携带mda-7/IL24的嵌合型溶瘤腺病毒对wnt信号异常肿瘤的靶向基因—病毒治疗
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:恶性肿瘤严重危害人类健康,基因治疗给肿瘤治疗带来了新的希望。肿瘤基因治疗涉及如何将治疗基因有效地送达靶组织和靶细胞,调控治疗基因选择性、高效地在肿瘤细胞内表达,以最大限度杀伤肿瘤细胞又不损害正常细胞作为发展方向和终极目标。
     由于肿瘤选择性复制型腺病毒载体(又称溶瘤腺病毒载体)可以选择性地在肿瘤细胞内复制并裂解肿瘤细胞,其携带的治疗基因也伴随病毒的复制明显增加,可以明显提升肿瘤基因治疗的效果。本研究拟构建一种新型的对肿瘤细胞感染效率更高、能够选择性在wnt信号异常肿瘤细胞内复制、携带治疗基因的嵌合型溶瘤腺病毒,并对这种新型重组腺病毒的抗肿瘤活性、动物体内分布特征等进行观察和分析。方法:5型、11型腺病毒分别以CAR、CD46为初级受体,在不同组织中CAR、CD46受体表达水平各有差异。为此,采用免疫组化和Real-time PCR方法检测了人正常组织及肿瘤组织表面CAR和CD46分子的表达水平。采用luciferase活性检测分析了5型腺病毒载体和外壳为Ad11b纤维蛋白、核心为Ad5的嵌合型腺病毒载体(Ad5-Luc和Ad5F11b-Luc)对肿瘤细胞的感染效率和外源基因表达水平。小动物活体成像比较荷瘤鼠瘤内注射或正常裸鼠尾静脉注射Ad5和Ad5F11b在体内的表达效率、生物分布以及血液清除率特性。
     wnt信号通路的关键调控点--β-catenin基因(CTNNB1)通过与下游基因启动子区的TCF/LEF结合位点结合上调相关基因的表达。检测分析β-catenin在肿瘤组织和细胞中是否存在突变与表达异常。利用含TCF/LEF结合位点重复序列(本文简称wnt启动子)的M50 Super 8X TOPFlash质粒转染细胞,分析β-catenin基因突变与wnt信号过度活化的关系;构建以wnt肿瘤特异性启动子调控腺病毒E1A基因表达,携带mda-7/IL24 Ad5F11b嵌合型溶瘤腺病毒( Ad5F11b.wnt-E1A-hIL24 )及不含mda-7/IL24的Ad5F11b.wnt-E1A对照病毒。新型重组腺病毒的抗肿瘤效果采用一系列体外实验予以证实,包括MTT、结晶紫染色、ELISA、Annexin V染色等;Western blot检测分析细胞凋亡途径,探讨其作用机制;通过荷瘤鼠治疗实验评价了新型溶瘤腺病毒在体内的抗肿瘤效果。
     结果:免疫组化检测到CAR在食道上皮细胞、胃上皮细胞、前列腺细胞中高表达,在肠上皮细胞、心肌细胞中中度表达,在肝脏、肺组织中低表达;Real-time PCR定量检测到CD46分子在13例结直肠癌和17例胃癌肿瘤中都有不同程度的升高,而CAR在大部分肿瘤(12例结直肠癌;10例胃癌)中表达下调。Luciferase活性检测显示感染Ad5F11b-Luc的细胞Luciferase的活性普遍比感染Ad5-Luc的细胞高。小动物活体成像显示,瘤内注射Ad5F11b-Luc后Luciferase在肿瘤内的表达强度明显比Ad5-Luc强,持续时间明显比Ad5-Luc长;尾静脉注射Ad5F11b-Luc及Ad5-Luc后观察二者在小鼠体内的分布特征与清除情况,Ad5F11b-Luc较Ad5-Luc在小鼠肝脏内存留量少、存留时间短,二者也存在明显差异。这表明Ad5F11b对肿瘤细胞有较高的感染效率,而对正常小鼠的肝的感染效率较低,提示Ad5F11b毒副作用可能比Ad5低。PCR产物直接测序证实38.5%(5/13)的结直肠癌、47.1%(8/17)的胃癌肿瘤标本、四株受检的肿瘤细胞株(HepG2,BEL7402,HCT116/4016,HCT116/379.2)有β-catenin基因突变;wnt报告基因活性检测分析表明有β-catenin基因突变的四株肿瘤细胞其中三株(HepG2,HCT116/4016,HCT116/379.2)的β-catenin/TCF活性都明显增加。嵌合型溶瘤腺病毒体外实验表明, Ad5F11.wnt-E1A和Ad5F11b.wnt-E1A-hIL24能选择性靶向wnt信号异常的肿瘤细胞,并显著性抑制wnt信号异常肿瘤细胞增殖,具有较强的肿瘤细胞毒性,这种选择性细胞毒性与病毒剂量和感染时间呈正相关,表现出嵌合型溶瘤腺病毒的病毒治疗特性。Ad5F11b.wnt-E1A-hIL24的抗肿瘤作用比Ad5F11b.wnt-E1A强,与MDA-7/IL24蛋白表达及分泌有关,表现出MDA-7/IL24的基因治疗特性。Ad5F11b.wnt-E1A-hIL24的抗肿瘤作用表现为诱导肿瘤细胞凋亡,其作用机理可能与激活被感染的肿瘤细胞caspase级联反应有关。荷瘤鼠体内实验证实,瘤内注射Ad5F11b.wnt-E1A-hIL24能有效抑制肿瘤生长,延长荷瘤鼠的生存期。
     结论:人肿瘤中存在wnt信号通路异常激活,wnt信号异常途径可以作为抗肿瘤治疗的靶标之一;Ad11型的受体在人的肿瘤组织中高水平表达,Ad11能高效感染人的肿瘤细胞;以wnt信号异常为靶标构建的、携带有mda-7/IL24治疗基因的靶向性、嵌合型溶瘤腺病毒(Ad5F11b.wnt-E1A-hIL24)在体内外均能够有效抑制人肿瘤细胞生长,其作用与诱导细胞凋亡有关。这种新型溶瘤腺病毒为肿瘤基因治疗提供了新的思路。
Objective: Cancer is a major public health problem around the globe, and gene therapy has shown promising results in preclinical cancer treatment in recent years. The challenge for cancer gene therapy will be to successfully delivery therapeutic gene to target tissue, and the therapeutic gene selectively, efficiency express in target tissue, which will help to achieve the goal of completely eradicating tumor cells with minimal toxicity to normal cells.
     Replication competent viruses, termed oncolytic viruses are essentially tumor-specific, self-replicating, and lysis-inducing cancer killer, and the replication of virus also increase the amount of therapeutic gene. For study more efficiency method of cancer gene therapy, we designed a novel chimeric oncolytic adenoviral vector armed with therapeutic gene for the treatment of aberrant wnt signaling cancer and show its higher infection efficacy, selectively replication in tumor cells, anti-tumor effect, and systemic biodistribution in vitro and in vivo.
     Methods: Ad5 requires the coxsackie-adenovirus receptor (CAR) on the cell membrane as a primary receptor for infection, while Ad11 requires CD46 as a primary receptor. The CAR, CD46 expression levels are different in normal tissues and tumors. Therefor, the expression levels of CAR, CD46 in different normal tissues and tumors were examined by immunohistochemistry or Real-time PCR. Infected cells with Ad5-Luc and Ad5F11b-Luc (a chimeric Ad5 with Ad11 fiber), the infection efficiency and transgene expression levels were assayed by Luciferase Assay System. Intratumoral injecting Ad5F11b-Luc or Ad5-Luc in mouse xenografts or intravenous injecting Ad5F11b-Luc or Ad5-Luc into normal nude mice, tumor local gene expression, systemic biodistribution and blood clearance properties of Ad5F11b and Ad5 vectors were analyzed by Live Cell Imaging System.
     To determine if aberrant wnt signaling in tumor cells can be used to selectively drive viral replication, we have analyzedβ-catenin mutation status of tumor tissues as well as cell lines. And we screened forβ-catenin/TCF-hyperactivated (aberrant wnt signaling) tumor cell by transfected M50 Super 8X TOPFlash plasmid which contain an luciferase expression cassette driven by 8 copies of TCF/LEF binding site (named wnt promoter). Based on these findings, a novel chimeric oncolytic adenoviral vector containing an E1A expression cassette driven by an artificial wnt promoter have been constructed to selectively replicate in aberrant wnt singaling tumor cells.
     For more increase the anti-tumor effect of this novel oncolytic adenovirus, an apoptosis inducing gene, interleucin-24 expression cassette driven by cytomegalovirus promoter was inserted into its E3 region. Therefore, a novel chimeric oncolytic adenoviral vector containing an E1A expression cassette driven by an artificial wnt promoter, pseudotyped fiber by replacing Ad5 with Ad11 Fiber and delivering mda-7/IL24 gene (Ad5F11.wnt-E1A-hIL24) or not (Ad5F11.wnt-E1A) was designed for treatment aberrant wnt signaling tumor. The therapeutic effect in vitro was determined by MTT, crystal violet staining, ELISA, Annexin V staining assay, and anti-tumor effect mechanism was evaluated by analysis the activation of caspase3, caspase7 and PARP using western blot assay. And the anti-tumor effect in vivo was evaluated in mouse xenografts
     Results: We subjected 20 different normal human tissues to immunohistochemical analysis of CAR expression, the results showed that CAR expression high in esophagus and gastric epithelium, prostate; intermediate in intestinal epithelium, and myocytes of the heart; and low in liver, lung. Tumor tissues were subjected Real-time PCR analysis of CAR and CD46 expression, the results showed that CD46 expression levels were higher in almost all tested tumor than their adjacent normal tissues. In contrast, CAR expression levels were lower in almost all tested tumor tissues than their adjacent normal tissues (colorectal tumor:12/13; gastric tumor:10/17). The infection efficiency and transgene expression levels of Ad5F11b and Ad5 infected cells were determined in vitro using Luciferase Assay System, the results showed that the luciferase expression of Ad5F11b-Luc infected cells were significantly improved compared to non-pseudotyped Ad5-Luc control viruses. And the differential gene transduction of Ad5-Luc and Ad5F11b-Luc infected cells were further determined in vivo using Live Cell Imaging System, the results showed that the tumor local luciferase expression levels and time of intratumoral injection Ad5F11b-Luc were significantly increased compared to that of Ad5-Luc, and intravenous injection Ad5F11b-Luc exhibited a less amount and shoter-term in liver than that of Ad5. Due to the higher tumor local gene transduction and lower liver infection efficieny of Ad5F11b, it would be less side-effect than Ad5.
     Sequencing analysis ofβ-catenin mutations showed that five out of 13 (38.5%) colorectal and eight out of 17 (47.1%) gastric tumors showed point mutations in tumor tissues but not in their adjacent normal tissues. BEL7402,HCT116/4016, HCT116/379.2 also showed point mutation, but HepG2 showed deletion mutation. Cell lines carryingβ-catenin mutations (HepG2, HCT116/4016 and HCT116/379.2) exhibitedβ-catenin/TCF- hyperactivated activity compared to cell lines with wildtypeβ-catenin. Ad5F11.wnt-E1A, Ad5F11.wnt-E1A-hIL24 oncolytic adenovirus can selectively replicate in aberrant wnt signaling tumor cells, and displayed a powerful efficacy in killing aberrant wnt signaling tumor cells. This selectivity cytotoxicity is cosistant to the dose of virus and its infection time. And the anti-tumor effect of Ad5F11.wnt-E1A-hIL24 was significantly improved compared to Ad5F11.wnt-E1A due to the expression of MDA-7/IL24. The therapeutic effect was associated with increased apoptosis through caspase 3 activation. Intratumoral injection Ad5F11.wnt-E1A-hIL24 resulted in profoundly inhibition of tumor growth and longterm survival.
     Conclusions: Aberrant wnt signaling was identified in a variety of tumors and it can be introduced to targeting cancer gene therapy. The primary receptor of Ad11 high-level expresses in a variety of tumors and Ad11 can efficiently infect tumors. Our modified chimeric oncolytic adenoviruses expressing mda-7/IL24 (Ad5F11.wnt-E1A-hIL24) could exert potential anti-tumor activity and significant apoptosis in aberrant wnt signaling tumor and offer a novel approach to cancer gene-viral therapy.
引文
[1] Blaese RM, Culver KW, Miller AD, et al. T lymphocyte-directed gene therapy for ADA- SCID: initial trial results after 4 years[J]. Science, 1995, 270(5235): 475-480.
    [2] http://www.wiley.co.uk/genmed.
    [3] Okegawa T, Pong RC, Li Y, et al. The role of cell adhesion molecule in cancer progression and its application in cancer therapy[J]. Acta Biochim Pol, 2004, 51(2): 445-457.
    [4] Samaranayake H, M??tt? AM, Pikkarainen J, et al. Future prospects and challenges of antiangiogenic cancer gene therapy[J]. Hum Gene Ther, 2010, 21(4):381-396.
    [5] Alderuccio F, Chan J, Toh B. Tweaking the immune system: Gene therapy-assisted autologous haematopoietic stem cell transplantation as a treatment for autoimmune disease[J]. Autoimmunity, 2008, 41(8):679-685.
    [6] El-Aneed A. An overview of current delivery systems in cancer gene therapy[J]. J Control Release, 2004, 94(1): 1-14.
    [7] Heilbronn R, Weger S. Viral vectors for gene transfer: current status of gene therapeutics[J]. Handb Exp Pharmacol, 2010, 197:143-170.
    [8] Tai CK, Kasahara N. Replication-competent retrovirus vectors for cancer gene therapy[J]. Front Biosci, 2008,13:3083-3095.
    [9] Sharma A, Tandon M, Bangari DS, et al. Adenoviral vector-based strategies for cancer therapy[J]. Curr Drug Ther, 2009,4(2):117-138.
    [10] Wright JF. Manufacturing and characterizing AAV-based vectors for use in clinical studies[J]. Gene Ther, 2008, 15(11): 840-848.
    [11] Lachmann R. Herpes simplex virus-based vectors[J]. Int J Exp Pathol, 2004, 85(4): 177-190.
    [12] Seth P. Adenovirus: Basic Biology to Gene Therapy[M]. R.G. Landes Company,1999. Austin Texas USA.
    [13] Alba R, Bosch A, and Chillon M, Gutless adenovirus: last-generation adenovirus for gene therapy[J]. Gene Ther, 2005, 12 Suppl 1: S18-27.
    [14] Lusky M, Christ M, Rittner K, et al. In vitro and in vivo biology of recombinant adenovirus vectors with E1, E1/E2A, or E1/E4 deleted[J]. J Virol, 1998, 72(3): 2022-2032.
    [15] Wang Q, Finer MH. Second-generation adenovirus vectors[J]. Nat Med, 1996,2(6): 714-716.
    [16] Lowenstein PR, Thomas CE, Umana P, et al. High-capacity, helper-dependent, "gutless" adenoviral vectors for gene transfer into brain[J]. Methods Enzymol, 2002, 346: 292-311.
    [17] Kochanek S, Schiedner G, Volpers C. High-capacity `gutless` adenoviral vectors[J]. Curr Opin Mol Ther, 2001, 3(5):454-463.
    [18] Thorrez L, VandenDriessche T, Collen D, et al. Preclincal gene therapy studies for hemophilia using adenoviral vectors[J]. Semin Thromb Hemost, 2004, 30(2):173- 183.
    [19] Coyne CB and Bergelson JM. CAR: a virus receptor within the tight junction[J]. Adv Drug Deliv Rev, 2005, 57(6): 869-882.
    [20] Tomko RP, Xu R, Philipson L. HCAR and MCAR: the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses[J]. Proc Natl Acad Sci USA, 1997, 94(7): 3352-3356.
    [21] Bergelson JM, Cunningham JA, Droguett G, et al. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5[J]. Science, 1997, 275(5304): 1320-1323.
    [22] Fechner H, Haack A, Wang H, et al. Expression of coxsackie adenovirus receptor and alphav-integrin does not correlate with adenovector targeting in vivo indicating anatomical vector barriers[J]. Gene Ther, 1999, 6(9): 1520-1535.
    [23] Pearson AS, Koch PE, Alkinson N, et al. Factors limiting adenovirus-mediated gene transfer into human lung and pancreatic cancer cell lines[J]. Clin Cancer Res, 1999, 5(12): 4208-4213.
    [24] Shayakhmetov DM and Lieber A. Dependence of adenovirus infectivity on length of the Fiber shaft domain[J]. J Virol, 2000, 74(22): 10274-10286.
    [25] Arnberg N, Pring-Akerblom P, and Wadell G. Adenovirus type 37 uses sialic acid as a cellular receptor on Chang C cells[J]. J Virol, 2002. 76(17): 8834-8841.
    [26] Fleischli C, Sirena D, Leasge G, et al. Species B adenovirus serotypes 3, 7, 11 and 35 share similar binding sites on the membrane cofactor protein CD46 receptor[J]. J Gen Virol, 2007, 88: 2925-2934.
    [27] Mathis JM, Stoff-Khalili MA, Curiel DT. Oncolytic adenoviruses - selective retargeting to tumor cells[J]. Oncogene, 2005, 24(52): 7775-7791.
    [28] Chiu CY, Wu E, Brown SL, et al. Structural analysis of a Fiber-pseudotyped adenovirus with ocular tropism suggests differential modes of cell receptor interactions[J]. J Virol, 2001, 75(11): 5375-5380.
    [29] Cashman SM, Morris DJ, Kumar-Singh R. Adenovirus type 5 pseudotyped with adenovirus type 37 Fiber uses sialic acid as a cellular receptor[J]. Virology, 2004, 324(1): 129-139.
    [30] Stone D, Ni S, Gaggar A, et al. Development and assessment of human adenovirus type 11 as a gene transfer vector[J]. J Virol, 2005, 79(8): 5090-5104.
    [31] Holterman L, Vogels R, van der Vlugt R, et al. Novel replication-incompetent vector derived from adenovirus type 11 (Ad11) for vaccination and gene therapy: low seroprevalence and non-cross-reactivity with Ad5[J]. J Virol, 2004, 78(23): 13207-13215.
    [32] Nwanegbo E, Vardas E, Gao W, et al. Prevalence of neutralizing antibodies to adenoviral serotypes 5 and 35 in the adult populations of The Gambia, South Africa, and the United States[J]. Clin Diagn Lab Immunol, 2004, 11(2): 351-357.
    [33] Sakurai F, Kawabata K, Mizuguchi H. Adenovirus vectors composed of subgroup B adenovirus[J]. Curr Gene Ther, 2007,7(4):229-238.
    [34] Ni S, Bernt K, Gaggar A, et al. Evaluation of biodistribution and safety of adenovirus vectors containing group B Fibers after intravenous injection into baboons[J]. Hum Gene Ther, 2005, 16(6): 664-677.
    [35] Mizuguchi H, Hayakawa T. Adenovirus vectors containing chimeric type 5 and type 35 Fiber proteins exhibit altered and expanded tropism and increase the size limit of foreign genes[J]. Gene, 2002, 285(1-2): 69-77.
    [36] Stecher H, Shayakhmetov DM, Stamatoyannopoulos G, et al. A capsid-modified adenovirus vector devoid of all viral genes: assessment of transduction and toxicity in human hematopoietic cells[J]. Mol Ther, 2001, 4(1): 36-44.
    [37] Worgall S, Busch A, Rivara M, et al. Modification to the capsid of the adenovirus vector that enhances dendritic cell infection and transgene-specific cellular immune responses[J]. J Virol, 2004, 78(5): 2572-2580.
    [38] Perlman H, Liu H, Georganas C, et al. Modifications in adenoviral coat Fiber proteins and transcriptional regulatory sequences enhance transgene expression[J]. J Rheumatol, 2002, 29(8): 1593-1600.
    [39] Kurachi S, Koizumi N, Sakurai F, et al. Characterization of capsid-modified adenovirus vectors containing heterologous peptides in the Fiber knob, protein IX, or hexon[J]. Gene Ther, 2007, 14(3): 266-274.
    [40] Fontana L, Nuzzo M, Urbaneli L, et al. General strategy for broadening adenovirus tropism[J]. J Virol, 2003, 77(20): 11094-11104.
    [41] Koizumi N, Mizuguchi H, Utoguchi N, et al. Generation of Fiber-modified adenovirus vectors containing heterologous peptides in both the HI loop and C terminus of the Fiber knob[J]. J Gene Med, 2003, 5(4): 267-276.
    [42] Ogawara K, Rots MG, Kok RJ, et al. A novel strategy to modify adenovirus tropism and enhance transgene delivery to activated vascular endothelial cells invitro and in vivo[J]. Hum Gene Ther, 2004, 15(5): 433-443.
    [43] Lanciotti J, Song A, Doukas J, et al. Targeting adenoviral vectors using heterofunctional polyethylene glycol FGF2 conjugates[J]. Mol Ther, 2003, 8(1): 99-107.
    [44] Hardcastle J, Kurozumi K, Chiocca EA, et al. Oncolytic viruses driven by tumor-specific promoters[J]. Curr Cancer Drug Targets, 2007, 7(2): 181-189.
    [45] Bischoff JR, Kirn DH, Willams A, et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells[J]. Science, 1996, 274(5286): 373- 376.
    [46] O'Shea CC, Johnson L, Bagus B, et al. Late viral RNA export, rather than p53 inactivation, determines ONYX-015 tumor selectivity[J]. Cancer Cell, 2004, 6(6): 611-623.
    [47] Khuri FR, Nemunaitis J, Ganly I, et al. a controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer[J]. Nat Med, 2000, 6(8): 879-885.
    [48] Jiang H, Gomez-Manzano C, Lang FF, et al. Oncolytic adenovirus:preclinical and clinical studies in patients with human malignant gliomas. Curr Gene Ther, 2009, 9(5):422-427.
    [49] Jakubczak JL, Ryan P, Gorziglia M, et al. An oncolytic adenovirus selective for retinoblastoma tumor suppressor protein pathway-defective tumors: dependence on E1A, the E2F-1 promoter, and viral replication for selectivity and efficacy[J]. Cancer Res, 2003, 63(7): 1490-1499.
    [50] Jiang H, McCormick F, Lang FF, et al. Oncolytic adenoviruses as antiglioma agents[J]. Expert Rev Anticancer Ther, 2006, 6(5): 697-708.
    [51] Giaccia A, Siim BG, Johnson RS. HIF-1 as a target for drug development[J]. Nat Rev Drug Discov, 2003, 2(10): 803-811.
    [52] Huang Q, Zhang X, Wang H, et al. A novel conditionally replicative adenovirus vector targeting telomerase-positive tumor cells[J]. Clin Cancer Res, 2004,10(4): 1439-1445.
    [53] Li Y, Yu DC, Chen Y, et al. A hepatocellular carcinoma-specific adenovirus variant, CV890, eliminates distant human liver tumors in combination with doxorubicin[J]. Cancer Res, 2001, 61(17): 6428-6436.
    [54] Mullen JT, Kasuya H, Yoon SS, et al. Regulation of herpes simplex virus 1 replication using tumor-associated promoters[J]. Ann Surg, 2002, 236(4): 502-512; discussion 512-513.
    [55] Lee SJ, Zhang Y, Lee SD, et al. Targeting prostate cancer with conditionally replicative adenovirus using PSMA enhancer[J]. Mol Ther, 2004, 10(6): 1051-1058.
    [56] Maupas-Schwalm F, Robinet C, Auge N, et al. Activation of the {beta}-catenin/ T-cell-specific transcription factor/lymphoid enhancer factor-1 pathway by plasminogen activators in ECV304 carcinoma cells[J]. Cancer Res, 2005, 65(2): 526-532.
    [57] Chen RH, McCormick F. Selective targeting to the hyperactive beta-catenin/T-cell factor pathway in colon cancer cells[J]. Cancer Res, 2001, 61(11): 4445-4449.
    [58] Brunori M, Malerba M, Kashiwazaki H, et al. Replicating adenoviruses that target tumors with constitutive activation of the wnt signaling pathway[J]. J Virol, 2001, 75(6): 2857-2865.
    [59] Malerba M, Daeffler L, Rommelaere J, et al. Replicating parvoviruses that target colon cancer cells[J]. J Virol, 2003, 77(12): 6683-6691.
    [60] Polakis P. Wnt signaling and cancer[J]. Genes Dev, 2000, 14(15): 1837-1851.
    [61] Giles RH, van Es JH, Clevers H. Caught up in a Wnt storm: Wnt signaling in cancer[J]. Biochim Biophys Acta, 2003, 1653(1): 1-24.
    [62] Roose J, Clevers H. TCF transcription factors: molecular switches incarcinogenesis [J]. Biochim Biophys Acta, 1999. 1424(2-3): M23-37.
    [63] Clevers H. Wnt/beta-catenin signaling in development and disease[J]. Cell, 2006, 127(3): 469-480.
    [64] Graham TA, Ferkey DM, Mao F, et al. Tcf4 can specifically recognize beta-catenin using alternative conformations[J]. Nat Struct Biol, 2001, 8(12): 1048-1052.
    [65] Graham TA, Weaver C, Mao F, et al. Crystal structure of a beta-catenin/Tcf complex [J]. Cell, 2000, 103(6): 885-896.
    [66] Polakis P, Hart M, Rubin feld B. Defects in the regulation of beta-catenin in colorectal cancer[J]. Adv Exp Med Biol, 1999, 470:23-32.
    [67] Fujimori M, Ikeda S, Shimizu Y, et al. Accumulation of beta-catenin protein and mutations in exon 3 of beta-catenin gene in gastrointestinal carcinoid tumor[J]. Cancer Res, 2001. 61(18): 6656-6659.
    [68] Morin PJ. beta-catenin signaling and cancer[J]. Bioessays, 1999, 21(12): 1021-1030.
    [69] Wong CM, Fan ST, Ng IO. beta-Catenin mutation and overexpression in hepatocellular carcinoma: clinicopathologic and prognostic significance[J]. Cancer, 2001, 92(1): 136-145.
    [70] Koch A, Denkhaus D, Albrecht S, et al. Childhood hepatoblastomas frequently carry a mutated degradation targeting box of the beta-catenin gene[J]. Cancer Res, 1999. 59(2): 269-273.
    [71] Tien LT, Ito M, Nakao M, et al. Expression of beta-catenin in hepatocellular carcinoma[J]. World J Gastroenterol, 2005, 11(16): 2398-2401.
    [72] Sparks AB, Morin PJ, Vogelstein B, et al. Mutational analysis of the APC/beta-catenin /Tcf pathway in colorectal cancer[J]. Cancer Res, 1998, 58(6): 1130-1134.
    [73] Iwao K, Nakamori S, Kameyama M, et al. Activation of the beta-catenin gene by interstitial deletions involving exon 3 in primary colorectal carcinomas withoutadenomatous polyposis coli mutations[J]. Cancer Res, 1998, 58(5): 1021-1026.
    [74] Ilyas M, Tomilnson ip, Rowan A, et al. Beta-catenin mutations in cell lines established from human colorectal cancers[J]. Proc Natl Acad Sci USA, 1997, 94(19): 10330-10334.
    [75] Chiang JM, Chou YH, Chen TC, et al. Nuclear beta-catenin expression is closely related to ulcerative growth of colorectal carcinoma[J]. Br J Cancer, 2002, 86(7): 1124-1129.
    [76] Clements WM, Wang J, Sarnaik A, et al. beta-Catenin mutation is a frequent cause of Wnt pathway activation in gastric cancer. Cancer Res, 2002, 62(12): 3503-3506.
    [77] Nabais S, Machado JC, Lopes C, et al. Patterns of beta-catenin expression in gastric carcinoma: clinicopathological relevance and mutation analysis[J]. Int J Surg Pathol, 2003,11(1): 1-9.
    [78] Jiang H, Lin JJ, Su ZZ, et al. Subtraction hybridization identifies a novel melanoma differentiation associated gene, mda-7, modulated during human melanoma differentiation, growth and progression[J]. Oncogene, 1995, 11(12): 2477-2486.
    [79] Huang EY, Madireddi MT, Gopalkrishnan RV, et al. Genomic structure, chromosomal localization and expression profile of a novel melanoma differentiation associated (mda-7) gene with cancer specific growth suppressing and apoptosis inducing properties[J]. Oncogene, 2001, 20(48): 7051-7063.
    [80] Caudell EG, Mumm JB, Poindexter N, et al. The protein product of the tumor suppressor gene, melanoma differentiation-associated gene 7, exhibits immunostimulatory activity and is designated IL-24. J Immunol, 2002, 168(12): 6041-6046.
    [81] Madireddi MT, Dent P, Fisher PB. AP-1 and C/EBP transcription factors contribute to mda-7 gene promoter activity during human melanoma differentiation[J]. J Cell Physiol, 2000, 185(1): 36-46.
    [82] Gupta P, Su ZZ, Lebedeva IV, et al. mda-7/IL-24: multifunctional cancer-specific apoptosis-inducing cytokine[J]. Pharmacol Ther, 2006, 111(3): 596-628.
    [83] Pestka S, Krause CD, Sarkar D, et al. Interleukin-10 and related cytokines and receptors[J]. Annu Rev Immunol, 2004, 22: 929-979.
    [84] Wang M, Tan Z, Zhang R, et al. Interleukin 24 (MDA-7/MOB-5) signals through two heterodimeric receptors, IL-22R1/IL-20R2 and IL-20R1/IL-20R2[J]. J Biol Chem, 2002, 277(9): 7341-7347.
    [85] Lebedeva IV, Sauane M, Gopalkrishnan RV, et al. mda-7/IL-24: exploiting cancer's Achilles' heel[J]. Mol Ther, 2005, 11(1):. 4-18.
    [86] Tong AW, Nemunaitis J, Su D, et al. Intratumoral injection of INGN 241, a nonreplicating adenovector expressing the melanoma-differentiation associated gene-7 (mda-7/IL24): biologic outcome in advanced cancer patients[J]. Mol Ther, 2005, 11(1): 160-172.
    [87] Ramesh R, Ioannides CG, Roth JA, et al. Adenovirus-mediated Interleukin(IL)-24 immunotherapy for cancer[J]. Methods Mol Bio, 2010, 651: 241-270.
    [88] Su Z, Lebedeva IV, Gopalkrishnan RV, et al. A combinatorial approach for selectively inducing programmed cell death in human pancreatic cancer cells[J]. Proc Natl Acad Sci USA, 2001, 98(18): 10332-10337.
    [89] Gupta P, Walter MR, Su ZZ, et al. BiP/GRP78 is an intracellular target for MDA-7/IL-24 induction of cancer-specific apoptosis[J]. Cancer Res, 2006, 66(16): 8182-8191.
    [90] Morishima N, Nakanish K, Takenouchi H, et al. An endoplasmic reticulum stress-specific caspase cascade in apoptosis. Cytochrome c-independent activation of caspase-9 by caspase-12[J]. J Biol Chem, 2002, 277(37): 34287-34294.
    [91] Sarkar D, Su ZZ, Lebedeva IV, et al. mda-7 (IL-24) mediates selective apoptosis in human melanoma cells by inducing the coordinated overexpression of the GADD family of genes by means of p38 MAPK[J]. Proc Natl Acad Sci USA, 2002, 99(15):10054-10059.
    [92] Pataer A, Vorburger SA, Barber GN, et al. Adenoviral transfer of the melanoma differentiation-associated gene 7 (mda7) induces apoptosis of lung cancer cells via up-regulation of the double-stranded RNA-dependent protein kinase (PKR)[J]. Cancer Res, 2002, 62(8): 2239-2243.
    [93] Pataer A, Vorburger SA, Chada S, et al. Melanoma differentiation-associated gene-7 protein physically associates with the double-stranded RNA-activated protein kinase PKR[J]. Mol Ther, 2005, 11(5): 717-723.
    [94] Lebedeva IV, Su ZZ, Chang Y, et al. The cancer growth suppressing gene mda-7 induces apoptosis selectively in human melanoma cells[J]. Oncogene, 2002, 21(5): 708-718.
    [95] Su ZZ, Madireddi MT, Lin JJ, et al. The cancer growth suppressor gene mda-7 selectively induces apoptosis in human breast cancer cells and inhibits tumor growth in nude mice[J]. Proc Natl Acad Sci USA, 1998. 95(24): 14400-14405.
    [96] Chen J, Chada S, Mhashilkar A, et al. Tumor suppressor MDA-7/IL-24 selectively inhibits vascular smooth muscle cell growth and migration[J]. Mol Ther, 2003, 8(2): 220-229.
    [97] Ramesh R, Mhashilkar AM, Tanaka F, et al. Melanoma differentiation-associated gene 7/interleukin (IL)-24 is a novel ligand that regulates angiogenesis via the IL-22 receptor[J]. Cancer Res, 2003, 63(16): 5105-5113.
    [98] Saeki T, Mhashilkar A, Swanson X, et al. Inhibition of human lung cancer growth following adenovirus-mediated mda-7 gene expression in vivo[J]. Oncogene, 2002. 21(29): 4558-4566.
    [99] Inoue S, Shanker M, Miyahara R, et al. MDA-7/IL-24-based cancer gene therapy: translation from the laboratory to the clinic[J]. Curr Gene Ther, 2006,6(1):73-91.
    [100] Sarkar D, Su ZZ, Vozhilla N, et al. Dual cancer-specific targeting strategy cures primary and distant breast carcinomas in nude mice[J]. Proc Natl Acad Sci USA,2005,102(39): 14034-14039.
    [101]. Zhao L, Dong A, Gu J, et al. The antitumor activity of TRAIL and IL-24 with replicating oncolytic adenovirus in colorectal cancer[J]. Cancer Gene Ther, 2006, 13(11): 1011-1022.
    [102] Zhao L, Gu J, Dong A, et al. Potent antitumor activity of oncolytic adenovirus expressing mda-7/IL-24 for colorectal cancer[J]. Hum Gene Ther, 2005, 16(7): 845-858.
    [103] O. Meier, Greber UF. Adenovirus endocytosis[J]. J Gene Med, 2003, 5(6): 451- 462.
    [104] Li E, Stupack D, Klemke R, et al. Adenovirus endocytosis via alpha(v) integrins requires phosphoinositide-3-OH kinase[J]. J Virol, 1998, 72(3):2055-2061.
    [105] Xiong Z, Cheng Z, Zhang X, et al. Imaging chemically modified adenovirus for targeting tumors expressing integrin {alpha}v{beta}3 in living mice with mutant herpes simplex virus type 1 thymidine kinase PET reporter gene[J]. J Nucl Med, 2006, 47(1):130-139
    [106] Bergelson JM, Cunningham JA, Droguett G, et al. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5[J]. Science, 1997, 275(5304): 1320-1323
    [107] Tomko RP, Xu R, Philipson L. HCAR and MCAR: The human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses[J]. Proc Natl Acad Sci USA, 1997, 94, 3352–3356.
    [108] Bergelson JM, Krithivas A, Celi L, et al. The murine CAR homolog is a receptor for coxsackie B viruses and adenoviruses[J]. J Viro, 1998, 72, 415-419.
    [109] Fechner H, Haack A, Wang H, et al. Expression of coxsackie adenovirus receptor and av-integrin does not correlate with adenovector targeting in vivo indicating anatomical vector barriers[J]. Gene Ther, 1999, 6, 1520-1535.
    [110] Korn WM, Macal M, Christian C, et al. Expression of the coxsackievirus andadenovirus receptor in gastrointestinal cancer correlates with tumor differentiation[J]. Cancer Gene Ther, 2006, 13, 792-797.
    [111] Okegawa T, Li Y, Pong RC, et al. Cell adhesion proteins as tumor suppressors[J]. J Urol, 2002, 167(4):1836-1843
    [112] Liszewski MK, Kemper K, Price JD, et al. Emerging roles and new functions of CD46[J]. Springer Semin Immunopathol, 2005, 27(3):345-358
    [113] Gaggar A, Shayakhmetov DM, LieberMA. CD46 is a cellular receptor for group B adenoviruses[J]. Nat Med, 2003, 9(11):1408-1412
    [114]陈东锋,石文芳,,钱其军.人35型及11型腺病毒的研究进展[J].中国肿瘤生物治疗杂志, 2006, 13(6):471-474.
    [115] Nwanegb E, Vardas E, Gao W, et al. Prevalence of neutralizing antibodies to adenoviral serotypes 5 and 35 in the adult populations of the Gambia, South Africa, and the United States [J]. Clin Diagn Lab Immunol, 2004, 11 (2) :351-357.
    [116] Stone D, Ni S, Li ZY, et al. Development and assessment of human adenovirus type 11 as a gene transfer vector [J]. J Virol, 2005, 79 (8): 5090-5104
    [117] Lemckert AA, Sumida SM, Holterman L, et al. Immunogenicity of heterologous prime boost regimens involving recombinant adenovirus serotype 11 (Ad11 ) and ad35 vaccine vectors in the presence of anti-ad5 immunity[J]. J Virol, 2005, 79 (15) : 9694-9701.
    [118] Mizuguchi H, Sasaki T, Hayakawa T, et al. Fiber-modified adenovirus vectors mediate efficient gene transfer into undifferentiated and adipogenic-differentiated human mesenchymal stem cells[ J ]. Biochem Biophys Res Commun, 2005, 332 (4) : 1101-1106.
    [119] Delphine R, Menzo JE. SutmullerM, et al. Highly efficient transduction of human monocyte-derived dendritic cellswith subgroup B Fiber-modified adenovirus vectors enhances transgene-encoded antigen presentation to cytotoxic T cells [J]. J Immunol, 2001, 166 (8) : 5236-5244.
    [120] Chen Z, Hagler J, Palombella VJ, et al. Signal-induced site-specific phosphory- lation targets I kappa B alpha to the ubiquitin-proteasome pathway[J]. Genes Dev, 1995, 9: 1586-1597.
    [121] Fuerer C and Iggo R. Adenoviruses with Tcf binding sites in multiple early promoters show enhanced selectivity for tumour cells with constitutive activation of the wnt signalling pathway[J]. Gene Ther, 2002, 9: 270-281.
    [122] Lipinski KS, Djeha AH, Ismail T, et al. High-level, beta-catenin/TCF-dependent transgene expression in secondary colorectal cancer tissue[J]. Mol Ther, 2001,4: 365-371.
    [123] Lipinski KS, Djeha AH, Gawn J, et al. Optimization of a synthetic beta-catenin-dependent promoter for tumor-specific cancer gene therapy[J]. Mol Ther, 2004,10: 150-161.
    [124] Metzl C, Mischek D, Salmons B, et al. Tissue- and tumor-specific targeting of murine leukemia virus-based replication-competent retroviral vectors[J]. J Virol,2006,80: 7070-7078.
    [125] Rahmani M, Read JT, Carthy JM, et al. Regulation of the versican promoter by the beta-catenin-T-cell factor complex in vascular smooth muscle cells[J]. J Biol Chem, 2005, 280: 13019-13028.
    [126] Dihlmann S, von Knebel Doeberitz M. Wnt/beta-catenin-pathway as a molecular target for future anti-cancer therapeutics[J]. Int J Cancer, 2005,113: 515-524.
    [127] Yost C, Torres M, Miller JR, et al. The axis-inducing activity,stability, and subcellular distribution of beta-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3[J]. Genes Dev, 1996, 10: 1443-1454.
    [128] Aberle H, BaueR A, Stappert J, et al. beta-catenin is a target for the ubiquitin-proteasome pathway[J]. Embo J, 1997,16: 3797-3804.
    [129] de La Coste A., Romagnolo B, Billuart P, et al. Somatic mutations of the beta-catenin gene are frequent in mouse and human hepatocellular carcinomas[J].Proc Natl Acad Sci USA, 1998, 95(15): 8847-8851.
    [130] Sakurai F, Mizuguchi H, Yamaguchi T, et al. Characterization of in vitro and in vivo gene transfer properties of adenovirus serotype 35 vector[J]. Mol Ther, 2003, 8(5): 813-821.
    [131] Kanerva A, Wang M, Bauerschmitz GJ, Lam JT, et al. Gene transfer to ovarian cancer versus normal tissues with Fiber-modified adenoviruses[J]. Mol Ther, 2002, 5(6): 695-704.
    [132] Liu TC, Galanis E, Kirn D. Clinical trial results with oncolytic virotherapy: a century of promise, a decade of progress[J]. Nat Clin Pract Oncol, 2007,4:101-117.
    [133] Wang G, Li G, Liu H, et al. E1B 55-kDa deleted, Ad5/F35 Fiber chimeric adenovirus, a potential oncolytic agent for B-lymphocytic malignancies[J].J Gene Med, 2009, 11: 477- 485.
    [134] Kim J, Cho JY, Kim JH, et al. Evaluation of E1B gene-attenuated replicating adenoviruses for cancer gene therapy[J]. Cancer Gene Ther, 2002,9: 725-736.
    [135] Kim J, Kim P-H, Yoo JY, et al. Double E1B 19 kDa- and E1B 55 kDa-deleted oncolytic adenovirus in combination with radiotherapy elicits an enhanced anti-tumor effect[J]. Gene Ther, 2009,16:1111-21.
    [136] Los GV, Encell LP, McDougall MG, et al. HaloTag: a novel protein labeling technology for cell imaging and protein analysis [J]. ACS Chem Bio, 2008, 3(6):373-382.
    [137] Urh M, Hzrtzell D, Mendez J, et al. Method for detection of protein-protein and protein-DNA interactions using Halo Tag [J]. Methods Mol Biol, 2008, 421:191-209.
    [138] Hzrtzell D, Trinklein ND, Mendez J, et al. A function analysis of the CREB signaling pathway using HaloCHIP-chip and high throughput reporter assays [J]. BMC Genomics, 2009, 10:497.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700