壳聚糖交联温度和pH双重敏感水凝胶的合成和性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水凝胶是由亲水性高分子交联而成的三维网络结构,它不溶于水,但可吸收大量水分。智能水凝胶是对外界刺激如温度、pH值、电场等能产生敏感响应性行为的一类水凝胶。智能水凝胶因其生物相容性、柔软性和组织相似性,目前在药物控制释放、生物材料和组织工程等生物医学领域中得到了广泛应用。聚N-异丙基丙烯酰胺(PNIPAAm)温敏类水凝胶在32 oC左右能发生可逆的非连续体积相转变,称之为低临界溶解温度(LCST),因此目前得到了广泛的研究与应用。
     本文通过壳聚糖和马来酸酐酰化反应合成了水溶性良好的可生物降解的交联剂—N-马来酰化壳聚糖(N-malely chitosan,N-MACH),以N-异丙基丙烯酰胺(NIPAAm)、羧甲基纤维素钠(CMC)、丙烯酰胺(Am)为原料,通过水溶液中的自由基聚合反应,分别合成了聚N-异丙基丙烯酰胺(PNIPAAm)均聚水凝胶,聚N-异丙基丙烯酰胺/丙烯酰胺[P(NIPAAm-co-Am)]共聚水凝胶和聚N-异丙基丙烯酰胺/羧甲基纤维素钠(PNIPAAm/CMC)半互穿网络水凝胶。研究了水凝胶的温敏性、pH敏感性、溶胀和退溶胀动力学、盐溶液中的溶胀现象、热力学性质和水凝胶结构形态,并对水凝胶样品的可生物降解性做了初步的研究。
     1、交联剂和CMC的用量对水凝胶的LCST值无明显的影响。但随着Am的加入,水凝胶的LCST值明显变化,Am的用量越大,水凝胶的LCST值越高,二者几乎成线性关系。
     2、在25 oC的蒸馏水中,所有水凝胶均能快速达到饱和溶胀状态。溶胀率随着Am和CMC增加而升高,随着交联剂用量的增加而降低。
     3、LCST值低于37 oC的水凝胶在37 oC蒸馏水中均发生快速失水的退溶胀现象,在1 h左右达到平衡。退溶胀率随交联剂、CMC和Am的用量增加而降低。
     4、在25 oC时,在浓度低于0.05 mg/mL的NaCl溶液中水凝胶仍然有较好的溶胀性,但是当NaCl溶液的浓度高于0.05 mg/mL时,水凝胶的溶胀率明显下降,说明水凝胶对于盐溶液有一定敏感性。
     5、在25 oC时,缓冲溶液的pH值对水凝胶的饱和溶胀率有很大影响,PNIPAAm和P(NIPAAm-co-Am)水凝胶在酸性和碱性缓冲溶液中饱和溶胀率较大,而在中性缓冲溶液中较低。而CMC的引入使PNIPAAm/CMC半互穿网络水凝胶pH敏感性明显不同于PNIPAAm和P(NIPAAm-co-Am)水凝胶。
     6、水凝胶的热失重实验表明,N-MACH交联的水凝胶具有良好的热降解稳定性,在100 oC内稳定性良好。
     7、P(NIPAAm-co-Am)和PNIPAAm/CMC半互穿网络水凝胶的玻璃化转变温度高于PNIPAAm水凝胶,证明了Am和CMC成功引入到PNIPAAm体系内。
     8、通过扫描电镜观察可以看出,水凝胶具有较大的孔径结构,有利于水分子的自由进出。
     9、在37 oC时,P(NIPAAm-co-Am)水凝胶在含溶菌酶的模拟肠液(SIF)和含胃蛋白酶模拟胃液(SGF)中较短时间内有较大程度的降解。水凝胶降解的速度随着交联剂和Am用量的增加而降低,随着酶浓度的升高而降解速度加快。
Hydrogels are insoluble, cross-linked three dimensional network structure composed of hydrophilic polymer, which do not dissolve in water but absorb a great deal of water. Intelligent or smart hydrogels are a class of polymers which undergoing a volume phase transition in response to environmental stimulus, such as pH, temperature, electric fields and so on. Intelligent hydrogels have promising potential application in the field of drug delivery system, biomaterial culture and tissue engineering because of their biocompatibility,flexibility and similarity to natural tissues,etc. Poly(N-isopropylacryamide) (PNIPAAm) is a thermosensitive hydrogel that has received much attention and application because of its lower critical solution temperature (LCST) behavior at around 32°C in an aqueous solution, which is close to the physiological temperature.
     In this paper, the cross-linker N-maleyl chitosan (N-MACH) was synthesized with chitosan (CS) and maleic anhydride (Ma) as materials. Poly(N-isopropylacryamide) (PNIPAAm) hydrogels, Poly(N-isopropylacryamide-co-acrylamide) [P(NIPAAm-co-Am)] hydrogels and Poly(N-isopropylacryamide)/Sodium carboxymethyl cellulose (PNIPAAm/CMC) semi-interpenetrating polymer network (semi-IPN) hydrogels have been synthesized by the free radical polymerization in distilled water, with the soluble and biodegradable N-MACH cross-linker. The temperature and pH sensitive behavior, swelling/deswelling kinetics, swelling ratio in NaCl solution, the thermodynamics and the morphology of the hydrogels were investigated. At last, the biodegradable behaviors of P(NIPAAm-co-Am) hydrogels in simulated intestinal fluid (SIF) and simulated gastric fluid (SGF) were investigated.
     1. The content of the N-MACH cross-linker and CMC did not influence the lower critical solution temperature (LCST) of hydrogels evidently, but it was significantly influenced by monomer ratio of the NIPAAm/Am. The LCST increased with the increase of the content of Am.
     2. All the hydrogels exhibited fast swelling kinetics in DW at 25°C, the swelling ratio of the hydrgels was increased with the increase of Am and CMC content, but decreased with the increase of N-MACH cross-linker content.
     3. The hydrogels deswelled fast in DW when the temperature was above their LCSTs. The deswelling rate of the hydrogels was decreased with the increase of N-MACH cross-linker、Am and CMC content.
     4. The swelling ratio of the hydrogels was decreased sharply with increasing NaCl concentration to 0.05 mg/mL at 25°C.
     5. The swelling ratio of the hydrogels was strongly dependent on the pH of the swelling medium. The swelling ratio of the PNIPAAm and P(NIPAAm-co-Am) hydrogels in acid/alkaline buffer solutions was higher than that in the neutral solution. The pH sensitive behavior of PNIPAAm/CMC semi-IPN hydrogels was different from PNIPAAm and P(NIPAAm-co-Am) hydrogels because of the introduction of CMC.
     6. The thermodynamic stability of the hydrogels was characterized by thermogravimetry. The result showed that the hydrogel had a good thermal stability.
     7. The glass temperature (Tg) of P(NIPAAm-co-Am) and PNIPAAm/CMC semi-IPN hydrogels was higher than that of PNIPAAm hydrogels. It was intimated the successful introduction of Am and CMC.
     8. The morphology of hydrogels was estimated by field scan electron microscopy (SEM). The hydrogels contained open and well-structure orientated porous network.
     9. In enzymatic degradation studies, the weight loss of the P(NIPAAm-co-Am) hydrogels was strongly dependent on the cross-linking density, the content of Am, and the concentration of the lysozym and pepsin.
引文
[1] Van Nostrum Cornelus F., Veldhuis Theo F. J., Hernink Wim E. et al, Tuning the degradation rate of poly(2-hydroxypropyl methacrylamide)-graft-oligo(lactic acid) stereocomplex hydrogels [J] Macromolecules, 2004, 37(6):2113-2118
    [2]张高奇,海藻酸钠/聚(N-异丙基丙烯酰胺)pH/温度敏感水凝胶的制备及结构与性能的研究,[博士学位论文],上海:东华大学,2005
    [3]何天白,胡汉杰著,海外高分子科学的新进展[M],化学工业出版社,北京,1997:174
    [4] Dusek K., Patterson D., Transition in swollen ploymer network induce by intra molecular condensation [J]. Polym. Sci., PartA-2, 1968,6:1209-1216
    [5] Tanaka T., Collapse of gel and the critical end point [J]. Phys. Rev. Lett., 1978, 40(12):820-823
    [6] Murray M. J.,Snowden M. J. , The preparation, characterization and applications of colloidal microgels [J]. Advances in Colloid and Interface Science, 1995, 54:73-91
    [7] Kawaguchi H., Functional polymer microspheres. [J]. Prog. Polym. Sci. 2000, 25:1171-1210
    [8] Xia X. H., Hu Z. B., Marquez M. , Physically bonded nanoparticle networks: a novel drug delivery system [J]. Journal of Controlled Release, 2005, 103:21-30
    [9] Rzaev Z. M. O., Dincer S., Piskin E., Functional copolymers of N-isopropylacrylamide for bioengineering applications [J]. Prog. Polym. Sci, 2007, 32:534-595
    [10] Flory P. J.,Principles of Polymer Chemistry [M]. Cornell University Press, Ithaca, New York, 1953
    [11] Wichterle O., Lim D., Hydrophilic gels in biologic use [J]. Nature, 1960, 185:117-118
    [12] Suzuki A., Tanaka T., Phase transition in polymer gels induced by visible light [J]. Nature, 1990, 346:345-347
    [13] Tanaka T., Kokufuta E., Volume transition in a gel driven by hydrogen bonding [J]. Nature, 1991, 349:400-401
    [14] Tanaka T., Fillmore J., Sun T., et. al, Phase transitions in ionic Gels [J]. Phys. Rev. Lett., 1980, 45:1636-1639
    [15] Tanaka T., Nishio I., Sun S. T., et. al, Collapse of gels in an electric field [J]. Science, 1981, 218(4571):467-469
    [16] Tanaka T., Collapsible gel compositions [P]. U S Patent, 5100933, 1992
    [17]陈雪萍,翁志学,高吸水性树脂的研究进展和应用[J].化工生产与技术,2000,7(1): 17-19
    [18]高德川,邹黎明,王依民,国内外高吸水性聚合物研究开发新动向[J].化工新型材,2000,28(8):76-84
    [19]程丝,高吸水性材料的复合化进展[J].合成技术及应用,2002,17(3):26-29
    [20] Charls M. Garner, Matthew N., Sythesis of a superabsorbent polymer [J].J of Chem Edu, 1997, 74(1):95-96
    [21]杨俊华,国内外高吸水性树脂发展概况[J].化工新型材料,1992,20(2):1-9
    [22] Valuev Levi, Lefirovaolga N., Targeted Delivery of Drugs Provided by Water-soluble Polymeric Sysrems with Low Critical Solution Temperature(LCST) [J]. Journal of Biocative and Compatible Polymers, 1994(9):55-65
    [23] Winnik F. M., Fluorescence studies of aqueous solutions of poly(N-isopropylacrylamide) below and above their LCST [J]. Macromolecules, 1990, 23(2):233-242
    [24] Metz N., Theato P., Synthesis and Characterization of Base Labile Poly(N-isopropylacrylamide) Networks Utilizing a Reactive Cross-Linker [J], Macromolecules, 2009, 42 (1):37-39
    [25] Sun Guoming, Zhang Xianzheng, Effect of the molecular weight of polyethylene glycol (PEG) on the properties of chitosan-PEG-poly(N-isopropylacrylamide) hydrogels [J], J Mater Sci, 2008, 19:2865-2872
    [26] Ramanan Ram Mohan Kripa, Chellamuthu Prithiviraj, Tang Liping, et al., Development of a Temperature-Sensitive Composite Hydrogel for Drug Delivery Applications [J], Biotechnol. Prog., 2006, 22(1):118-125
    [27] Schmaljohann Dirk, Oswald Joachim, Nitschke Mirko et al., Thermo-Responsive PNIPAAm-g-PEG Films for Controlled Cell Detachment [J]. Biomacromolecules, 2003, 4(6):1733-1739
    [28] Liu Mingzhu, Bian Fengling, Sheng Fenling, FTIR study on molecular structure of poly(N-isopropylacrylamide) in mixed solvent of methanol and water [J] European Polymer Journal, 2005, 41:283-291
    [29]王昌华,曹维孝,新型阴离子型温敏水凝胶[J].高等学校化学学报,1996,17(2):332-333
    [30] Takei G.,Aoki T., Sanui K., et al., Temperature-Responsive Bioconjugates. 2. MolecularDesign for Temperature-Modulated Bioseparationst [J] Bioconjugate chem., 1993, 4(5):341-346
    [31] Zhang J. T., Huang S. W., Zhuo R. X., Temperature-sensitive ploy(N-isopropylacrylamide) hydrogels with macroporous structure and fast response rate [J]. Macromol Rapid Commun, 2003, 24:447-451
    [32]陆大年,陈士安,丙烯酸水凝胶的pH敏感性研究[J].华东理工大学学报,1994,20(6): 818-823
    [33]林荣珍,苗晶,董声雄,壳聚糖硫酸酯pH敏感性水凝胶的制备及其性能[J].材料科学与工程学报,2008,26(6):950-957
    [34] Rosiak J. M., Ulanski P., Pajensky L. A., Yoshii F., Makuuchi K., Radiation formation of hydrogels for biomedical purposes. Some remarks and comments [J]. Radiation Physical Chemistry, 1995, 46(2):161-168
    [35] Ademar B., Lugao, et al, Use of radiation in the production of hydrogels [J]. Nuclear In struments and Methods Physics Research B, 2001, 185:37-42
    [36] Mamada A., et al, Photoinduced phase transition of gels [J]. Macromolecules, 1990, 23:1517-1522
    [37] Tanaka T., Nishio I., Sun S. T., Ueno-Nishio S., Collapse of gels in an electric field [J]. Science, 1982, 218:467~469
    [38]冯霞,陈莉,周军杰,AMPS/AAM凝胶响应性能的研究[J].化工新型材料, 2005,33(2):39-42
    [39] Kato N., Takahashi F., Acceleration of deswelling of poly (N-isopropylacrylamide) hydrogels by the treatment of a freeze-dry and hydration process [J]. Bull. Chem. Soc. Jpn., 1997, 70:1289-1295
    [40] Zrinyi M., Barsi L., Ferrogel: a new magneto-controlled elastic medium [J]. Polymer Gel&Networks, 1997, 5:415-427
    [41]张新房,智能水凝胶[J].食品与药品,2005,7(3A):17-22
    [42] Ishihara K., Glucose induced permeation control of insulin through a complex membrane consisting of immobilized glucose oxidase and poly (amine) [J]. Polym. J, 1984, 16:625~929.
    [43] Zhang Y., Guan Y., Zhou S., Synthesis and volume phase transitions of glucose-sensitive microgels [J]. Biomacromolecules, 2006, 7:3196~3201.
    [44] Yoshihiko M., Mizuo M., DNA-responsive hydrogel that can shrink or swell [J]. Biomacromolecules, 2005, 6:2927~2929.
    [45] Marchetti M., Thermodynamics of temperature sensitive gels[Ph D thesis], Minneapolis:University of Minnesota 1989.
    [46]钟兴,王宇新,王世昌,温敏凝胶体积相转变温度的压敏性. [J].高分子学报,1994,4(1):113-116
    [47] Zhang J., Peppas N. A., Synthesis and characterization of pH and temperature-sensitive poly(methacrylic acid)/poly(N-isopropylacrylamide) interpenetrating polymeric networks [J]. Macromolecules, 2000, 33(1):102-107
    [48] Ju H., Kim S., Lee Y., pH/temperature-responsive behaviors of semi-IPN and comb-type graft hydrogels composed of alginate and poly (N-isopropylacrylamide) [J]. Polymer, 2001, 42(16):6851-6857
    [49] Shim W. S., Yoo J. S., Bae Y. H., Novel Injectable pH and Temperature Sensitive Block Copolymer Hydrogel [J]. Biomacromolecules, 2005, 6(6):2930-2934
    [50]罗宣干,王坦,温度及pH值敏感水凝胶的合成和应用[J].化学通报,1996,4:10-15
    [51] Chen G. H., Hoffman A. S., Graft copolymers that exhibit temperature~induced phase transitions over a wide range of pH [J]. Nature, 1995, 373(5):49-52
    [52] Hoffman A. S., Dong L. C., A novel approach for preparation of pH-sensitive hydrogels for enteric drug delivery [J]. Controlled Release, 1991, 15(2):141-152
    [53]黄月文,罗宣干,卓仁禧,包埋在温度及pH值敏感水凝胶中的阿司匹林的控制释放研究[J].高分子材料科学与工程,1998,14(6):144-147.
    [54] Lokhande H. T., Varadarajan P. V., A new approach in the Production of non-wood-based cellullosic superabsorbents through the pan grafting method [J]. Bioresource Technology, 1993, 45(3):161-165
    [55] Kiatkamjornwong S., Chomsaksakul W., Sonsuk M., Radiation modification of water absorption of cassava starch by acrylic acid/acrylamid [J]. Radiation Physics and Chemistry, 2000, 59(4):413-427
    [56]卓仁禧,张先正,温度及pH敏感聚(丙烯酸)/聚(N-异丙基丙烯酰胺)互穿网络水凝胶的合成及性能研究[J].高分子学报,1998, 1:39-42
    [57]李秀瑜,吴文辉,王建全等, pH敏感瓜胶/聚丙烯酸半互穿网络水凝胶的溶胀动力学[J]高分子材料科学与工程,2006,22(2):177-180
    [58] Ding Zhongli, Yoshida M., Zueten M., et al, A study on the deswelling behaviour of a thermo-responsive hydrogel prepared by radiation polymerization [J]. Radiat. Phys. Chem., 1993, 42(4-6):959-962
    [59] Yong Qiu, Kinam Park, Environment-sensitive hydrogels for drug delivery [J]. Advanced Drug delivery Reviews, 2001, 53(3):321-339
    [60] David T. Eddington, David J. Beebe, Flow control with hydrogels [J]. Advanced Drug delivery Reviews, 2004, 56(2):199-210
    [61] Park T. G., Temperature modulated protein release from pH-temperature sensitive hydrogels [J]. Biomaterials, 1999, 20(6):517-521
    [62]沈锋,杨丽芳,成国祥等,组织工程用生物材料的研究与开发[J].材料研究学报,2000,14(1):1-11
    [63] Bhalerao V. S., Varghese S., Lele A. K., Badiger M. V., Thermoreversible hydrogel based on radiation induced copolymerisation of poly(N-isopropylacrylamide) and poly(ethylene oxide) [J]. Ploymer, 1998, 39(11):2255-2266
    [64] Mann B. K., Gobin A. S., Tsai A. T., Schmedlen R. H., West J., Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: synthetic ECM analogs for tissue engineering [J]. Biomaterials, 2001, 22(22):3045-3051
    [65] Stile R. A., Burghardt W. R., Healy K. E., Synthesis and characterization of injectable poly(N-isopropylacrylamide)-based hydrogels that support tissue formation in vitro [J]. Macromolecules, 1999, 32(22):7370~7379
    [66] Kim S., Healy .K E., Synthesis and characterization of injectable poly(N-isopropylacrylamide-co-acrylic acid) hydrogels with proteolytically degradable cross-links [J]. Biomacromolecules, 2003, 4(5):1214~1223
    [67] Ho E., Lowman A., Marcolongo M., Synthesis and characterization of an injectable hydrogel with tunable mechanical properties for soft tissue repair [J]. Biomacromolecules, 2006, 7(11):3223~3228
    [68] Freitas R., Cussler E. L., Temperature sensitive gels as extraction solvents [J]. Chem. Eng. Sci., 1987, 42(1):97-99
    [69] Afrassiabi A., Hoffman S. A., Cadwell A. L., Effect of temperaure on the release rate of biomolecules from thermally reversible hydrogel [J]. Journal of Membrane Science, 1987,33:19l-200
    [70]冯霞,陈莉,董晶等,快速响应温敏凝胶及其在生物分离中的应用研究[J].南开大学学报(自然科学版),2005,38(6):34-40
    [71]何培新,肖卫东,黄鹤等,高吸水性三元共聚树脂的合成及性能研究[J].高分子材料科学与工程,1999,15(6):65-68
    [72] Woodhouse J., Johnson M. S., Effect of superabsorbent polymers on survival and growth of crop seedlings [J]. Agricultural Water Management, 1991, 20(1): 63-70
    [73] Huttermann A., Zommorodi M., Reise K., Addition of hydrogels to soil for prolonging the survival of Pinus halepensis seedlings subjected to drought [J]. Soil & Tillage Research, 1999, 50(3-4):295-304
    [74] Dzinomwa G. P. T., Wood C. J.; Hill D. J. T., Fine coal dewatering using pH-and temperature-sensitive superabsorbent polymers [J]. Polymers Advancedogies Technol., 1997, 8(12):767-772
    [75] Gao D., Heimann R. B., Alexander S. D. B., Box-Behnken design applied to study the strengthening of aluminate concrete modified by a superabsorbent polymer/clay composite [J]. Advances in cement research, 1997, 9(35):93-97
    [76]黄继才等,木质纤维素吸水材料初探[J].高分子材料科学与工程,1991,4:99-101
    [77] Cho J., Grant J., Allen C., et al., Synthesis and Physicochemical and Dynamic Mechanical Properties of a Water-Soluble Chitosan Derivative as a Biomaterial [J]. Biomacromolecules, 2006, 7(12):3548-3548
    [78]蒋挺大,壳聚糖[M],北京:化学工业出版社,2001
    [79] Badawy M. E. I., Rabea E. I., Rogge T. M., Synthesis and Fungicidal Activity of New N,O-Acyl Chitosan Derivatives [J]. Biomacromolecules, 2004, 5:589-595
    [80] Guo Baolin, Yuan Jinfang, Gao Qingyu, Preparation and characterization of pH sensitive comb-shaped chitosan material for the controlled release of coenzyme A [J]. J Mater Sci., 2007, 18:753–757
    [81] Poole S. K., Patel S., Dehring K., et al, Determination of acid dissociation constants by capillary electrophoresis [J]. Journal of Chromatography A, 2004, 1037(1-2):445-454
    [82]松村秀一,韩金城等,甲壳素和壳聚糖衍生物的合成及吸湿保湿性[J].油化学,1989,38(6):492-500
    [83] Zhang xianzheng, Sun guomin, Wu daqing, Synthesis and characterazation of partially biodegradable and thermosensitive hydrogel [J] Journal of material science, 2000, 15:865-875
    [84] Kurita K., Chemistry and application of Chitin and Chitosan [J]. Polymer Degradation and Stability, 1998, 59:117-120
    [85] Xia Yongqing, Guo Tianying, Song Moudao, et al. Hemoglobin Recognition by Imprinting in Semi-Interpenetrating Polymer Network Hydrogel Based on Polyacrylanide and Chitosan. [J], Biomacromolecules 2005, 6(5):2601-2606

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700