马尾松人工林健康评价及生态恢复模式研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
马尾松人工林是我国南方面积较大的人工林之一,马尾松人工林的生产力、抵抗力及生态状况等林分质量问题已经成为人工林经营者关注焦点。特别是人工纯林连栽导致土壤退化、病虫害严重等问题日显突出,影响了马尾松工人林健康经营。本文以湖南衡山县紫金山林场马尾松人工林作为研究对象,开展了马尾松人工林土壤健康生物学评价与林分健康评价,人工林主要病害监测,土壤健康生物调控,主要虫害生物控制及林下植被生态功恢复模式等研究,研究结果有助于马尾松人工林健康可持续经营。研究的主要结果如下:
     (1)马尾松人工林土壤健康生物学评价。应用多元统计分析法,建立适于评价土壤健康的生物学指标体系,第一主成分Yl主要反映的是细菌、真菌、微生物总量、固氮菌、解磷菌、解钾磷、脱氢酶、脲酶、微生物生物量C、微生物生物量N、基础呼吸、基质诱导呼吸、有机质、速效N以及速效P等微生物活性指标的综合变量,其所占总量为75.815%。在评价土壤健康时具有十分重要的作用。运用土壤综合肥力指标值(IFI)作为最终评价土壤健康的标准,其结果为试验区马尾松人工林的土壤质量总体状况欠佳。
     (2)马尾松人工林林分活力与健康评价。采用复合结构功能指标法,选用马尾松种群活力、植被群落生态健康和林分抵抗活力3个功能结构层及下属的14个因子指标层,构建了马尾松人工林林分活力与健康评价指标体系;运用评价模型对试验区15个小班样地的马尾松人工林总体林分活力与健康状况进行评价,评价结果是林分均处于亚健康状态;采用因子主成分分析方法,对各指标层因子数据分析得出:病虫害指数、植物多样性指数、物种丰富度和林分易燃度指数是马尾松人工林林分活力与健康关键因子。
     (3)马尾松人工林主要病害高光谱遥感监测。以不同健康状况的南方马尾松人工林为研究对象,实地调查马尾松赤枯病病情,测定其相应冠层的光谱反射率和叶绿素含量,结果表明:马尾松冠层微分光谱相比其原始光谱均更能有效地反应其病情和叶绿素含量变化,且从红光过渡到近红外区域的“红边”是描述林木健康状况的重要指示波段。当林木受病害胁迫时,随着病情的加重其叶绿素含量逐渐降低,从而造成在红光区域由于叶绿素强吸收而形成的“红谷”随着病情的加重逐渐消失;同时,红边位置随病情的加重而依次发生“蓝移”,红边斜率逐渐减小。红边特征参数对马尾松病情和叶绿素含量变化具有较好的指示作用,以其建立的多元逐步回归模型预测精度较高,可作为优选的一种模型。
     (4)马尾松人工林土壤健康生物调控。从松树外生菌根菌子实体粘盖牛肝菌属和彩色豆马勃属分离到2株真菌(编号为cpy-2和cpy-4),从松树根际土壤中分离到1株菌溶磷能力达65.14mg/L的高效溶磷菌株黄褐假单胞菌(编号为yL14),研究发现这3株菌及硅酸盐细菌菌株K50各菌株间无生物拮抗关系。各菌株发酵液混合后,能明显发挥协同作用。将液体培养的菌株发酵液按体积1:1:1:1混合后,吸附于灭菌的(泥炭:膨润土:玉米粉=3:2:2)混合的载体上,按菌剂:载体为1:10为最佳比例进行吸附处理,制作成固体复合菌剂。菌剂质量指标均达到了农业行业标准NY/T798—2004的标准。将复合微生物菌剂与化学肥料不同比例对马尾松幼苗进行配施,结果表明:微生物菌剂40%+化学肥料60%配施是促进马尾松生长以及改善根际土壤微生态的最佳组合模式。苗高增幅77.6%,地径增幅38.7%,生物量增幅158.1%。使马尾松苗根际微生物数量提高了79.3%,土壤有机质提高了43.3%,土壤速效氮提高了21.42%,土壤速效磷提高了121.83%,土壤速效钾提高了48.38%。
     (5)马尾松人工林主要虫害生物控制。用博落回、柚子皮和垂序商陆提取物通过对松梢螟幼虫的非选择拒食作用、生长抑制作用及触杀作用的测定结果表明:3种植物提取物在浓度100g·L-1时对松梢螟幼虫的生物活性效果较好。3种植物提取物处理比例1:1:1复配表现出一定的增效效果,共毒系数为127.67;3种提取物复配后联合毒力作用的增效最佳植物组合及处理浓度是:柚子皮与垂序商陆提取物,处理比例为1:3,共毒系数为170.02;其次为博落回、柚子皮和垂序商陆提取物三者处理比例1:1:1,共毒系数为127.67。通过对3种植物复配液的增效剂、溶剂和乳化剂的筛选及室内防治效果和林间防治效果的测定,确定植物源复配乳剂的配方为S2:3种植物提取物体积比1:1:1占总体积的30%;增效剂松节油占总体积的5%;溶剂二甲基亚砜占总体积的55%;乳化剂司班-20占总体积的10%。
     (6)马尾松人工林林下植被生态功能恢复模式。经调查得出,湖南省衡山县紫金山国有林场不同林龄阶段马尾松人工林群落内有植物108种,隶属56科91属。在中幼林马尾松人工林林下建立了4种植被恢复模式,分别是林肥、林药、林草和林农模式。以林农模式土壤中的细菌增加量最多,达到525.39×104cfu/g,其后依次为:林药模式>林肥(大叶胡枝子)模式>林草模式>林肥(紫穗槐)模式。土壤放线菌类群数量增加最大的为:林肥(大叶胡枝子)达13.44×104cfu/g,依次为林肥(紫穗槐)模式>林药模式>林农模式>林草模式。两种林肥模式均显著增加土壤中全氮与碱解氮的含量,增加量分别达到了0.67g/kg、0.65g/kg和32.09mg/kg、25.lmg/kg;林药模式、林农模式和林草模式对土壤全氮的含量几乎没有影响。4种林下植被恢复模式均增加了土壤中全钾含量,增加量最大的为林药模式,增加量为0.36g/kg,两种林肥模式对土壤全钾含量的影响差别不大,增加量分别为0.27g/kg和0.28g/kg,林草模式下的土壤全钾增加量最少,为0.08g/kg。不同的林下植被恢复模式对松树的促生长效果较为明显,与对照样地相比,林下植被恢复的4年生人工林,均木年材积生长量是未进行恢复的2倍左右,10年生人工林的这一数值相对较小,但也在1.3-1.7倍之间。均木年材积生长量最大的为林药恢复模式。
Masson pine plantation is one of the larger plantations in southern China. The plantation managers have focused on the quality of masson pine plantation such as productivity, resistance and ecological condition.Especially for successive planting of pure plantation, issues like soil degradation and serious diseases and insect pests become increasingly outstanding. The paper used Zijinshan national farm in Hengshan county of Hunan province as the research object and had studied the biological evaluation of soil health and assessment of stand health, monitoring of main diseases,bio-manipulation of soil health and biological control of main insect pests as well as recovery of ecological function of the undergrowth vegetation, the main results were as follows:
     (1) Biological evaluation of soil health of masson pine plantation. In this study, the system of soil biological evaluating indicators that was based by applying method of statistical analysis. The first principal component Y1mainly reflected the variables of microbial activity index which contains bacteria, fungi, total microbes, azotobacter, phosphorus bacteria, minerals bacteria, dehydrogenase, urease, microbial biomass C, microbial biomass N, basal respiration, stromal induction respiration, organic matter, rapidly-available N and P. It accounted for75.815%and played important roles. Use soil integrated fertility index (IFI) as final evaluation standard of soil, the result showed soil health was not good in different stand ages Pinus massoniana forest.
     (2) Stand activity and health assessment of masson pine plantation. Used the method of functional key performance indication of composite structure, to build the stand's vitality and healthy assessment indicator system of Pinus massoninana plantations, structured by3criteria-population vitality of Pinus massoninana, ecological health of vegetation type, and resistance vitality of stand, and14Index hierarchys affiliated. The diverse phases of cultivation of Pinus massoninana plantations in Hengshan Mountain was taken as sub-compartment samples to evaluate,15of which, with5distinct growing stages, were put in stand vitality and health assessments. The total stand's vitality and healthy conditions of masson pine plantations are in a sub-healthy state. By using the principal component analysis method, it was obtained that pest and disease index, Shannon Wiener index, species richness and Stand flammable index were determined to be the vitality and health key factor for Pinus massoniana plantations.
     (3) Remote sensing monitoring of main diseases in masson pine plantation. Taking different health condition of pinus massoniana plantation in south as the research object, field survey Pestalotiopsis funerea Desm, measured the canopy spectral reflectance of the corresponding and chlorophyll content, the results indicate: the derivative spectra of Pinus massoniana could respond to the changes of the deasase and the chlorophyll content better than the original spectra, furthermore, the important indicatory region that described the healthy condition of vegetation was from the red light to the "red edge" in the near infrared region. When trees were under disease stress, the chlorophyll content decreased gradually and the" red valley" due to strong absorption of the chlorophyll content disappeared gradually in red light region with the severity of the disease aggravating. At the same time, the positions of the red edge displayed "blue shift" successively with the severity of disease aggravating, and the slope of the red edge decreased little by little. The pridciton accuracy of stepwise regression model built using red edge characteristic parameters that had better indicatory function of the disease and the chlorophyll content of Pinus massoniana was higher, which can be as a preferential model.
     (4) Biological control technique of soil health of masson pine plantation. Ecto-mycorrhizal fungi Tissue isolated and cultured,acquire Pure mycelium(cpy-2and cpy-4).They Belong to Suillus and Pisolithus tinctorius (Pers.) Cooke et Couch. Isolate strains yL14has phosphorus solubilizing capability of the strains with the molybdenum blue spectrophotometry indicated that yL14showed stronger ability of dissolving phosphorus, yL14belonged to the genus Pseudomonas fulva. Its phosphate solubilization capacity was65.14mg/L. Ectomycorrhizal fungi cpy-2and cpy-4,phosphate-solubilizing bacteria yL14,potassium-releasing bacteria K50does not exist biological antagonistic relationship. Obvious synergies fermentation broth mixture. According to the volume of1:1:1:1mixed liquid culture fermentation liquid by volume1:10adsorbed on sterilization (peat:Bentonite:corn flour=3:2:2) mixed carrier adsorption treatment by agents:carrier the best ratio of1:10, made into a solid composite agents. The quality of the determination of composite agents,Quality indicators in the agents have reached the standard of the People's Republic of China on the agricultural industry standard NY/T798-2004.Carried out with the compound microbial inoculant and chemical fertilizers in different proportions of Pinus massoniana seedlings. The results showed that:Microbial agents40%+chemical fertilizers60%is the best combination model,it can promote the growth of Pinus massoniana and improve the rhizosphere soil microecology.Seedling height increased by77.6%, ground diameter increase of38.7%, biomass increased by158.1%. Pinus massoniana rhizosphere microbes, also increased by79.3%,43.3%increase in soil organic matter, soil available nitrogen increased by21.42%,121.83%increase in soil available P, soil available K increased by48.38%.
     (5) Biological control of main pests in masson pine plantation. Dioryctria splendidella is a major pest of Pinus massoniana. Using the M. cordata, C. maxima peels and P. americana L. ethanol extracts against the larvae of Dioryctria splendidella the bioactivities of the non-selective antifeedant effect, growth inhibition and contact toxicity were determined. The results showed that the bioactivities of three plant extracts against the larvae of Dioryctria splendidella increased with concentration. All indexes were comparatively good when the concentration was100g·L-1. The CTC was127.67with M. cordata, C. maxima peels and P. americana L. at ratio of1:1:1, which also had synergistic effect. The overall results indicated that the best mixture combination were C. maxima peels extracts and P. americana L. extracts at ratio of1:3,the CTC was170.02. Screening synergist, solvent and emulsifier of compound liquid of the three plants and measuring the effect of lab control and forest control, the botanical compound emulsion formula S2was finally determined:the three plant extracts was in volume ratio1:1:1, which accounted for30%, the synergist turpentine, the solvent DMSO and the emulsifier Secretary Ban-20accounted for5%,55%and10%, respectively.
     (6) Eological function Recovery of undergrowth vegetation in masson pine plantation. It was showed different stages of Pinus massoninana plantations investigation of108kinds of plants species,56families under91genera, in Zijin Mountain National Forest, Hengshan County, Hunan Province. It were established four vegetation restored mode in middle young growth of pinus massoniana plantation, respectively is Forest-fertilizer, Forest-medicine, and forest-grass and agroforestry mode.The number of bacterial populations of the agroforestry mode increased the highest to525.39×104cfu/g, and the effects of others were in the order of forest-medicine mode> forest-fertilizer(lespedeza davidii franch) mode> forest-grass mode> forest-fertilizer(Amorpha fruticcosa) mode.The number of actinomycetes populations which reached13.44×104cfu/g increased the highest in the forest-fertilizer(lespedeza davidii franch) mode, and the effects of others were in the order of forest-fertilizer (Amorpha fruticcosa) mode> forest-medicine mode>agroforestry mode> forest-grass mode. The content of total nitrogen and available nitrogen of both forest-fertilizer modes increased substantially with forest-fertilizer(lespedeza davidii franch) mode0.67g/kg and32.09mg/kg respectvely and forest-fertilizer (Amorpha fruticcosa) mode0.65g/kg and25.1mg/kg respectively. Forest-medicine, agroforestry and forest-grass modes had little effect on total nitrogen of soil.All the five modes could increase total potassium content of soil, and the highest increase was the forest-medicine mode and reached0.36g/kg.The increase of total nitrogen of soil in both forest-fertilizer modes was0.27g/kg(lespedeza davidii franch) and0.28g/kg(Amorpha fruticcosa), respectively, but the effects between them were not significant.The total nitrogen of soil in the forest-grass mode increased least to0.08g/kg.Compared with control plots, the effects of different restoration modes on growth of pine were more obvious.In4-year old plantation, the annual stem growth of each plant was two times more than that of plantation without restoration. The numerical value was small in10-year old plantation but also ranged from1.3to1.7times.The highest increase of annual stem growth of each plant was the forest-medicine mode.
引文
[1]Rapport D J, Costanza Mc Michael.1998. Assessing ecosystem health. Trends in Ecology and Evolution,13:397-402.
    [2]孔红梅,赵景柱,姬兰柱等.生态系统健康评价方法初探[J].应用生态学报,2002,13(4):486-490.
    [3]张宏锋,李卫红,陈亚鹏.生态系统健康评价研究方法与进展[J].干旱区研究,2003,20(4):330-335.
    [4]章伶俐.北京地区蒙古栋林生态系统健康评价与影响因素分析[D].北京林业大学硕士学位论文,2009.
    [5]李瑾,安树青,程小莉等.生态系统健康评价的研究进展[J].植物生态学报,2001,25(6):641-647.
    [6]袁兴中,刘红,陆健健.生态系统健康评价-概念构架与指标选择[J].应用生态学报,2001,12(4):627-629.
    [7]董百丽.长白山红松阔叶林森林昆虫对生态系统健康的影响[D].吉林农业大学硕士学位论文,2002.
    [8]Rapport D J.1989. What constitute ecosystem health? [J]. PersPect Biol medic, (33):120-132.
    [9]Rapport D J. Health[M]. Oxford:Blackwell Science,Inc,1998.
    [10]Rapport D J, Costanza Mc Michael. Assessing ecosystem health[J]. Trends in Ecology and Evolution,1998,13:397-402.
    [11]Rapport D J, Bohm G, Buckingham D, etal. Ecosystem health:The concept, the ISEH, and their important task ahead[J]. Ecosystem Health,1999 (5):82-90.
    [12]赵建波.山东省威海市农业生态系统健康评价[D].山东农业大学硕士学位论文,2004.
    [13]Costanza R, Norton B G, Haskell B D. Ecosystem health:new goals for environmental management. Washington D C:Island Press,1992.
    [14]钟业喜,彭薇.城市生态系统健康评价初探[J].江西科学,2003,21(3):253-256.
    [15]肖风劲,欧阳华,牛海山.生态系统健康与相关概念的逻辑关系[J].生态学杂志,2003,22 (2):56-59.
    [16]De Hayes D H, Schaberg P G, Hawley G J, et al. Acid rain impacts on caluim nutrition and forest health[J]. Bioscience,1999,49 (10):789-800.
    [17]Alexnader S A, Palmer C J. Forest health moniotring in the United States:First four years[J]. Enviorn Monit Assess,1999,55 (2):267-277.
    [18]陈高,代力民,范竹华,等.森林生态系统健康及其评估监测应用[J].生态学报,2002,13,(5):605-610.
    [19]Hirvonen H. Canada's national ecological framework:an asset to reporting on thehealth of Canadian forests[J]. The Forestry Chronicle,2001,77 (1):111-115.
    [20]Aamlid D,Torseth K, Venn K, et al. Changes of forest halth in Norwegian borealforests during 15 years[J]. Forest Ecology and Management,2000,127: 103-118.
    [21]Allen Eric. Forest health assessment in Canada[J]. Ecosystem Health,2001,7: 28-34.
    [22]陆元吕.森林健康状态监测技术体系综述[J].世界林业研究,2003,16(1):20-25.
    [23]张志诚,欧阳华,肖风劲.生态系统健康研究现状及其定量化研究初探[J].中国生态农业学报,2004.12(3):184-187
    [24]谷建才,陆贵巧.森林健康评价指标及应用研究[J].河北农业大学学报,2006,29(2):68-71.
    [25]Haworth L. Adual-perspective model of agroecosystem health:system functions and system goals [J]. Journal of Agroecosystem and Environmental Ethics,1997, 10 (2):127-152.
    [26]De Vries W, Reinds G J, Deelstra H D, et al. Intensive monitoring of forest ecosystems in Europe.technical report[R]. Forest Intensive Monitoring Coordinating Institute, Netherlands,1999:173.
    [27]肖风劲,欧阳华,孙江华,等.森林生态系统健康评估指标与方法[J].林业资源管理,2004,(1):27-30.
    [28]肖风劲,欧阳华,傅伯杰,等.森林生态系统健康评价指标及其在中国的应用[J].地理学报,2003,58(6):803-809.
    [29]Jim Steinman. USDA. Forest Health Monitoring in the Northeastern United Stated:Disturbances and Condition during [M],2004.
    [30]李秀英.森林健康评价指标体系初步研究与应用[D].中国林业科学研究院硕 士学位论文,2006.
    [31]USDA Forest Serviee. Healthy forests for America's future:A strategic Plan[M]. Washington, D.C.:USDA Forest Serviee,1993.
    [32]程志光.北京东灵山地区辽东栋林生态系统健康评价体系的研究[D].东北林业大学硕士学位论文,2002.
    [33]孔红梅,赵景柱,吴钢,等.生态系统健康与环境管理[J].环境科学,2002.23(1):1-5.
    [34]尹华军,刘庆.森林生态系统健康诊断研究进展及亚高山针叶林健康诊断的思考[J].世界科技研究与发展,2003,05:56-61.
    [35]李金良,郑小贤.北京地区水源涵养林健康评价指标体系的探讨[J].林业资源管理,2004,01:31-34.
    [36]陈高,代力民,范竹华,等.森林生态系统健康及其评估监测应用[J].生态学报,2002,13,(5):605-610.
    [37]陈高,邓红兵,王庆礼,等.森林生态系统健康评估的一般性途径探讨[J].应用生态学报,2003,14(6):905-999.
    [38]陈高,邓红兵,代力民,等.森林生态系统健康评估Ⅱ-案例实践[J].应用生生态学报,2005,16(1):1-6.
    [39]陈高,邓红兵,代力民,等.综合构成指数在森林生态系统健康评估中的应用[J].生态学报,2005,25(7):1725-1723.
    [40]王亚玲.潭江流域森林生态系统健康评价[D].中山大学硕士学位论文,2005.
    [41]鲁绍伟.北京市八达岭林场森林生态系统健康性评价[J].水上保持学报,2006.,(3):15-25.
    [42]李秀英.森林健康评价指标体系初步研究与应用[D].中国林业科学研究院硕士学位论文,2006.
    [43]甘敬.北京山区森林健康评价研究[D].北京林业大学博士学位论文,2007.
    [44]赵小亮.森林生态系统健康评价的研究[D].河北农业大学硕士学位论文,2008.
    [45]聂力.东钱湖区域森林生态系统健康评价研究[D].华东师范大学硕士学位论文,2008.
    [46]姬文元.森林小班水平的川西米亚罗林区云冷杉林群落健康评价[D].北京林业大学硕士学位论文,2009.
    [47]Mageau M T, Costanza R, Ulanowicz R E. The development and initial testing of a quantitative assessment of ecosystem health[J]. Ecosystem Health,1995,12 (1): 201-213.
    [48]王薇.区域生态系统健康评价方法与应用研究[J].中国农学通报,2006,08:440-444.
    [49]李志洪,叶渭贤.浅论广东省林分结构与森林健康[J].中南林业调查规划,2005,24(2):5-7.
    [50]Doran JW, Michael RZ. Soil health and sustainability:managing the biotic component of siol quality[J].Applied Soil Ecology,2000,15:3-1
    [51]Anderson TH. Microbial eco-physiological indicators to asses soil quality. Agriculture, Ecosystems and Environment,2003,98:285-293
    [52]Doran JW, Zeiss MR. Soil health and sustainability:managing the biotic component of siol quality[J].Applied Soil Ecology,2000.15:3-11
    [53]He ZL,Yang XE,Baligar VC.Microbiological and biochemical indexing system for assessing quality of acid soils. Advances of Agronomy,2003,78:89-138
    [54]孙波,赵其国,张桃林,等.土壤质量与持续环境Ⅲ.土壤质量评价的生物学指标.土壤,1997,29(5):225-234
    [55]Neher D A. Role of nematodes in soil health and their use as indicators[J].Journal of Nematology,2001.33(4):161-168
    [56]Ritz K, Trudgill D L. Utility of nematode community analysis as an integrated measure of functional state of soils:Perspectives and challenges[J].Plant and Soil, 1999.212(1):1-11
    [57]Pankharst C E, Doube B M, Gupta V. Biological Indication of Soil Health[M]. New York:CAB International,1997:1-28
    [58]Sherwood S, Uphoff N. Soil health:research, practice and policy for a more regenerative agriculture[J]. Applied Soil Ecology,2000.15:85-97
    [59]Schaeffer DJ, Henricks EE, Kerster HW. Ecosystem Health:1. Measuring ecosystem health. Environ. Man.1988,12:445-455
    [60]He ZL, Yang XE, Baligar VC. Microbiological and biochemical indexing system for assessing quality of acid soils. Advances of Agronomy,2003,78:89-138
    [61]Chen GS, Yang YS, Xie JS. Soil biological changes for a natural forest and two plantations in subtropical China. Pedosphere,2004,14 (3):297-304
    [62]李凌浩,陈佐忠.草地群落的土壤呼吸[J].生态学杂志.1998,17(4):45-51
    [63]Hofman J, Bezchllebova J, Dusek L, et al. Novel approach to monitoring of the soil biological quality. Environment International,2003,28:771-778
    [64]陆道调.马占相思工业人工林林分经营规划及管理的研究[D].北京林业大学硕士学位论文,2005
    [65]聂文.湖南阳明山国家自然保护区南方红豆杉林分结构研究[D].中南林业科技大学硕士学位论文,2008.
    [66]张宏伟.不同潮带红树林林分空间结构比较研究[D].中南林业科技大学硕士学位论文,2010.
    [67]李毅,孙雪新,康向阳.甘肃胡杨林分结构的研究[J].干旱区资源与环境,1994,8(3):88-95.
    [68]陈东来,秦淑英.山杨天然林林分结构的研究[J].河北农业大学学报,1994,17(1):36-43.
    [69]孟宪宇.测树学[M].北京:中国林业出版社,1996,50-100.
    [70]胡文力.长白山过伐林区云冷杉针阔混交林分结构的研究[D].北京林业大学硕士学位论文,2003.
    [71]姚爱静,朱清科,张宇清,等.林分结构研究现状与展望[J].林业调查规划,2005,30(2):70-76.
    [72]黄清麟.福建青冈萌芽林分结构及牛产力的研究[J].福建林学院学报,1995,15(2):107-111.
    [73]陈昌雄,陈平留,刘健,等.闽北天然异龄林林分结构规律的研究[J].福建林业科技,1997,24(4):1-4.
    [74]吕勇,李际平,张晓蕾.会同杉木人工林的树高分布模型[J].中南林学院学报,1999,19(1):68-70.
    [75]薛俊杰,肖扬.华北落叶松天然林年龄结构初步研究[J].林业科技通讯,2000,(4):23-24.
    [76]张伟,郝青云.庞泉沟次生混交林主要种群年龄结构和空间格局研究[J].山西农业大学学报,2002,12(2):50-53.
    [77]张贵,陈建华.应用Weibull分布研究毛竹林分直径结构规律[J].经济林研究,2002,20(4):31-33.
    [78]Hansorg Dietz. Plant invasion Patehes-reconstrueting Pattern and Proeess by mean of herb-ehronology. Biologieal Invasions.2002,4:211-222.
    [79]Takuo Nagaike. Plant species diversity in abandoned coppice forests in a temperate deciduous forest area of central Japan[J]. Plant Ecology,2003,166: 145-156.
    [80]郭华,王孝安.黄土高原子午岭人工油松林冠层特性研究[J].西北植物学报,2005,25(7):1335-1339.
    [81]徐海,惠刚盈,胡艳波,等.天然红松阔叶林不同径阶林木的空间分布特征分析[J].林业科学研究,2006,19:687-691.
    [82]乌吉斯古楞,陆玉宝,田有亮,等.大青山油松人工林生长与林分密度关系的研究[J].科技与经济,2006,(12):18-21.
    [83]宋坤,达俊良,杨同辉,等.栲树种群的年龄结构及其生长特征[J].应用生态学报,2007,18(2):254-260.
    [84]刘建利,李凯荣,易亮,等.黄土高原丘陵区人工刺槐林林分结构及林下植物多样性研究[J].水土保持通报,2008,28(3):49-52.
    [85]刘畅.北京八达岭林场阔叶次生林林分结构与健康经营关键技术研究[D].北京林业大学,2008.
    [86]刘明国,姚丽杰,孙玉梅.朝阳县油松、刺槐、华北落叶松树高生长模型研究[J].辽宁林业科技,2008,(3):31-33.
    [87]邱迎君,李作洲,黄宏文.濒危植物长苞铁杉的年龄结构与空间格局的研究[J].武汉植物学研究,2008,26(5):495-500.
    [88]孙景波,佟静秋,牟长城,等.哈尔滨城市人工林天然更新组成结构与年龄结构[J].东北林业大学学报,2009,37(2):16-21.
    [89]谢小魁,刘正纲,苏东凯,等.长白山阔叶红松林径级结构动态模拟和优化经营[J].生态学杂志,2011,30(2):384-388.
    [90]曹旭平,王梅,周建云,等.陕北黄土高原油松人工林林分结构及个体生长[J].西北林学院学报,2011,26(2):155-159.
    [91]许国华,杨君,张晓辉,等.白桦林和白桦落叶松混交林抚育间伐最佳经营密度的研究[J].林业科技,1994,19(3):13-14.
    [92]柴一新.天然白桦林的特点与经营[J].东北林业大学学报,2000,28(5):31-34.
    [93]孙志虎,王庆成,梁淑娟.间伐和修枝对白桦天然林林木生长的影响[J].北京林业大学学报,2004,32(6):11-13.
    [94]张涛,全小川,惠谦,王洪亮,刘晓忠.低效(质)林改造的方法与效果分析[J].林业勘查设计,2004(30):30-31.
    [95]何明月,高甲荣,张金瑞.低效、残次防护林的近自然林经营技术[J].林业调查 规划,2008,33(3):84-88.
    [96]陆元昌,雷相东,洪玲霞,等.近自然森林经理计划技术体系研究[J].西南林学院学报,2010,30(1):1-5.
    [97]蒋有绪,郭泉水,马娟,等.中国森林群落分类及其群落学特征[M].北京:科学出版社,中国林业出版社,1998.
    [98]赵中华.基于林分状态特征的森林自然度评价研究[D].中国林业科学研究院博士学位论文,2009
    [99]马克平.生物群落多样性的测度方法:Ⅰα多样性的测度方法[J].生物多样性,1994,2(3):162-168.
    [100]高宝嘉,张执中,李镇宇.封山育林对植物群落结构及多样性的影响.徐化成,郑均宝主编.封山育林研究[M].北京:中国林业出版杜,1994.
    [101]马克平,黄建辉.北京东灵山地区植物群落多样性的研究:Ⅱ丰富度,均匀度和物种多样性[J].生态学报,1995,15(3):268-277.
    [102]马克平,叶万辉,于顺利,等.北京东灵山地区植物群落多样性研究Ⅷ群落组成随海拔梯度的变化[J].生态学报,1997,17(6):593-600.
    [103]陈廷贵,张金屯.十五个物种多样性指数的比较研究[J].河南科学,1999,17:55-58.
    [104]罗文训.南方红豆杉天然林群落结构特征研究[J].亚热带植物通讯,2000,29(3):39-42.
    [105]黄忠良,孔国辉.鼎湖山植物群落多样性的研究.生态学报,2000,20(2):193-198.
    [106]Xiaoniu Xu, Eiji Hirata, Yoshihiro Tokashiki, Takeo Shinohara. Structure and Species Diversity of Subtropical Evergreen Broad-leaved Forest in Northern Okinawa Island, Japan. J. For. Res,2001, (6):203-210.
    [107]王国梁,刘国彬,刘芳,等.黄土沟壑区植被恢复过程中植物群落组成及结构变化[J].生态学报,2003,23(12):2550-2557.
    [108]郭华,王孝安.黄土高原子午岭人工油松林冠层特性研究[J].西北植物学报,2005,25(7):1335-1339.
    [109]韩永光,任星,韩彦隆.乔木林下草地植物群落多样性研究[J].内蒙古林业科技,2008,34(1):21-23.
    [110]刘红霞,谷建才,鲁绍伟,等.小五台森林群落特征及林下物种多样性研究[J].中国农学通报,2009,25(04):97-100.
    [111]高远,慈海鑫,邱振鲁,等.山东蒙山植物多样性及其海拔梯度格局[J].生态学报,2009,29(12):6378-6384.
    [112]Nagaike T, Kamitani T, Nakashizuka T. Plant species diversity in abandoned coppice forest in a temperate deciduous forest area of central Japan[J]. Plant Eeology,2003,166 (1):63-74.
    [113]国家林业局.国家森林资源连续清查技术规定[M].北京:中国林业出版社,2003.
    [114]安慧君.阔叶红松林空间结构研究[D].北京林业大学博士学位论文,2003,93-98.
    [115]方精云,李意德,朱彪,等.海南岛尖峰岭山地雨林的群落结构、物种多样性以及在世界雨林中的地位[J].生物多样性,2004,12(1):29-43.
    [116]张忠义,闫东锋,段绍光,等.宝天曼自然保护区栎类天然次生林群落结构分析[J].河南科学,2005,23(3):367-370.
    [117]冉潇,丛日晨,杨建民,等.北京鹫峰地区松栎混交群落结构与物种多样性[J].河北农业大学学报,2006,29(4):27-33.
    [118]王忠春.林分级森林健康评价研究[D].北京林业大学硕士学位论文,2010.
    [119]邵全琴,杨海军,刘纪远等.基于树木年轮信息的江西千烟洲人工林蓄积量分析[J].地理科学,2001,21(2):4-6.
    [120]刘磊,温远光等.不同林龄杉木人工林林下植物组成及其生物量变化[J].广西科学2007,14(2):172-176.
    [121]康文星,田大伦等.杉木人工林水文学过程对林分生产力的影响[J].生态学报,2008,6(4):71-76.
    [122]崔佰新.皖东杉木人工纯林地力衰退成因及可持续经营对策[J].现代科技,2008.
    [123]王刚.杉木人工林土壤肥力指标及评价[J].南京:南京林业大学.2008,36-40.
    [124]周政贤,岳季林,郭光典.马尾松植苗造林整地方法试验报告[J].贵州农学院丛刊,1984,2(4):17-20.
    [125]周政贤.马尾松造林密度试验报告[J].贵州农学院丛刊,1984,2(4):32-36.
    [126]黄枢,沈国舫.中国造林技术[M].北京:中国林业出版社,1993,32-47.
    [127]温佐吾,谢双喜,周运超,等.不同造林技术措施对马尾松幼林生长的影响研究[J].林业科学,1998,34(6):39-49.
    [128]谌红辉,梁瑞龙,温恒辉.广西马尾松低成本造林技术研究[J].林业科技通 讯,2001,6:23-25.
    [129]程金年.马尾松与枫香混交造林技术的研究[J].安徽农业科学,2004,11(1):115-116.
    [130]赵红军,刘艳辉.春季抗旱造林技术要点[J].林业实用技术,2004,3:20-21.
    [131]柯志军,吴道圣.迹地人工更新的树种选择与造林技术[J].林业实用技术,2005,7:15-16.
    [132]汤文彪.红锥马尾松混交林效益与营造技术[J].安徽农学通报,2008,15:175-177.
    [133]李贻铨,蒋建屏,彭立平,等.杉木近熟林施肥研究[C].第六次全国森林土壤学术讨论文选篇,1997.
    [134]李贻铨,徐清彦,刘仲君,等.杉木幼林前5年施肥效应研究[J].土壤通报,1991,22(1):28-32.
    [135]李贻铨.林木施肥与营养诊断[J].林业科学,1991,27(4):435-442.
    [136]李贻铨.整地施肥对Ⅰ-69杨人工林生长效应的研究[J].林业科学研究,1990,3(5):434-440.
    [137]杨章旗.广西马尾松用材林区划及商品材基地布局[J].广西林业科学,1996,25(1):9-14.
    [138]周运超,梁瑞龙,蒙福祥,等.马尾松中幼林施肥试验研究[J].贵州农学院丛刊,1997,(马尾松专集Ⅳ):72-78.
    [139]杨章旗.广西马尾松用材林区划及商品材基地布局[J].广西林业科学,1996,25(1):9-14.
    [140]李贻铨,蒋建屏,彭立平,等.杉木近熟林施肥研究[C].第六次全国森林土壤学术讨论文选篇,1997.
    [141]蔡道雄,贾宏炎,卢立华,等.我国南亚热带珍优乡土阔叶树种大径材人工林的培育[J].林业科学研究,2007,20(2):165-169.
    [142]殷细宽.地质学基础[M].北京:农业出版社,1998.
    [143]齐新民,丁贵杰.马尾松纸浆材林优化栽培密度经济分析[J].中南林学学报,2001,21(2):13-17.
    [144]齐新民,温佐吾.马尾松工业用材定向培育经济分析[J].贵州农学院学报,1997,16(4):7-13.
    [145]田大伦,潘维俦.马尾松人工林杆材阶段生物量和径级分化及密度效应初探[J].植物生态学与地植物学报,1986,10(4):294-301.
    [146]洪伟,吴承祯.闽北杉木人工林密度控制连续状态的动态规划研究[J].福建林学院学报,1996,16(1):1-4.
    [147]广西马尾松课题组(杨章旗执笔).广西马尾松用材林速生丰产技术研究专刊[J].广西林业科学,1996,25(1):25-29.
    [148]丁贵杰.造林密度对杉木生长进程及经济效果影响的分析[J].林业科学,1997,33(1):67-71.
    [149]丁贵杰.马尾松人工建筑材林合理采伐年龄研究[J].林业科学,1998,34(2):54-60.
    [150]丁贵杰,谢双喜,王德炉,等.马尾松建筑材林优化栽培模式研究[J].林业科学,1999.35(2):69-74.
    [151]丁贵杰.马尾松人工纸浆林采伐年龄初步研究[J].林业科学,2000,36(1):15-20.
    [152]陈天华.马尾松木材性状过渡年龄及造纸材林最低伐龄的确定[C].马尾松种子园建立技术论文集.北京:学术书刊出版社,1990,86-92.
    [153]丁贵杰,周政贤.马尾松不同造林密度和不同利用方式经济效果评价[J].南京林业大学学报,1996,20(2):24-29.
    [154]齐新民,温佐吾.马尾松工业用材定向培育经济分析[J].贵州农学院学报,1997,16(4):7-13.
    [155]秦国峰.马尾松优质高产纸浆林培育技术及经营效益[J].林业科学研究,2003,16(01):33-38.
    [156]国家林业局森林资源管理司.第七次全国森林资源清查及森林资源状况[J].林业资源管理,2010,2(1):1-8.
    [157]邓伦秀,李茂.马尾松人工林研究现状及展望[J].安徽农业科学,2009,37(7):2968-2971.
    [158]刘增文,段而军,付刚,等.一个新概念:人工纯林土壤性质的极化[J].土壤学报,2007,44(6):1119-1126.
    [159]彭少麟.鼎湖山人工马尾松第1代与自然更新代生长动态比较[J].应用生态学报,1995,6(1):11-13.
    [160]田宏,李凤霞,张德罡,等.草坪草溶磷菌筛选及溶磷能力的初步研究[J].草业科学,2005,22(10):92-96.
    [161]南京农业大学.土壤农化分析[M].北京:农业出版社,1981:71-74.
    [162]中国科学院微生物研究所.伯杰氏细菌鉴定手册.第九版[M].北京:科学出版 社,1994:71-101.
    [163]中国科学院上海植物生理研究所,上海市植物生理学会.现代植物生理学实验指南[M].北京:科学出版,2004:81-94.
    [164]M.ALEXANDER(亚历山大)(美)著.土壤微生物学导论[M].广西农学院农业微生物学教研组译.北京:科学出版社,1983:260-268.
    [165]范丙全,金继运,葛诚,等.溶磷草酸青霉菌筛选及其溶磷效果的初步研究[J].中国农业科学,2002,35(5):525-530.
    [166]赵小蓉,林启美.微生物解磷的研究进展[J].土壤肥料,2001,5(3):7-11.
    [167]李智勇,刘思英,丁一,等.土壤速效钾含量与烤烟钾肥施用效应的研究[J].中国烟草科学,1996,(1):63-66.
    [168]林启美,赵小蓉,孙焱鑫,等.四种不同生态系统的土壤解磷细菌数量及种群分布[J].土壤与环境,2000,9(1):34-37.
    [169]席琳乔,王静芳,马金萍,等.棉花根际解磷菌的解磷能力和分泌有机酸的初步测定[J].微生物学杂志,2007,27(5):70-74.
    [170]刘代汉,郑小贤.森林经营单位级可持续经营指标体系研究[J].北京林业大学学报,2004,26(6):44-48.
    [171]Bertollo P. Assessing ecosystem health in governed landscapers:A framework for developing core indicators[J]. Ecosystem Health,1998,4:33-51.
    [172]Paul AM. Managing for forest health[J]. Journal of Forestry,2002,100(7): 24-27.
    [173]赵良平.森林生态系统健康理论的形成与实践[J].南京林业大学学报:自然科学版,2007,31(3):1-7.
    [174]李裕国,唐利疆,夏桂琴.可持续经营示范林监测例解[J].林业勘查设计,2000,(3):21-23.
    [175]吉林省国有林区可持续发展研究课题组.吉林省国有林区可持续发展综合评价指标体系研究[J].林业经济,2000,(6):32-36.
    [176]宋新章.黑龙江省经营单位水平森林可持续经营标准与指标的研究[J].林业科技,2004,29(5):21-23.
    [177]高瑞馨.林口林业局可持续发展综合评价研究Ⅰ-指标体系的构建[J].林业勘查设计,2005,(2):10-13.
    [178]武会欣.八达岭林场油松林健康评价[D].保定:河北农业大学,2006.
    [179]甘敬.北京山区森林健康评价研究[D].北京:北京林业大学,2007.
    [180]孙玉军,资源环境监测与评价[M].北京:高等教育出版社,2007.
    [181]王艳洁,郑小贤.可持续发展指标体系研究概述[J].北京林业大学学报,2001,23(3):103-105.
    [182]郭建宏.福建中亚热带经营单位水平森林可持续经营评价研[D]究.福建农林大学,2003.
    [183]黄海霞.祁连山水源涵养林可持续经营标准与指标体系的研究[D].甘肃农业大学,2002.
    [184]蒋卫国,李京,李加洪,等.辽河三角洲湿地生态系统健康评价[J].生态学报,2005,25(3):409-41.
    [185]刘文军,铁牛,席青虎.大青山天然白桦林健康评价研究[J].现代农业科技,2009,10:9-10.
    [186]王顺久,张欣莉,丁晶,等.环境质量评价中关键因子识别的方法研究[J].中国环境监测,2002,18(5):43-46.
    [187]邱德勋,谭松波,吴纪才.马尾松赤枯病的初步研究[J].林业科学,1980,3:203-207.
    [188]花锁龙,丁中文,刘朝阳,等.马尾松赤枯病的调查研究[J].浙江林业科技,1988,8(6):37-39.
    [189]梁秋霞,潘锋英,李端兴.马尾松赤枯病发生规律及其防治技术[J].浙江林业科技,2002,22(4):64.
    [190]张琼珊,郑宏.马尾松赤枯病大面积防治试验[J].森林病虫通讯,1996,1:19-20.
    [191]高娜.基于遥感的落叶松早落病信息提取研究[D].兰州:兰州大学,2007.
    [192]张田.福建省三明市松材线虫病遥感监测预测研究[D].北京:北京林业大学,2010.
    [193]邵咏妮,何勇.基于独立组分分析和BP神经网络的可见/近红外光谱蜂蜜品牌的鉴别[J].红外与毫米波学报,2006,25(6):478-480.
    [194]Cloutis E A. Hyperspectral geological remote sensing:evaluation of analytical techniques[J].Int J.Romote Sensing,1996,17(12):2215-2242.
    [195]Tsai F, Philpot W. Derivative analysis of hyperspectral data[J]. Remote Sensing of Environment,1998,66(1):41-51.
    [196]王磊,白由路,卢艳丽,等.光谱数据变换对玉米氮素含量反演精度的影响[J].遥感技术与应用,2011,26(2):220-225.
    [197]黄文江,王纪华,刘良云,等.冬小麦红边参数变化规律及其营养诊断[J].遥感技术与应用,2003,18(4):206-211.
    [198]谭昌伟,王纪华,郭文普,等.利用遥感红边参数估算夏玉米农学参数的可行性分析[J].福建农林大学学报:自然科学版,2006,35(2):123-128.
    [199]Moses A C, Andrew K S. A new technique for extracting the red edge position from hyperspectral data the linear extrapolation method[J]. Remote Sensing of Environment.2006,101 (2):181.
    [200]卢艳丽,李少昆,白由路,等.冬小麦冠层光谱红边参数的变化及其与氮素含量的相关分析[J].遥感技术与应用,2007,22(1):1-7.
    [201]陈鹏程.地面高光谱遥感在棉叶螨监测中的应用研究[D].新疆:石河子大学,2006.
    [202]基于多源多时相数据棉花黄萎病遥感监测研究[D].北京:北京师范大学,2009.
    [203]苏红军,杜培军.高光谱数据特征选择与特征提取研究[J].遥感技术与应用,2006,21(4):288-293.
    [204]吴见,彭道黎.高光谱遥感林业信息提取技术研究进展[J].光谱学与光谱分析,2011,31(9):2305-2312.
    [205]方慧,宋海燕,曹芳,等.油菜叶片的光谱特征与叶绿素含量之间的关系研究[J].光谱学与光谱分析,2009,27(9):1731-1734.
    [206]王渊,王福民,黄敬峰.油菜不同组分生物量光谱遥感估算模型[J].浙江农业大学学报,2004,16(2):79-83.
    [207]王人潮,黄敬峰.水稻遥感估产[M].北京:农业出版社,2001.
    [208]王欣,周乐,季春燕,等.博落回中生物碱的超声提取和分离[J].西北农业学报,2005,14(05):118-120,124.
    [209]杨洋,韦小英.柚皮黄酮类化合物提取方法和抗氧化性的研究[J].食品与发酵工业,2002,28(06):9-12.
    [210]王国夫,周玉婷,易明花.商陆等3种植物提取物对菜粉蝶的拒食作用[J].安徽农业科学,2010,38(15):8272-8273.
    [211]陈旭,王迎儿,王燕燕,等.白前提取物对斜纹夜蛾拒食活性的研究[J].中国生物防治,2009,25(增1):36-39.
    [212]崔正芳.白花曼陀罗提取物杀虫活性研究[D].华中农业大学,2009.
    [213]吴征镒,王荷生.中国自然地理—植物地理(上册)[M].北京:科学出版社, 1983.
    [214]吴征镒.中国植被[M].北京:科学出版社,1980.
    [215]祁承经.湖南植被[M].湖南:湖南科学技术出版社,1990.
    [216]左家哺,彭代文,田伟政,等.湖南省南岳种子植物区系的研究[J].西北植物学报,2002,22(2):368-379.
    [217]胡喜生,洪滔,宋萍等.木荷天然林与人工林群落结构特征比较[J].福建林业科技,2007,34(1):24-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700