[J]. J. Chem. Eng. Data, 2001,46:858~860
    [31] Kazuhisa Yano, Fukushima Yoshiaki. [J]. Journal of Porous Materials,2003,10:223~229
    [32] Tashiro Y. [J]. Journal of Materials Science, 2004,39:1315~1319
    [33] Atanas Serbezov. [J]. J. Chem. Eng. Data, 2003,48:421~425
    [34] 崔群, 姚虎卿. 除湿空调用高效吸附剂的特性研究. 南京化工大学学报. 第 23 卷第 4 期. 2001 年 7 月. P43-46
    [35] White D A, Bussey R L. [J]. Separation and Purification Technology, 1997,11:137~141
    [36] Montes H G, Geraud Y. [J]. Collaids and Surfaces A: Physicochem. Eng. Aspects, 2004,235:17~23
    [37] Sadek O M, Mekhemer W K. [J]. Thermochim Acta, 2001,370:57~63
    [38] 胡敏, 谢笔钧, 孙颉. 魔芋飞粉异味成分的去除及魔芋干燥剂的研制[J]. 精细化工, 2000,17(6):339~342
    [39] Ladisch M R. [J]. Enzyme Microb. Tech., 1997,20(3):162~164
    [40] 李阳春, 王剑锋, 陈光明. 热泵干燥系统几种循环的对比分析与研究. 农业机械学院. 第34 卷第 6 期. 2003 年 11 月. P84-86: 95
    [41] Tokarev M, Gordeeva L, Romanikov V, et al. [J]. Int. J. Therm. Sci., 2002,41:470~474
    [42] Gonzolez J C, Molina-Sabio M, Rodriguez-Reinoso F. [J]. Applied Clay Science, 2001,20(3):111~118
    [43] Edith Mathiowitz. [J]. Journal of Applied Polymer Science. 2001,80:317~327
    [44] 卢军, 陈启高. 含盐多孔材料湿交换率的确定. 重庆建筑大学学报. 第 22 卷第 3 期. 2000年 6 月. P46-48: 85
    [45] Ohashi Maeda M, Inukai K,et al.[J]. Journal of Materials Science, 1999, 34(6):1341~1346
    [46] Ohashi, F, Maeda M, Suzuki K, et al.[J]. J. Ceram. Soc. Jpn., 1999,107(9):844~849
    [47] Du S F, Yun L, Chen Y F.[J]. Rare Metal Mat. Eng.. 2002,31:264~267
    [48] 朱志平, 陈敏, 朱培根, 等. 冷冻-转轮联合式除湿机的研究与应用. 暖通空调. 第 33 卷第 3 期. 2003 年. P57-59
    [49] 王铁军, 杨晓西, 丁静, 等. 冷冻-吸附式联合除湿系统性能研究. 制冷. 第 20 卷第 3 期(总 76 期). 2001 年 9 月. P1-4
    [50] P L Dhar, S K Singh. Study on Desiccant Based Hybrid Air-Conditioning Systems. Applied Thermal Engineering, 2001,21(2):119-134
    [51] 陈晓阳. 清华大学超低能耗示范楼应用新技术 溶液除湿空调系统. 建筑节能. P22
    [52] G Waugaman, A Kili, C F Kettleorough. A Review of Desiccant Cooling System. Journal of Energy Resource Technology, 1993, 115:125
    [53] 方承超,黄强华,孙克涛. 太阳能液体出事系统研究现状. 新能源,1995,17(7):8~11
    [54] 丁云飞, 丁静, 杨晓西. 液体干燥剂冷却空调系统及其研究进展. 流体机械. 第 32 卷第 6期. 2004 年. P43-47
    [55] 杨英, 李心刚, 李惟毅, 等. 液体除湿特性的实验研究. 太阳能学报. 第 21 卷第 2 期. 2000年 4 月. P155-159
    [56] G O G Lof. Cooling With Solar Energy. In: Proc. of the World Symposium on Applied Solar Energy. November 1-5, Phoenix. AZ. 1955. 171-189
    [57] 赵云, 施明恒. 太阳能液体除湿空调系统中除湿剂的选择. 工程热物理学报. 第 22 卷增刊. 2001 年 6 月. P165-168
    [58] K J Kim, T A Ameel, B K Wood. Performance Evaluations of LiCl and LiBr for Absorber Design Applications in the Oper-cycle Absorption Refrigeration System. Journal of Solar Energy Engineering, 1997, 119: 165-173
    [59] A Ertas, E E Anderson, I Kiris. Properties of a New Liquid Desiccant Solution-lithium Chloride and Calcium Chloride Mixture. Solar Energy, 1992, 49(3)
    [60] 孙健,宫小龙,施明恒. 除湿溶液蒸汽压的研究[J]. 制冷学报. 2004.(1):27~30
    [61] Younus Ahmed S, Gandhidasan P, Al-Farayedhi A A. Thermodynamic analysis of liquid desiccant [J]. Solar Energy, 1998, 62(1):11-18
    [62] 张村, 施明恒. 三种太阳能液体除湿空调系统除湿器的比较. 能源研究与利用. 2002 年第6 期. P29-32
    [63] Sanjeev Jaina, Dhara P L, Kaushik S C. Experimental studies on the dehumidifier and regenerator of a liquid desiccant cooling system[J]. Applied Thermal Engineering, 2000,20:253-267
    [64] Saman W Y, Alizadeh S. An experimental study of a cross-flow type plate heat exchanger fordehumidification/cooling [J]. Solar Energy, 2002,73(1):59-71
    [65] Lazzarin R M, Gasparella A, Longo G A. Chmical dehumidification by liquid desiccants: theory and experiment [J]. International Journal of Refrigeration, 1999,22:334-347
    [66] Nelson Fumo, Goswami D Y. Study of an aueous lithium chloride desiccant system: air dehumidification and desiccant regeneration [J]. Solar Energy, 2002,72(4):351-361
    [67] 张广丽, 王瑾, 柳建华, 等. 蒸发冷却的液体除湿空调系统性能分析. 制冷与空调. 第 4 卷第 6 期, 2004 年 12 月. P60-62
    [68] 刘拴强, 刘晓华, 江亿. 溶液除湿空调系统模拟方法及应用. 空调专题. 2006 年第 5 期. P49-52
    [69] 张景群, 徐钊, 吴宽让. 40 种木本植物水分蒸发所需热能估算与燃烧性分类. 西南林学院学报, 1999, 19(3): 170-175
    [70] ASHRAE, 1997 ASHRAE handbook-fundamentals. Atlanta: American Society of Heating, Refrigerating, and Air-Conditioning Engineers Inc., 1997
    [71] Berglund L G. Comfort and Humidity. ASHRAE Journal, 1998, 40(8): 35-41
    [72] Shi-Ming Deng.A study of energy performance of hotel buildings in HongKong.Energy and building 31(2000)
    [73] Roulet C, Rossy J, Roulet Y. Using large radiant panels for indoor climate conditioning, Energy and Buildings, 1999, 30(2): 121~126
    [74] 李强民. 置换通风原理、设计及应用,暖通空调,2000,30(5):41-46
    [75] Jaakkola JJK, Heinonen OP, Seppaanen O. Sick building syndrome, sensation of dryness and thermal comfort in relation to room temperature in an office building: need for individual control of temperature, Environment International, 1989, 15(1-6): 163-168
    [76] Bauman FS, Carter TG, Baughman AV, Arens EA. Field study of the impact of a desktop task/ambient conditioning system in an office building, ASHRAE Transaction, 1998,104(1): 1153-1171
    [77] 铃木谦一郎, 大矢信男著. 除湿设计. 李先瑞译. 北京:中国建筑工业出版社, 1980,5
    [78] Khan A Y. Parametric analysis of heat and mass transfer performance of a packed-type liquid desiccant absorber at part-load operation conditions. ASHRAE Transactions, 1996, 102(1): 349~357
    [79] 汪锰,王湛,李政雄. 膜材料及其制备. 北京: 化学工业出版社,2003
    [80] 朱长乐, 刘茉娥, 陈欢林等. 膜科学与技术. 杭州: 浙江大学出版社, 1992
    [81] Sander U, Janssen H. Industrial application of vapour permeation. Journal of Membrane Science, 1991,61: 113~129
    [82] Jurinak J J, Mitchell J W. Effect of matrix properties on the performance of a counter-flowrotary dehumidifier. ASME Journal of Heat Transfer, 1984,106:638~645
    [83] Zheng W, Worek W M. Numerical simulation of combined heat and mass transfer processes in a rotary dehukmidifier. Numerical Heat Transfer, Part A: Applications, 1993,23:211~232
    [84] San J Y, Hsiau S C. Effect of axial solid heat conduction and mass diffusion in a rotary heat and mass regenerator. International Journal of Heat Mass Transfer, 1993,36:2051~2059
    [85] Simonson C J, Besant R W. Heat and moisture transfer in energy wheels during sorption, condensation and frosting conditions. ASME Journal of Heat Transfer, 1998,120:699~708
    [86] Pesaran A A, Mills A F. Moesture transport in silica gel packed beds. I – Theoretical study. International Journal of Heat Mass transfer, 1987,30:1037~1049
    [87] 秦朝葵, 徐吉浣.氯化锂除湿转轮传热传质模型.暖通空调. 2004,34(11):135~138
    [88] 秦朝葵, Gerhard Schmitz.氯化锂除湿转轮得性能预测. 同济大学学报. 2002,30(7):807~810
    [89] Zhang L Z, Niu J L. Performance comparisons of desiccant wheels for air dehumidification and enthalpy recovery. Applied Thermal Engineering.2002, 22(12):1347~1367
    [90] Niu J L, Zhang L Z. Effects of wall thickness on the heat and moisture transfers in desiccant wheels for air dehumidification and enthalpy recovery. International Communications in Heat and Mass Transfer, 2002,29(2):255~268
    [91] Khan A Y. Parametric analysis of heat and mass transfer performance of a packed-type liquid desiccant absorber at part-load operation conditions. ASHRAE Transactions, 1996, 102(1):349~357
    [92] Stevens D I, Braun J E, Klein S A. An effectiveness model of liquid-desiccant system heat/mass exchangers. Solar Energy, 1989,42(6):449~455
    [93] 杨英, 李心刚, 李惟毅, 等. 液体除湿特性的实验研究. 太阳能学报, 2000, 21(2): 155~159
    [94] Conde MR. Properties of aqueous solutions of lithium and calcium chlorides: formulations for use in air conditioning equipment design, International Journal of Thermal sciences, 2004, 43(4): 367-382
    [95] WimAy JM, Berntsson TS. Viscosity and Density of Aqueous Solutions of LiBr, LiCl, ZnBr2, CaCl2, and LiNO3. Single Salt Solutions, Journal of Chemical and Engineering Data, 1994, 39(1): 68-72
    [96] 刘晓华, 曲凯阳, 陈晓阳, 等. 叉流除湿器中溶液与空气热质交换模型. 暖通空调, 2005, 35(1): 115-119
    [97] Chung T W, Wu H. Mass transfer correlation for dehumidification of air in a packed absorber with an inverse U-shaped tunnel. Separation Science and Technology, 2000,35(10): 1502-1514
    [98] Fumo N, Goswami D Y. Study of an aqueous lithium chloride desiccant system: air dehumidification and desiccant regeneration. Solar Energy, 2002, 72(4): 351-361
    [99] 杨英. 液体除湿性的实验研究:[硕士学位论文]. 天津:天津大学,1999
    [100] Patnaik S, Lenz T G, Lof G O G. Performance studies for an experimental solar open-cycle liquid desiccant air dehumidification system. Solar Energy, 1990, 44(3): 123-135
    [101] Zurigat Y H, Abu-Arabi M K, Abdul-Wahab S A. Air dehumidification by triethylene glycol desiccant in a pached column. Energy Conversion and Management, 2004, 45(1): 141-155
    [102] 田胜元, 萧曰嵘. 实验设计与数据处理. 中国建筑工业出版社, 1988
    [103] 杨虎, 刘琼荪等. 数理统计. 高等教育出版社, 2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700