变质量体系能量转换及储存系统动态特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文是以水/溴化锂为工质的潜能储存系统为研究对象,给出了变质量体系能量转换及储存技术的基本概念,就是将用电低谷时段的电能先转换为工作溶液的化学势能并以溶液化学势能的形式储存,在用电平峰或高峰时段,可以通过一定的手段将储存的潜能转换为所需的冷或热能。由于在蓄能系统中仅用一个溶液储罐,在储罐充、释能过程中溶液的质量不断发生变化而使系统运行的工作参数发生变化。本文主要讨论在变质量体系能量转换及储存技术充、释能过程中因质量变化所产生的内部扰动的系统充、释能过程的动态特性。当充能始、终时刻溶液储罐内溴化锂质量分数差为0.11时,蓄能系统中仅用了一个0.6m~3的溶液储罐和一个0.17m~3的水储罐可储存109KWh的制冷潜能,转移电网负荷23.3KWh,蓄能系统运行的COP值可达到4.67。
     论文所得出的结论,可以为潜能储存技术的深入研究提供一定的理论参考和思路。
This paper presents a basic concept of variable mass energy transformation and storage technology. In this technology, electric energy is firstly transformed into the chemical potential of working fluids and stored as a form of the potential during off-peak time. Then the potential will be transformed into the cold or heat energy needed by a certain measure during peak time. Because there is only one working solution storage tank used in the energy transformation and storage system, the mass of solution in the tank changes continuously during energy charging or discharging process, which makes the operation parameters of the system change. In this paper, the dynamic behavior of variable mass energy transformation and storage technology which is caused by internal turbulence because of mass changing during energy charging and discharging process is studied and discussed. While LiBr mass factor difference in the solution storage tank between energy charging start and end is 0.1, the energy transformation and s
    torage system in which there are a 0.6 m3 solution storage tank and a 0.17 m3 water storage tank can store about 109 kWh refrigerating potential and shift about 23.3 kWh electric load in off-peak time. The coefficient of performance of the system operation can reach 4.67.
    The conclusions of the paper can provide some theoretical references for deep research work.
引文
[1] 张永栓.中国蓄冷技术应用的新发展.制冷,2000,19(1):33-37
    [2] 蒋爱华,黄竹青,邹新远:冰蓄冷空调于电网调峰,制冷,2002,21(1):41-43
    [3] 削峰填谷冰蓄冷,中国科学月报,1998,2:43-44
    [4] 王小平,詹华忠.中国电力市场及竞争.国际电力,2002,6(3):19-24
    [5] 华泽钊,刘道平等.蓄冷技术及其在空调工程中的应用.科学技术出版社,1997
    [6] Parker.G.J. Off-peak energy storage for domestic applications in Christchurch, New Zealand. Applied Energy, 1993, 44(3): 259-281
    [7] Knebel, David.E. Off-peak cooling with thermal storage. ASHRAE Journal. 1990,32(4):3
    [8] Brower.M. Cool Energy. Masschusetts Institute of Technology Press,USA,Revised Edition, 1994
    [9] Roman.D, Giuma.F. Thermoeconomic analysis of sensible heat thermal energy storage systems. Applied Thermal Engineering, 1998,18(8):693-704
    [10] Chatchawan. C,Willam. W. S, Charters, Lv.A. An ice thermal storage computer model. Applied thermal Engineering, 2001,21:1769-1778
    [11] Hasnan.S.M, Alawaji.S.H,Al-Ibrahim.A.M, Smiai.M.S. Prospects of cool thermal storage utilization in Saudi Arabia. Energy Conversation and Management, 2000,41:1829-1839
    [12] 方贵银.蓄冷空调工程实用新技术.人民邮电出版社,2000
    [13] 余国和.蓄冷与峰谷分时电价间的关系.制冷学报,1997,4:6-12
    [14] 丁云飞.空调蓄冷技术及其在我国的发展前景.通风除尘,1996,1:12-15
    [15] 高祖锟.冰蓄冷空调—现代空调节能新方向.天津商学院学报,1994,02:28-35
    [16] 叶永泉,陈国邦.蓄冷空调技术及其发展.低温工程,2001,1:21-39
    [17] 吴喜平,蓄冷技术和蓄热电锅炉在空调中的应用,同济大学出版社,2000
    [18] S.M.Hasnain. Review on sustainable thermal energy storage technologies ,Part 2: Cool Thermal. Energy Convers, 1998,39(11): 1139-1153
    [19] 张国强,垄光彩等.能源环境与空调制冷.制冷学报,2000,3:1-6
    [20] Bahnfleth, William.P, Reindl, Douglas.T. Prospects for cool thermal storage in a compective electrics power industry. Journal of Architectural Engineering, 4(1): 18-25
    [21] Hasnain.S.M. Review on substainable thermal energy storage technologies, Part 2: Heat Storage Materials and Techniques. Energy Convers, 1998,39(11): 1127-1138
    [22] Ibrahim.O. On thermal energy storage systems and applications in buildings. Energy and Buildings, 2002,34:377-388
    [23] Paksoy.H.O, Andersion.S.Abaci,Evliya.H, Turgut.B. Heating and cooling of a hospital using solar energy coupled with seasonal thermal energy storage in an aquifer. Renewable energy, 2000, 19:177-182
    [24] Yumrutas.R, Unsal.M. Analysis of solar aided heat pump systems with seasonal thermal energy storage in surface tanks. Energy, 2000,25:1231-1243
    [25] Mac.Cracken,Calvin.D. Off-peak air conditioning . A major energy saver. ASHRAE Journal, 1991,33(12):6
    [26] Dorgan.C.E, Elleson.T.S. Design guide for cool thermal storage. ASHRAE, 1993
    [27] EPRI. Commercial cool storage design guide. Hemisphere Publishing Corporation, UAS Washinton, 1987
    
    
    [28] Mei.M.V, Yang.K.H and Hwang. R.L. Analysis of a thermal energy storage air conditioning system using eutectie salt, Part 1.System design and simulation results. American Society of Mechanical Engineers. Advanced Energy Systems Division (Publication) AES, 1993,29:19-26
    [29] Ames.D.A. The past , present and future of euteetic salt storage system. ASHRAE Journal May,1989:26-28
    [30] Ames.D.A. Eutectic cool storage :Current developments. ASHRAE Journal APR, 1990:46-53
    [31] I. Dincer: On thermal energy storage systems and applications in buildings, Energy and builgings, 2002, 34(2):377-388
    [32] Saito, Akio: Recent advances in research on cold thermal energy storage. Int. J. Refirg, 2002, 25(2):177-189
    [33] 林怡辉,王世平:气体水合物蓄冷技术的研究动态及发展方向,江汉石油学院学报,2000,22(1):
    [34] 徐士鸣:蓄能技术新概念—制冷/制热潜能储存技术,电力需求侧管理,2003,5(1):43-48
    [35] 徐士鸣,李维仲等:制冷/制热潜能储存技术(2)—以氨水为工质的潜能储存系统工作特性,第六届全国低温与制冷工程大会会议论文集,p:225-229,西安交通大学出版社,2003
    [36] 吴正业,韩宝琦.制冷原理,西安交通大学出版社,1997,4
    [37] 徐士鸣,张莉等:制冷/制热潜能储存技术(3)—以溴化锂为工质的潜能储存系统工作特性,第六届全国低温与制冷工程大会会议论文集,p:230-234,西安交通大学出版社,2003
    [38] 张小松,费秀峰:溶液除湿蒸发冷却系统及其蓄能特性初步研究,大连理工大学学报,2001,41(S1):30-33
    [39] Kurakami Kazuhiko, Energy storage system by using Lithium-bromide solution, Proceeding of ICCR'2003,pp:717-721, Hongzhou, Int. Academic publishers
    [40] 丁国良,张春路.制冷空调装置仿真与优化,科学出版社,2001,6
    [41] 丁国良,张春路.制冷空调装置智能仿真,科学出版社,2002,8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700