粘土/聚合物纳米复合水凝胶的合成及结构性能表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合物水凝胶已成为人们生活中必不可少的一部分,在许多领域得到了广泛应用,如,分子滤膜、超强吸水剂、接触透镜等。由于智能凝胶能够对外界的环境刺激产生有效响应,被广泛研究以用于药物释放系统、萃取分离、微通道元件、形状记忆材料及响应性显示元件等。但是,目前智能凝胶仍存在一些致命缺点,如响应速率慢、机械强度差等。因此,近期对智能凝胶研究主要有以下三个趋势:智能凝胶的微纳米化及多功能化、提高块状智能凝胶的响应速率、提高水凝胶的力学性能。
     本论文以提高凝胶力学性能与改善凝胶响应性能为目的,选用一种经焦磷酸钠改性的锂皂石(Laponite XLS,粘土S)作为交联剂,采用原位聚合方法合成了一系列粘土/聚合物纳米复合凝胶,得到了一系列具有优异力学性能及特殊响应行为的纳米复合凝胶,对其合成方法、性能及结构进行了系统研究。取得了如下主要结果:
     1.选用了改性的锂皂石(Laponite XLS,粘土S)作为交联剂,通过原位溶液聚合方法合成了一系列高粘土含量的粘土S/聚(N-异丙基丙烯酰胺)(PNIPAAm)纳米复合水凝胶(S-N凝胶)。对其力学性能研究发现该凝胶具有极高的拉伸断裂强度及拉伸断裂伸长率,较快的应力松弛,较大的力学损耗以及低的拉伸回弹率。对该凝胶消溶胀行为、透光率的温敏性以及DSC分析,表明在高粘土含量(>10wt%)时,由于粘土片层使大分子链亲水化,导致凝胶的宏观相变行为消失。对凝胶结构进行了XRD、SEM、AFM及TEM表征,结果表明粘土在凝胶中有着良好的分散,且冻干的S-N凝胶呈多孔状,可作为潜在的多孔材料。
     2.通过原位聚合法合成了一系列高粘土含量的粘土S/聚丙烯酰胺(PAAm)纳米复合凝胶(S-M凝胶)。对S-M凝胶的力学性能进行了系统研究,该凝胶具有高拉伸强度、超高的断裂伸长率,且与S-N凝胶相比,S-M凝胶具有很小的力学损耗以及良好的回弹性;对聚合过程中S-M预聚液体系的透光率的研究表明,在纳米复合凝胶合成过程中,体系是否会发生透光率变化与聚合所得大分子的亲水性强弱有关;S-M凝胶的溶胀行为表明,S-M凝胶的溶胀倍率随粘土含量或聚合物含量的升高而减小;对S-M凝胶的结构进行了表征,XRD图谱表明在湿态的高含量S-M凝胶中,粘土呈完全剥离状态,在干凝胶中,由于体积的减小,部分粘土聚集呈插层状态。S-M的SEM照片表明,在粘土含量较低时,粘土在冷冻干燥凝胶中呈良好分散,而在粘土含量高时,粘土在冻干凝胶中部分团聚。
     3.成功地合成了一系列粘土S/Poly(NIPAAm-co-AAm)纳米复合水凝胶(S-N-M凝胶)。该凝胶具有较好的力学性能,较高的拉伸强度和较高的断裂伸长率。其断裂伸长比优于S-N水凝胶,而拉伸强度则高于S-M水凝胶。通过调节聚合物的配比可对S-N-M凝胶的力学性能与溶胀性能进行调控。纳米复合水凝胶的力学性能取决于大分子的亲水性及柔性。通过对S-N-M纳米复合水凝胶在反应过程中透光率变化规律的研究,再次证实了透光率是否变化与聚合物的亲水性有关,聚合物亲水性越强则透光率变化越小,疏水性越强则变化越大。
     4.通过热处理制备了一系列具有超高溶胀倍率的粘土S/PAAm纳米复合水凝胶(S-M-T凝胶),其溶胀倍率高达2000g/g以上;通过对该高溶胀倍率凝胶的研究,发现热处理提高凝胶溶胀倍率的机理在于高温增大了PAAm的活动性,使得许多PAAm的重复单元从粘土上脱离,增大了交联点间分子量,从而增大了凝胶的溶胀倍率;通过对该凝胶的溶胀行为研究,发现该凝胶对外界溶液中的离子十分敏感,与传统离子型高吸水凝胶的溶胀行为相似,据分析应是由于粘土片层带电荷所至;通过对凝胶的力学性能测试发现凝胶在处理后力学性能并未有所下降,且在高溶胀倍率下仍具有远优于传统高吸水凝胶的力学性能,有望在对力学性能及溶胀倍率要求都较高的领域有所应用。
     5.采用原位聚合的方法成功合成了粘土/聚(N-异丙基丙烯酰胺)/聚乙二醇纳米复合水凝胶(S-N-P凝胶),聚乙二醇(PEG)的引入能使原本在高粘土含量的PNIPAAm纳米复合凝胶中消失的LCST重现,据分析应是PEG的引入占据了粘土上的一些交联位置,从而使PNIPAAm活动性增大;加大PEG6000用量,得到了具有双临界共溶温度(UCST、LCST)的S-N-P凝胶,且凝胶的UCST及LCST皆随PEG6000含量的增加而下降,凝胶在十分狭窄的温度区间中具有高透明度,在其它温度范围呈白色不透明状,该凝胶在温敏元件方面有潜在应用。
     6.使用紫外引发光掩膜微通道原位聚合方法成功地合成了温敏性纳米复合凝胶微元件,该微元件保持了纳米复合凝胶优异的力学性能,有一定的温敏性能,预计将在某些对力学性能要求较高的温敏微阀门上有潜在应用。粘土含量是影响元件性能最主要的因素,当粘土含量较低时,难以得到尺寸良好的凝胶微元件,粘土含量较高时,则温敏性能差,只有当粘土含量适当(约10wt%)时,才能得到同时具有良好的形状保持性能和温敏性能的微凝胶。对于合成过程中的其它影响因素,如聚合时间、光引发剂用量等,也进行了研究,但相对于粘土含量而言,对元件性能的影响较小。
Polymeric hydrogels have become a very important part of our life, which have beenapplied in many fields, like molecular filters, superabsorbents, contact lenses etc. Smarthydrogels have been fully investigated for potential uses, like drug delivery system,substance seperation, microchannel components, shape memory material, andstimuli-responsive devices, because their unique sensitivity to outside stimulus. However,there are some shortcomings for smart hydrogels, like slow responsive rate, weakmechanical properties etc. Therefore, there are three trends in scientific research aboutsmart hydrogels: micro-, nano-or multifunctional gels, enhancing the responsive rate ofbulk smart hydrogels, and improving the mechanical properties of smart hydrogels.
     In this thesis, we have successfully prepared several kinds of clay/polymernancomposite hydrogels by in-situ polymerization, choosing a kind of modified hectorite(Laponite XLS, Clay-S) as the crosslinker. These nanocomposite hydrogels show excellentmechanical properties and some special stimuli-responsive behavior. Their preparation,structure and properties have been systematically investigated. The results and conclusionsare as follows:
     1. A series of Clay-S/poly(N-isopropylacrylamide)(PNIPAAm) nanocomposite hydrogels(S-N gels) have been prepared by in-situ polymerization, whose mechanical propertieshave been systematically inverstigated. These gels show very high tensile strength andhigh elongation at break, fast stress relaxation, high hysteresis and poor elasticrecovery. The results of the deswelling behavior, thermosensitive transparency, andDSC curves of S-N gels indicated that the macroscopic phase transition disappears athigh clay content(>10wt%), for the clay platelets make PNIPAAm chains morehydrophilic. The results of XRD, SEM, AFM, and TEM indicate that clay platelets areuniformly dispersed in S-N gels. Moreover, the freezing dried S-N gels is porous, andmay be used as potential porous materials.
     2. A series of Clay-S/polyacrylamide(PAAm) nanocomposite hydrogels (S-M gels) havebeen prepared by in-situ polymerization, which show excellent mechanical properties,like high tensile strength and ultrahigh elongation at break. In addition, compared withS-N gels, S-M gels show slow stress relaxation, small hysteresis and high elasticrecovery. The results of the transparency changes during polymerization of S-M gelsindicate that the hydrophilicity of polymer chains determine whether the transparencychanges occur or not. The swelling ratio of S-M gels decreases with increasing claycontent or increasing polymer content. XRD profile of S-M gels indicates that the clayplatelets are fully exfoliated in wet S-M gels, and partially intercalated in dried S-Mgels due to the volume shrinking. SEM photos of S-M gels indicate that clay plateletsform a good dispersion in freezing dried S-M gels at low clay content, and partiallyaggregated at high clay content.
     3. A series of Clay-S/Poly(NIPAAm-co-AAm) nanocomposite hydrogels (S-N-M gels)have been prepared by in-situ polymerization, which show good mechanical properties,like high tensile strength and high elongation at break. Their elongation at break ishigher than S-N gels, and their tensile strength is better than S-M gels. Furthermore,the mechanical properties and swelling bahavior of S-N-M gels can be modulated bychanging their composition. The mechanical properties of nanocomposite hydrogelsare determined by the hydrophilicity and flexibility of polymer chains. And it isreconfirmed that the transparency changes during polymerization of nanocompositehydogels are affected by the hydrophilicity of polymer chains; the higher thehydrophilicity, the smaller the changes.
     4. A series of Clay-S/PAAm nanocomposite hydrogels showing ultrahigh swelling ratio(S-M-T gels) have been prepared by post heat-treatment on S-M gels. The swellingratio of S-M-T gels is up to several thousands times. The reason of the improvement isthe increasing molecular weight among crosslink points, which come from many AAmrepeat units of the polymer chains detaching from clay platelets due to the highermobility of PAAm chains at high temperature. The swelling behavior of the S-N-Mgels show that their swelling ratio is sensitive to ion concentration in outside solution,which is similar to the swelling behavior of traditional ionic superabsorbents. Thismay be ascribed to the charges on the clay platelets. The mechanical properties ofS-M-T gels are not remarkably affected by post heat-treatment, and the S-M-T gelsstill show much better mechanical properties than traditional superabsorbents.
     5. A series of Clay-S/PNIPAAm/PEG nanocomposite hydrogels (S-N-P gels) have beenprepared by in-situ polymerization. The introduction of PEG makes the LCST ofnanocomposite hydrogels reoccur at high clay content. It is estimated that PEGmolecules occupy some crosslinking sites on clay platelets, endowing PNIPAAmmolecules higher mobility. A kind of nanocomposite hydrogels with two criticalsolution temperature (UCST and LCST) has been successfully prepared by increasingPEG6000 content, and their UCST and LCST decrease with increasing PEG6000content. Moreover, these S-N-P gels with two critical solution temperature show hightransparency only in Very narrow temperature region.
     6. A series of thermosensitive nanocomposite hydrogel microcomponents have beensuccessfully fabricated by photomask microchannel in-situ polymerization. Thesemicrocomponents show good mechanical properties, and good thermosensitivity,which may be used as thermosensitive microvalve with high mechanical properties.Clay content is the most important factor affecting the properties of microcomponents.It is hard to get hydrogel microcomponents with good shape stability at low claycontent, and the thermosensitivity of the microcomponents prepared at high claycontent is bad. Thus, the microcomponents with good shape stability andthermosensitivity can only be fabricated at proper clay contents (about 10wt%). Otherfactors during preparation have also been. investigated, like polymerization time,photoinitiator content etc., but these factors affect the properties of microcomponentsmuch less than clay content.
引文
[1]. Y. Osada, A.R. Khokhlov, "Polymer Gels and Networks". 1st ed. 2002, New York: Marcel Dekker, Inc.
    [2]. H. B. Bohidar, P. Dubin, Y. Osada, "Polymer Gels:Fundamentals and Applications ". 1st ed. 2002, Washington DC: Oxford University Press.
    [3]. N. Yui, R. J. Mrsny, K. Park, "Reflexive Polymers and Hydrogels ". 1st ed. 2003, New York: CRC Press.
    [4]. F. L. Buchholz, A. T. Graham, "Modern Superabsorbent Polymer Technology". 1st ed. 1998: John Wiley & Sons, Inc.
    [5].邹新禧,”超强吸水剂”.第二版ed.2002,北京:化学工业出版社.
    [6].姚康德,成国祥,”智能材料”.1996,天津:天津大学出版社.
    [7].顾雪蓉,朱育平,”凝胶化学”.1st ed.2005,北京:化学工业出版社.396.
    [8].陈莉,”智能高分子材料”.2005,北京:化学工业出版社.361.
    [9]. P. J. Flory, "Principle of Polymer Chemistry". 1953, New York: Cornel University Press.
    [10]. Joannis. S. Scarpa, Delbert. Dean. Mueller, I.M. Klotz, Slow hydrogen-deuterium exchange in a non-.alpha.-helical polyamide J. Am. Chem. Soc., 1967, 89(24): 6024.
    [11]. K. Dusek, D. Patterson, Transition in swollen polymer networks induced by intramolecular condensation. Journal of Polymer Science Part A-2: Polylner Physics, 1968, 6(7): 1209.
    [12]. T. Tanaka, Collapse of Gels and the Critical Endpoint Phys. Rev. Lett., 1978, 40(12): 820.
    [13]. T. Tanaka, D. Fillmore, S.-T. Sun, I. Nishio, G. Swislow, A. Shah, Phase Transitions in Ionic Gels Phys. Rev. Lett., 1980, 45(20): 1636
    [14]. T. Tanaka, I. Nishio, S.-T. Sun, S. Ueno-Nishio, Collapse of Gels in an Electric Field. Science, 1982, 218(4571): 467.
    [15]. C. D. Jones, L. A. Lyon, Synthesis and Characterization of Multiresponsive Core-Shell Microgels. Macromolecules, 2000, 33(22): 8301.
    [16]. Akira Mamada, Toyoichi Tanaka, Dawan Kungwatchakun, M. Irie, Photoinduced phase transition of gels Macromolecules, 1990, 23(5): 1517.
    [17]. B. Zhao, J.S. Moore, Fast pH- and Ionic Strength-Responsive Hydrogels in Microchannels. Langmuir, 2001, 17(16): 4758.
    [18]. Y. Hirokawa, T. Tanaka, Volume phase transition in a nonionic gel. The Journal of Chemical Physics, 1984, 81(12): 6379.
    [19]. Y. Liu, J.J. Xie, M. F. Zhu, X.Y. Zhang, A study of the synthesis and properties of AM/AMPS copolymer as superabsorbent. Macromol. Mater. Eng., 2004, 289(12): 1074.
    [20]. E. S. Matsuo, T. Tanaka, Patterns in shrinking gels. Nature, 1992, 358(6386): 482.
    [21].纪仕辰,丁建东,聚合物水凝胶体积相变过程中自发生成的新图案.高等 学校化学学报,2001,22(7):1254.
    [22]. Y. Liu, J.J. Xie, X.Y. Zhang, Synthesis and properties of the copolymer of acrylamide with 2-acrylamido-2-methylpropanesulfonic acid. J. Appl. Polym. Sci., 2003, 90(13): 3481.
    [23]. Y.Q. Xiang, Z.Q. Peng, D.J. Chen, A new polymer/clay nano-composite hydrogel with improved response rate and tensile mechanical properties. Eur. Polym. J., 2006, 42(9): 2125.
    [24]. Shiro Nishi, Tadao Kotaka, Complex-Forming Polyoxyethylene: Poly(acrylic acid) Interpenetrating Polymer Networks Ⅲ. Swelling and Mechanochemical Behavior. Polym.J.,1989,21(5) :393. [25] .Tohru Shiga,Yoshiharu Hirose,Akane Okada,Toshio Kurauchi,Bending of poly(vinyl alcohol)-poly(sodium acrylate)composite hydrogel in electric fields.J.Appl.Polym.Sci.,1992,44(2) :249. [26] .Seon Jeong Kim,Sang Jun,Park Sang,Min Lee,Young Moo,Lee Hee,Chan Kim,Sun I.Kim,Electroactive characteristics of interpenetrating polymer network hydrogels composed of poly(vinyl alcohol)and poly(N-isopropylacrylamide).J.Appl.Polym.Sci.,2003,89(4) :890. [27] .Y.Ono,T.Shikata,Hydration and Dynamic Behavior of Poly(N-isopropylacrylamide)s in Aqueous Solution:A Sharp Phase Transition at the Lower Critical Solution Temperature.J.Am.Chem.Soc,2006,128(31) :10030. [28] .Y.-L.H.Jiangbing Xie,Thermosensitive poly(N-isopropylacrylamide)hydrogels bonded on cellulose supports.J.Appl.Polym.Sci.,2003,89(4) :999. [29] .Mitsuhiro Ebara,Takao Aoyagi,Kiyotaka Sakai,Teruo Okano,The incorporation of carboxylate groups into temperature-responsive poly(N-isopropylacrylamide)-based hydrogels promotes rapid gel shrinking.Journal of Polymer Science Part A:Polymer Chemistry,2001,39(3) :335. [30] .X.Z.Zhang,YY.Yang,T.S.Chung,K.X.Ma,Preparation and Characterization of Fast Response Macroporous Poly(N-isopropylacrylamide)Hydrogels.Langmuir,2001,17(20) :6094. [31] .K.Ogawa,A.Nakayama,E.Kokufuta,Preparation and Characterization of Thermosensitive Polyampholyte Nanogels.Langmuir,2003,19(8) :3178. [32] .D.Gan,L.A.Lyon,Interfacial Nonradiative Energy Transfer in Responsive Core-Shell Hydrogel Nanoparticles.J.Am.Chem.Soc,2001,123(34) :8203. [33] .S.Takata,T.Norisuye,M.Shibayama,Small-Angle Neutron-Scattering Study on Preparation Temperature Dependence of Thermosensitive Gels.Macromolecules,2002,35(12) :4779. [34] .Nikolai A.Plate,Tamara L.Lebedeva,L.I.Valuev,Lower Critical Solution Temperature in Aqueous Solutions of N-Alkyl-Substituted Polyacrylamides. Polym. J.,1999,31 (1) :21. [35] .I.Idziak,D.Avoce,D.Lessard,D.Gravel,X.X.Zhu,Thermosensitivity of Aqueous Solutions of Poly(N,N-diethylacrylamide).Macromolecules,1999,32(4) :1260. [36] .S.H.Cho,M.S.Jhon,S.Hong Yuk,Temperature-sensitive swelling behavior of polymer gel composed of poly (N,N-dimethylaminoethyl methacrylate)and its copolymers.Eur.Polym.J.,1999,35(10) :1841. [37] .H. Ichijo,O.Hirasa,R.Kishi,M.Oowada,K.Sahara,E.Kokufuta,S.Kohno,Thermo-responsive gels.Radiation Physics and Chemistry,1995,46(2) :185. [38] .Mitsuru Akashi,Shirou Nakano,Akio Kishida,Synthesis of poly(N-vinylisobutyramide)from poly(N-vinylacetamide)and its fhermosensitive property.Journal of Polymer Science Part A: Polymer Chemistry,1996,34(2) :301. [39] .M.Ataman,Properties of aqueous salt solutions of poly(ethylene oxide).Cloud points,θ temperatures Colloid & Polymer Science,1987,265(1) :19. [40] .C.Ramkissoon-Ganorkar,F.Liu,M.Baudys,S.W.Kim,Modulating insulin-release profile from pH thermosensitive polymeric beads through polymer molecular weight.J.Control.Release,1999,59(3) :287. [41] .N.Reber,A.Kuchel,R.Spohr,A.Wolf,M.Yoshida,Transport properties of thermo-responsive ion track membranes.Journal of Membrane Science,2001,193(1) :49. [42] .M. Annaka,M.Sugiyama,M.Kasai,T.Nakahira,T.Matsuura,H.Seki,T.Aoyagi,T.Okano,Transport Properties of Comb-Type Grafted and Normal-Type N-Isopropylacrylamide Hydrogel.Langmuir,2002,18(20) :7377. [43] .L.Ying,E.T.Kang,K.G.Neoh,Synthesis and Characterization of Poly(N-isopropylacrylamide)-graft-Poly(vinylidene fluoride)Copolymers and Temperature-Sensitive Membranes.Langmuir,2002,18(16) :6416. [44] .D.J.Beebe,J.S.Moore,J.M.Bauer,Q.Yu,R.H.Liu,C.Devadoss,B.H.Jo,Functional hydrogel structures for autonomous flow control inside microfluidic channels.Nature,2000,404(6778) :588. [45] .Y.Osada,A.Matsuda,Shape-Memory in Hydrogels.Nature,1995,376(6537) :219. [46] .M.Uchida,M.Kurosawa,Y.Osada,Swelling Process and Order-Disorder Transition of Hydrogel Containing Hydrophobic Ionizable Groups.Macromolecules,1995,28(13) :4583. [47] .Z.B.Hu,YY.Chen,CJ.Wang,YD.Zheng,Y Li,Polymer gels with engineered environmentally responsive surface patterns.Nature,1998,393(6681) :149. [48] .A.Richter,D.Kuckling,S.Howitz,T.Gehring,K.F.Arndt,Electronically controllable microvalves based on smart hydrogels:Magnitudes and potential applications.Journal of Microelectromechanical Systems,2003,12(5) :748. [49] .A.Richter,S.Howitz,D.Kuckling,K.Kretschmer,K.F.Arndt,Automatically and electronically controllable hydrogel based valves and microvalves-Design and operating performance.Macromol.Symp.,2004,210(447. [50] .A.Richter,S.Howitz,D.Kuckling,K.F.Arndt,Influence of volume phase transition phenomena on the behavior of hydrogel-based valves.Sensors and Actuators B-Chemical,2004,99(2-3) :451. [51] .D.Kuckling,A.Richter,K.F.Arndt,Temperature and pH-dependent swelling behavior of poly(N-isopropylacrylamide)copolymer hydrogels and their use in flow control.Macromol.Mater.Eng.,2003,288(2) :144. [52] .S.-H.Y Wen-Fu Lee,Thermoreversible hydrogels.Ⅻ.Effect of the polymerization conditions on the swelling behavior of the N-isopropylacrylamide gel.J.Appl.Polym.Sci.,2000,78(9) :1604. [53] .Y.-T.F.Wen-Fu Lee,Effect of montmorillonite on the swelling behavior and drug-release behavior of nanocomposite hydrogels.J.Appl.Polym.Sci.,2003,89(13) :3652. [54] .Toshihiro Hirai,Hidetoshi Maruyama,Takashi Suzuki,Sadao Hayashi,Effect of chemical cross-linking under elongation on shape restoring of poly(vinyl alcohol)hydrogel.J.Appl.Polym.Sci.,1992,46(8) :1449. [55] .Toshihiro Hirai,Hidetoshi Maruyama,Takashi Suzuki,Sadao Hayashi,Shape memorizing properties of a hydrogel of poty(vinyl alcohol). J. Appl. Polym. Sci., 1992, 45(10): 1849.
    [56]. Z. B. Hu, X.M. Zhang, Y. Li, Synthesis and Application of Modulated Polymer Gels. Science, 1995, 269(5223): 525.
    [57]. Y. Li, Z.B. Hu, Y.Y. Chen, Shape memory gels made by the modulated gel technology. J. Appl. Polym. Sci., 1997, 63(9): 1173.
    [58]. R. Akashi, H. Tsutsui, A. Komura, Polymer Gel Light-Modulation Materials Imitating Pigment Cells. Adv. Mater., 2002, 14(24): 1808.
    [59]. Z. Hu, X. Lu, J. Gao, C. Wang, Polymer Gel Nanoparticle Networks. Adv. Mater., 2000, 12(16): 1173.
    [60]. Z. Hu, X. Lu, J. Gao, Hydrogel Opals. Adv. Mater., 2001, 13(22): 1708.
    [61]. Z. B. Hu, X.H. Xia, Hydrogel nanoparticle dispersions with inverse thermoreversible gelation. Adv. Mater., 2004, 16(4): 305.
    [62]. K. McAllister, P. Sazani, M. Adam, M.J. Cho, M. Rubinstein, R.J. Samulski, J.M. DeSimone, Polymeric nanogels produced via inverse microemulsion polymerization as potential gene and antisense delivery agents. J. Am. Chem. Soc., 2002, 124(51): 15198.
    [63]. C. D. Vo, D. Kuckling, H. J. P. Adler, M. Schohoff, Preparation ofthermosensitive nanogels by photo-cross-linking. Colloid Polym. Sci., 2002, 280(5): 400.
    [64]. D. Kuckling, C. D. Vo, S.E. Wohlrab, Preparation of nanogels with temperature-responsive core and pH-responsive arms by photo-cross-linking. Langmuir, 2002, 18(11): 4263.
    [65]. D. J. Gan, L. A. Lyon, Tunable swelling kinetics in core-shell hydrogel nanoparticles. J. Am. Chem. Soc., 2001, 123(31): 7511.
    [66].李威,王文锋,等,智能纳米凝胶的合成及其生物医学应用.核技术,2002,25(8):624.
    [67].吴道澄,吴红,等,智能化释药载体纳米凝胶的制备及其释药特性.第四军医大学学报,2001,22(8):767.
    [68]. Y. H. Deng, W. L. Yang, C. C. Wang, S. K. Fu, A Novel Approach for Preparation of Thermoresponsive Polymer Magnetic Microspheres with Core-Shell Structure. Adv. Mater., 2003, 15(20): 1729.
    [69].孙汉文,余家会,张春富,谢雷东,侯铮迟,徐冬梅,姚思德,聚N-异丙基丙烯酰胺包覆Fe3O4磁导向纳米粒子的制备和表征.辐射研究与辐射工艺学报,2004,22(5):293.
    [70]. T.M.P.K.U.P.D.W.U. Chi-Hao Luan, Differential scanning calorimetry studies of NaCl effect on the inverse temperature transition of some elastin-based polytetra-, polypenta-, and polynonapeptides. Biopolymers, 1991, 31 (5): 465.
    [71]. Y. Kaneko, K. Sakai, A. Kikuchi, R. Yoshida, Y. Sakurai, T. Okano, Influence of Freely Mobile Grafted Chain-Length on Dynamic Properties of Comb-Type Grafted Poly(N-Isopropylacrylamide) Hydrogels. Macromolecules, 1995, 28(23): 7717.
    [72]. R. Yoshida, K. Uchida, Y. Kaneko, K. Sakai, A. Kikuchi, Y. Sakurai, T. Okano, Comb-Type Grafted Hydrogels with Rapid De-Swelling Response to Temperature-Changes. Nature, 1995, 374(6519): 240.
    [73]. Y. Kaneko, S. Nakamura, K. Sakai, T. Aoyagi, A. Kikuchi, Y. Sakurai, T. Okano, Rapid deswelling response of poly(N-isopropylacrylamide) hydrogels by the formation of water release channels using poly(ethylene oxide) graft chains. Macromolecules, 1998, 31(18): 6099.
    [74]. X.Z. Zhang, Y.Y. Yang, F.J. Wang, T.S. Chung, Thermosensitive Poly(N-isopropylacrylamide-co-acrylic acid) Hydrogels with Expanded Network Structures and Improved Oscillating Swelling-Deswelling Properties. Langmuir, 2002, 18(6): 2013.
    [75].张高奇,查刘生,周美华,马敬红,梁伯润,海藻酸钠和聚N-异丙基丙烯酰胺半互穿网络水凝胶的溶胀动力学研究.高分子学报,20051):35.
    [76].张高奇,查刘生,周美华,马敬红,粱伯润,海藻酸钠/聚(N-异丙基丙烯酰胺)半互穿网络水凝胶的制备及性能研究.功能高分子学报,2004,17(1):41.
    [77]. G.Q. Zhang, L.S. Zha, M.H. Zhou, J.H. Ma, B.R. Liang, Rapid deswelling of sodium alginate/poly(N-isopropylacrylamide) semi-interpenetrating polymer network hydrogels in response to temperature and pH changes. Colloid Polym. Sci.,2005,283(4):431.
    [78].石艳丽,张高奇,马敬红,梁伯润,羧甲基纤维素钠/聚(N-异丙基丙烯酰胺)半互穿网络水凝胶的制备及溶胀性能.高分子材料科学与工程2005,21(5):145.
    [79].石艳丽,许雅菁,张高奇,马敬红,梁伯润,羧甲基壳聚糖/聚(N-异丙基丙烯酰胺)半互穿网络水凝胶的制备及溶胀性能研究.东华大学学报:自然科学版 2005,31(6):6.
    [80].石艳丽,李珍,张高奇,马敬红,粱伯润,CMC/PNIPAAm半互穿网络水凝胶的溶胀动力学研究.功能高分子学报2005,18(1):111.
    [81].石艳丽,李珍,张高奇,马敬红,粱伯润,CMC/PNIPAAm半互穿网络水凝胶的溶胀动力学研究.功能高分子学报,2005,18(1):111.
    [82]. Kabra B G, Gehrke S H, Synthesis of Fast REsponse, Temperature-Sensitive Poly (N-isopropylacrylamide) Gel. Polymer Communications, 1991, 32(11): 322.
    [83]. Xue Shen Wu, Allan S. Hoffman, Paul Yager, Synthesis and characterization of thermally reversible macroporous poly(N-isopropylacrylamide) hydrogels. Journal of Polymer Science Part A: Polymer Chemistry, 1992, 30(10): 2121.
    [84]. X.Z. Zhang, R.X. Zhuo, Preparation of fast responsive, thermally sensitive poly(N-isopropylacrylamide) gel. Eur. Polym. J., 2000, 36(10): 2301.
    [85]. X. Z. Zhang, R.X. Zhuo, Synthesis and characterization of a novel thermosensitive gel with fast response. Colloid Polym. Sci., 1999, 277(11): 1079..
    [86].张先正,卓仁禧,快速温度敏感聚(N—异丙基丙烯酰胺—co—丙烯酰胺)水凝胶的制备及性能研究.高等学校化学学报,2000,21(8):1309.
    [87]. X.Z. Zhang, R.X. Zhuo, Preparation of fast responsive, temperature-sensitive poly(N-isopropylacrylamide) hydrogel. Macromol. Chem. Phys., 1999, 200(12): 2602.
    [88]. W. Xue, I.W. Hamley, M.B. Huglin, Rapid swelling and deswelling of thermoreversible hydrophobically modified poly(N-isopropylacrylamide) hydrogels prepared by freezing polymerisation. Polymer, 2002, 43 (19): 5181.
    [89]. W. Xue, S. Champ, M.B. Huglin, T.G.J. Jones, Rapid swelling and deswelling in cryogels of crosslinked poly(N-isopropylacrylamide-co-acrylic). Eur. Polym. J., 2004, 40(4): 703.
    [90]. K. Kameyama, Y. Kishi, M. Yoshimura, N. Kanzawa, M. Sameshima, T. Tsuchiya, Tyrosine phosphorylation in plant bending - Puckering in a ticklish plant is controlled by dephosphorylation of its actin. Nature, 2000, 407(6800): 37.
    [91]. T. Serizawa, K. Wakita, M. Akashi, Rapid deswelling of porous poly(N-isopropylacrylamide) hydrogels prepared by incorporation of silica particles. Macromolecules, 2002, 35(1): 10.
    [92].张建涛,黄世文,薛亚楠,卓仁禧,PEG作为成孔剂对聚(N-异丙基丙烯酰胺-co-丙烯酸)水凝胶性能的影响.高分子学报20063):418.
    [93].张建涛,黄世文,汪璐玲,卓仁禧,快速响应大孔聚(N-异丙基丙烯酰胺-co-丙烯酸)水凝胶的合成及表征.高等学校化学学报,2004,25(12):2370.
    [94]. J.T. Zhang, S.W. Huang, L.L. Wang, R.X. Zhuo, Preparation and characterization of fast-responsive porous poly(N-isopropylacrylamide-co-acrylic acid) hydrogels. Chem. J. Chin. Univ.-Chin., 2004, 25(12): 2370.
    [95].张先正,卓仁禧,温度敏感聚(N—异丙基丙烯酰胺)/聚(乙烯醇)水凝胶的制备及性能研究.高等学校化学学报,2000,21(11):1776.
    [96].李海东,程凤梅,肖静,医用聚乙烯醇水凝胶的制备及性能.长春工业大学学报:自然科学版,2006,27(3):188.
    [97].王迎军,刘青,郑裕东,吴刚,沉淀法原位复合聚乙烯醇(Pva)/羟基磷灰石(Ha)水凝胶的结构与性能研究.中国生物医学工程学报,2005,24(2):150.
    [98].卢华定,蔡道章,刘青,王迎军,郑裕东,聚乙烯醇/羟基磷灰石复合水凝胶移植修复兔膝关节软骨缺损.中国矫形外科杂志,2004,12(21):1701.
    [99].潘育松,熊党生,聚乙烯醇水凝胶的生物摩擦学研究进展.摩擦学学报,2006,26(21:188.
    [100].薛海滨,马远征,周献,高瑾,刘国权,顾正秋,彭伟,聚乙烯醇水凝胶人工髓核置入对腰椎运动影响的生物力学研究.中国脊柱脊髓杂志,2006,16(8):619.
    [101]. Jian-Tao Zhang, Shi-Wen Huang, Si-Xue Cheng, Ren-Xi Zhuo, Preparation and properties of poly(N-isopropylacrylamide)/poly(N-isopropylacrylamide) interpenetrating polymer networks for drug delivery. Journal of Polymer Science Part A: Polymer Chemistry, 2004, 42(5): 1249.
    [102]. D. Jasna, cacute, Z.S. Petrovi, cacute, Semi-interpenetrating polymer networks composed of poly(N-isopropyl acrylamide) and polyacrylamide hydrogels. Journal of Polymer Science Part B: Polymer Physics, 2004, 42(21): 3987.
    [103]. X. Xia, J. Yih, N.A. D'Souza, Z. Hu, Swelling and mechanical behavior of poly(N-isopropylacrylamide)/Na-montmorillonite layered silicates composite gels. Polymer, 2003, 44(11): 3389.
    [104].郑俊萍,奚利飞,杨学稳,姚康德,不同交联方式的明胶及明胶/蒙脱土纳米复合材料的力学性能.材料工程,2003(9):26.
    [105]. Y. Tanaka, J.R Gong, Y. Osada, Novel hydrogels with excellent mechanical performance. Prog. Polym. Sci., 2005, 30(1): 1.
    [106]. Y. Okumura, K. Ito, The polyrotaxane gel: A topological gel by figure-of-eight cross-links. Adv. Mater., 2001, 13(7): 485.
    [107]. K. Haraguchi, T. Takehisa, Nanocomposite hydrogels: A unique organic-inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties. Adv. Mater., 2002, 14(16): 1120.
    [108]. J. P. Gong, Y. Katsuyama, T. Kurokawa, Y. Osada, Double-network hydrogels with extremely high mechanical strength. Adv. Mater., 2003, 15(14): 1155.
    [109]. Y. Okumura, K. Ito, The polyrotaxane gel: A topological gel by figure-of-eight cross-links. Adv. Mater., 2001, 13(7): 485.
    [110]. T. Oku, Y. Furusho, T. Takata, A concept for recyclable cross-linked polymers: Topologically networked polyrotaxane capable of undergoing reversible assembly and disassembly. Angew. Chem.-Int. Edit., 2004, 43(8): 966.
    [111]. Stuart J. Rowan, Stuart J. Cantrill, Graham R. L. Cousins, Jeremy K. M. Sanders,J.Fraser Stoddart,Dynamic Covalent Chemistry.Angewandte Chemie International Edition,2002,41(6) :898. [112] .J.P.Gong,Y.Katsuyama,T.Kurokawa,Y.Osada,Double-network hydrogels with extremely high mechanical strength.Adv.Mater.,2003,15(14) :1155. [113] .D.Kaneko,T.Tada,T.Kurokawa,J.P.Gong,Y Osada,Mechanically strong hydrogels with ultra-low frictional coefficients.Adv.Mater.,2005,17(5) :535. [114] .Y.H.Na,T.Kurokawa,Y Katsuyama,H.Tsukeshiba,J.P.Gong,Y Osada,S.Okabe,T.Karino,M.Shibayama,Structural characteristics of double network gels with extremely high mechanical strength.Macromolecules,2004,37(14) :5370. [115] .Y.Tanaka,R.Kuwabara,Y.H.Na,T.Kurokawa,J.P.Gong,Y Osada,Determination of fracture energy of high strength double network hydrogels.J.Phys.Chem.B,2005,109(23) :11559. [116] .H.Tsukeshiba,M.Huang,Y.H..Na,T.Kurokawa,R.Kuwabara,Y.Tanaka,H.Furukawa,Y.Osada,J.P.Gong,Effect of polymer entanglement on the toughening of double network hydrogels.J.Phys.Chem.B,2005,109(34) :16304. [117] .K.Haraguchi,T.Takehisa,S.Fan,Effects of clay content on the properties of nanocomposite hydrogels composed of poly(N-isopropylacrylamide)and clay.Macromolecules,2002,35(27) :10162. [118] .K.Haraguchi,R.Farnworth,A.Ohbayashi,T.Takehisa,Compositional effects on mechanical properties of nanocomposite hydrogels composed of poly(N,N-dimethylacrylamide)and clay.Macromolecules,2003,36(15) :5732. [119] .K.Haraguchi,H.J.Li,Control of the coil-to-globule transition and ultrahigh mechanical properties of PNIPA in nanocomposite hydrogels.Angew.Chem.-Int.Edit.,2005,44(40) :6500. [120] .K.Haraguchi,S.Taniguchi,T.Takehisa,Reversible force generation in a temperature-responsive nanocomposite hydrogel consisting of poly(N-isopropylacrylamide)and clay.ChemPhysChem,2005,6(2) :238.
    [121] .K.Haraguchi,T.Takada,Characteristic sliding frictional behavior on the surface of nanocomposite hydrogels consisting of organic-inorganic network structure.Macromol.Chem.Phys.,2005,206(15) :1530. [122] .M.Shibayama,T.Karino,S.Miyazaki,S.Okabe,T.Takehisa,K.Haraguchi,Small-Angle Neutron Scattering Study on Uniaxially Stretched Poly(N-isopropylacrylamide)-Clay Nanocomposite Gels.Macromolecules,2005,38(26) :10772. [123] .M.Shibayama,J.Suda,T.Karino,S.Okabe,T.Takehisa,K.Haraguchi,Structure and dynamics of poly(N-isopropylacrylamide)-clay nanocomposite gel.Macromolecules,2004,37(25) :9606. [124] .J.J.Nie,B.Y.Du,W.Oppermann,Swelling,elasticity,and spatial inhomogeneity of poly(N-isopropylacrylamide)/clay nanocomposite hydrogels.Macromolecules,2005,38(13) :5729. [125] .K.Haraguchi,H.J.Li,K.Matsuda,T.Takehisa,E.Elliott,Mechanism of forming organic/inorganic network structures during in-situ free-radical polymerization in PNIPA-clay nanocomposite hydrogels.Macromolecules,2005,38(8) :3482.
    [1]. P. S. Stayton, T. Shimoboji, C. Long, A. Chilkoti, G. Ghen, J.M. Harris, A.S. Hoffman, Control of protein-ligand recognition using a stimuli-responsive polymer. Nature, 1995, 378(6556): 472.
    [2]. C. Ramkissoon-Ganorkar, F. Liu, M. Baudys, S.W. Kim, Modulating insulin-release profile from pH thermosensitive polymeric beads through polymer molecular weight. J. Control. Release, 1999, 59(3): 287.
    [3]. D. J. Beebe, J.S. Moore, J.M. Bauer, Q. Yu, R.H. Liu, C. Devadoss, B.H. Jo, Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature, 2000, 404(6778): 588.
    [4]. Y. Hirokawa, T. Tanaka, Volume phase transition in a nonionic gel. The Journal of Chemical Physics, 1984, 81(12): 6379.
    [5]. D. Kuckling, J. Hoffmann, M. Plotner, D. Ferse, K. Kretschmer, H.-J.P. Adler, K.-F. Arndt, R. Reichelt, Photo cross-linkable poly(N-isopropylacrylamide) copolymers Ⅲ: micro-fabricated temperature responsive hydrogels. Polymer, 2003, 44(16): 4455.
    [6]. R. Akashi, H. Tsutsui, A. Komura, Polymer Gel Light-Modulation Materials Imitating Pigment Cells. Adv. Mater., 2002, 14(24): 1808.
    [7]. Taolei Sun, Guojie Wang, Lin Feng, Biqian Liu, Yongrnei Ma, Lei Jiang, Daoben Zhu, Reversible Switching between Superhydrophilicity and Superhydrophobicity. Angewandte Chemie International Edition, 2004, 43(3): 357.
    [8]. Z. Hu, X. Lu, J. Gao, C. Wang, Polymer Gel Nanoparticle Networks. Adv. Mater., 2000,12(16) :1173. [9] .Z.Hu,X.Lu,J.Gao,Hydrogel Opals.Adv.Mater.,2001,13(22) :1708.
    [10] .Y.H.Deng,W.L.Yang,C.C.Wang,S.K.Fu,ANovel Approach for Preparation of Thermoresponsive Polymer Magnetic Microspheres with Core-Shell Structure.Adv.Mater.,2003,15(20) :1729. [11] .E.Yoshinari,H.Furukawa,K.Horie,Fluorescence study on the mechanism of rapid shrinking of grafted poly(N-isopropylacrylamide)gels and semi-IPN gels.Polymer,2005,46(18) :7741. [12] .Yui N,Mrsny RJ,K.Park,"Reflexive polymers and hydrogels:understanding and designing fast responsive polymeric systems".2004:Boca Raton:CRC Press. [13] .V.Boyko,A.Pich,Y.Lu,S.Richter,K.F.Arndt,H.J.P.Adler,Thermo-sensitive poly(N-vinylcaprolactam-co-acetoacetoxyethyl methacrylate)microgels:1-synthesis and characterization.Polymer,2003,44(26) :7821. [14] .A.Pich,Y.Lu,V.Boyko,K.F.Arndt,H.J.P.Adler,Thermo-sensitive poly(N-vinylcaprolactam-co-acetoacetoxyethyl methacrylate)microgels:2. Incorporation of polypyrrole.Polymer,2003,44(25) :7651. [15] .D.Kuckling,I.G.Ivanova,H.J.P.Adler,T.Wolff,Photochemical switching of hydrogel film properties.Polymer,2002,43(6) :1813. [16] .C.D.Vo,D.Kuckling,H.J.P.Adler,M.Schohoff,Preparation of thermosensitive nanogels by photo-cross-linking.Colloid Polym.Sci.,2002,280(5) :400. [17] .X.Z.Zhang,R.X.Zhuo,A novel method to prepare a fast responsive,thermosensitive poly(N-isopropylacrylamide)hydrogel.Macromolecular Rapid Communications,1999,20(4) :229. [18] .T.Serizawa,K.Wakita,M.Akashi,Rapid Deswelling of Porous Poly(N-isopropylacrylamide)Hydrogels Prepared by Incorporation of Silica Particles.Macromolecules,2002,35(1) :10. [19] .X.Z.Zhang,Y.Y.Yang,T.S.Chung,K.X.Ma,Preparation and Characterization of Fast Response Macroporous Poly(N-isopropylacrylamide)Hydrogels.Langmuir,2001,17(20) :6094. [20] .Y.Kaneko,K.Sakai,A.Kikuchi,R.Yoshida,Y.Sakurai,T.Okano,Influence of Freely Mobile Grafted Chain-Length on Dynamic Properties of Comb-Type Grafted Poly(N-Isopropylacrylamide)Hydrogels.Macromolecules,1995,28(23) :7717.
    [21] .R.Yoshida,K.Uchida,Y.Kaneko,K.Sakai,A.Kikuchi,Y Sakurai,T.Okano,Comb-Type Grafted Hydrogels with Rapid De-Swelling Response to Temperature-Changes.Nature,1995,374(6519) :240. [22] .Y.Kaneko,S.Nakamura,K.Sakai,T.Aoyagi,A.Kikuchi,Y Sakurai,T.Okano,Rapid deswelling response of poly(N-isopropylacrylamide)hydrogels by the formation of water release channels using poly(ethylene oxide)graft chains.Macromolecules,1998,31(18) :6099. [23] .X.Z.Zhang,R.X.Zhuo,Synthesis and characterization of a novel thermosensitive gel with fast response.Colloid Polym.Sci.,1999,277(11) :1079. [24] .K.V.Durme,B.Van Mele,W.Loos,F.E.Du Prez,Introduction of silica into thermo-responsive poly(N-isopropyl acrylamide)hydrogels:A novel approach to improve response rates.Polymer,2005,46(23) :9851. [25] .X.Z.Zhang,R.X.Zhuo,Preparation of fast responsive,thermally sensitive poly(N-isopropylacrylamide)gel.Eur.Polym.J.,2000,36(10) :2301. [26] .K.Haraguchi,T.Takehisa,Nanocomposite hydrogels:A unique organic-inorganic network structure with extraordinary mechanical,optical,and swelling/de-swelling properties.Adv.Mater.,2002,14(16) :1120. [27] .K.Haraguchi,T.Takehisa,S.Fan,Effects of clay content on the properties of nanocomposite hydrogels composed of poly(N-isopropylacrylamide)and clay.Macromolecules,2002,35(27) :10162. [28] .K.Haraguchi,R.Farnworth,A.Ohbayashi,T.Takehisa,Compositional effects on mechanical properties of nanocomposite hydrogels composed of poly(N,N-dimethylacrylamide)and clay.Macromolecules,2003,36(15) :5732. [29] .K.Haraguchi,H.J.Li,K.Matsuda,T.Takehisa,E.Elliott,Mechanism of forming organic/inorganic network structures during in-situ free-radical polymerization in PNIPA-clay nanocomposite hydrogels.Macromolecules,2005,38(8) :3482. [30] .A.J. Kinloch,R.J.Young,"Fracture Behaviour of Polymers".1983,London and New York:Applied Science Publisher.371. [31] .J.J.Nie,B.Y. Du,W.Oppermann,Swelling,elasticity,and spatial inhomogeneity of poly(N-isopropylacrylamide)/clay nanocomposite hydrogels.Macromolecules,2005,38(13) :5729.
    [32] .K.Haraguchi,K.Matsuda,Spontaneous formation of characteristic layered morphologies in porous nanocomposites prepared from nanocomposite hydrogels.Chem.Mat.,2005,17(5) :931.
    [1] .H.B.Bohidar,P.Dubin,Y.Osada,"Polymer Gels:Fundamentals and Applicaions".American Chemical Society,Washington DC,.2002. [2] .G.V.R.Rao,M.E.Krug,S.Balamurugan,H.F.Xu,Q.Xu,G.P.Lopez,Synthesis and characterization of silica-poly(N-isopropylacrylamide)hybrid membranes:Switchable molecular filters.Chem.Mat.,2002,14(12) :5075. [3] .M.R.Guilherme,R.Silva,E.M.Girotto,A.F.Rubira,E.C.Muniz,Hydrogels based on PAAm network with PNIPAAm included:hydrophilic-hydrophobic transition measured by the partition of Orange Ⅱ and Methylene Blue in water.Polymer,2003,44(15) :4213. [4] .Y.Liu,J.J.Xie,X.Y.Zhang,Synthesis and properties of the copolymer of acrylamide with 2-acrylamido-2-methylpropanesulfonic acid.J.Appl.Polym.Sci.,2003,90(13) :3481. [5] .E.B.Papas,CM.Vajdic,R.Austen,B.A.Holden,High-oxygen-transmissibility soft contact lenses do not induce limbal hyperaemia.Curr.Eye Res.,1997,16(9) :942. [6] .Y.Tanaka,J.P.Gong,Y.Osada,Novel hydrogels with excellent mechanical performance.Prog.Polym.Sci.,2005,30(1) :1. [7] .Y Okumura,K.Ito,The polyrotaxane gel:A topological gel by figure-of-eight cross-links.Adv.Mater.,2001,13(7) :485. [8] .K.Haraguchi,T.Takehisa,Nanocomposite hydrogels:A unique organic-inorganic network structure with extraordinary mechanical,optical,and swelling/de-swelling properties.Adv.Mater.,2002,14(16) :1120. [9] .J.P.Gong,Y Katsuyama,T.Kurokawa,Y.Osada,Double-network hydrogels with extremely high mechanical strength.Adv.Mater.,2003,15(14) :1155. [10] .K.Haraguchi,S.Taniguchi,T.Takehisa,Reversible force generation in a temperature-responsive nanocomposite hydrogel consisting of poly(N-isopropylacrylamide)and clay.ChemPhysChem,2005,6(2) :238. [11] .K.Haraguchi,T.Takada,Characteristic sliding frictional behavior on the surface of nanocomposite hydrogels consisting of organic-inorganic network structure.Macromol.Chem.Phys.,2005,206(15) :1530. [12] .M.Shibayama,J.Suda,T.Karino,S.Okabe,T.Takehisa,K.Haraguchi, Structure and dynamics of poly(N-isopropylacrylamide)-clay nanocomposite gel.Macromolecules,2004,37(25) :9606. [13] .J.J.Nie,B.Y.Du,W.Oppermann,Swelling,elasticity,and spatial inhomogeneity of poly(N-isopropylacrylamide)/clay nanocomposite hydrogels.Macromolecules,2005,38(13) :5729. [14] .K.Haraguchi,H.J.Li,K.Matsuda,T.Takehisa,E.Elliott,Mechanism of forming organic/inorganic network structures during in-situ free-radical polymerization in PNIPA-clay nanocomposite hydrogels.Macromolecules, 2005,38(8) :3482. [15] .K.Haraguchi,T.Takehisa,S.Fan,Effects of clay content on the properties of nanocomposite hydrogels composed of poly(N-isopropylacrylamide)and clay.Macromolecules,2002,35(27) :10162. [16] .K.Haraguchi,R.Farnworth,A.Ohbayashi,T.Takehisa,Compositional effects on mechanical properties of nanocomposite hydrogels composed of poly(N,N-dimethylacrylamide)and clay.Macromolecules,2003,36(15) :5732. [17] .Y.Liu,M.F.Zhu,X.L.Liu,W.Zhang,B.Sun,Y.M.Chen,H.P.Adler,High Clay Content Nanocomposite Hydrogels with Surprising Mechanical Strength and Interesting Deswelling Kinetics.Polymer,2006,47(1) :1. [18] .K.Haraguchi,H.J.Li,Control of the coil-to-globule transition and ultrahigh mechanical properties of PNIPA in nanocomposite hydrogels.Angew.Chem.-Int.Edit.,2005,44(40) :6500. [19] .Y.Murakami,M.Maeda,DNA-Responsive Hydrogels That Can Shrink or Swell.Biomacromolecules,2005,6(6) :2927. [20] .Y Liu,J.J.Xie,M.F.Zhu,X.Y.Zhang,A study of the synthesis and properties of AM/AMPS copolymer as superabsorbent.Macromol.Mater.Eng.,2004,289(12) :1074. [21] .A.J.Kinloch,R.J.Young,"Fracture Behaviour of Polymers".1983,London and New York:Applied Science Publisher.371. [22] .K.Haraguchi,K.Matsuda,Spontaneous formation of characteristic layered morphologies in porous nanocomposites prepared from nanocomposite hydrogels.Chem.Mat.,2005,17(5) :931.
    [1]. K. Haraguchi, T. Takehisa, S. Fan, Effects of clay content on the properties of nanocomposite hydrogels composed of poly(N-isopropylacrylamide) and clay. Macromolecules, 2002, 35(27): 10162.
    [2]. Y. Liu, M.F. Zhu, X.L. Liu, W. Zhang, B. Sun, Y.M. Chen, H.R Adler, High Clay Content Nanocomposite Hydrogels with Surprising Mechanical Strength and Interesting Deswelling Kinetics. Polymer, 2006, 47(1): 1.
    [3]. K. Haraguchi, T. Takehisa, Nanocomposite hydrogels: A unique organic-inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties. Adv. Mater., 2002, 14(16): 1120.
    [4]. K. Haraguchi, H. J. Li, Control of the coil-to-globule transition and ultrahigh mechanical properties of PNIPA in nanocomposite hydrogels.Angew.Chem.-Int.Edit.,2005,44(40) :6500. [5] .K.Haraguchi,H.J.Li,K.Matsuda,T.Takehisa,E.Elliott,Mechanism of forming organic/inorganic network structures during in-situ free-radical polymerization in PNIPA-clay nanocomposite hydrogels.Macromolecules,2005,38(8) :3482. [6] .K.Haraguchi,H.J.Li,Mechanical properties and structure of polymer-clay nanocomposite gels with high clay content.Macromolecules,2006,39(5) :1898. [7] .M.F.Zhu,Y.Liu,B.Sun,W.Zhang,X.Liu,H.Yu,Y.Zhang,K.Dirk,H.P.Adler,A Novel High Resilient Nanocomposite Hydrogel with Low Hysteresis and Ultrahigh Elongation Macromolecular Rapid Communications,2006,27,1023. [8] .K.Haraguchi,R.Farnworth,A.Ohbayashi,T.Takehisa,Compositional effects on mechanical properties of nanocomposite hydrogels composed of poly(N,N-dimethylacrylamide)and clay.Macromolecules,2003,36(15) :5732.
    [1] .Y.Liu,M.F.Zhu,X.L.Liu,W.Zhang,B.Sun,Y.M.Chen,H.P.Adler,High Clay Content Nanocomposite Hydrogels with Surprising Mechanical Strength and Interesting Deswelling Kinetics.Polymer,2006,47(1) :1. [2] .K.Haraguchi,H.J.Li,Control of the coil-to-globule transition and ultrahigh mechanical properties of PNIPA in nanocomposite hydrogels.Angew.Chem.-Int.Edit.,2005,44(40) :6500.
    [3] .K.Haraguchi,H.J.Li,Mechanical properties and structure of polymer-clay nanocomposite gels with high clay content.Macromolecules,2006,39(5) :1898. [4] .V.Boyko,A.Pich,Y.Lu,S.Richter,K.F.Arndt,H.J.P.Adler,Thermo-sensitive poly(N-vinylcaprolactam-co-acetoacetoxyethyl methacrylate)microgels:1-synthesis and characterization.Polymer,2003,44(26) :7821. [5] .A.Pich,Y.Lu,V.Boyko,K.F.Arndt,H.J.P.Adler,Thermo-sensitive poly(N-vinylcaprolactam-co-acetoacetoxyethyl methacrylate)microgels:2. Incorporation of polypyrrole.Polymer,2003,44(25) :7651. [6] .D.Kuckling,I.G.Ivanova,H.J.P.Adler,T.Wolff,Photochemical switching of hydrogel film properties.Polymer,2002,43(6) :1813. [7] .CD.Vo,D.Kuckling,H.J.P.Adler,M.Schohoff,Preparation of thermosensitive nanogels by photo-cross-linking.Colloid Polym.Sci.,2002,280(5) :400. [8] .X.Z.Zhang,R.X.Zhuo,A novel method to prepare a fast responsive,thermosensitive poly(N-isopropylacrylamide)hydrogel.Macromolecular Rapid Communications,1999,20(4) :229. [9] .T.Serizawa,K.Wakita,M.Akashi,Rapid Deswelling of Porous Poly(N-isopropylacrylamide)Hydrogels Prepared by Incorporation of Silica Particles.Macromolecules,2002,35(1) :10. [10] .X.Z.Zhang,Y.Y.Yang,T.S.Chung,K.X.Ma,Preparation and Characterization of Fast Response Macroporous Poly(N-isopropylacrylamide)Hydrogels.Langmuir,2001,17(20) :6094.
    [11] .X.Z.Zhang,R.X.Zhuo,Synthesis and characterization of a novel thermosensitive gel with fast response.Colloid Polym.Sci.,1999,277(11) :1079. [12] .K.V.Durme,B.Van Mele,W.Loos,F.E.Du Prez,Introduction of silica into thermo-responsive poly(N-isopropyl acrylamide)hydrogels:A novel approach to improve response rates.Polymer,2005,46(23) :9851. [13] .X.Z.Zhang,R.X.Zhuo,Preparation of fast responsive,thermally sensitive poly(N-isopropylacrylamide)gel.Eur.Polym.J.,2000,36(10) :2301. [14] .J.T.Zhang,S.W.Huang,L.L.Wang,R.X.Zhuo,Preparation and characterization of fast-responsive porous poly(N-isopropylacrylamide-co-acrylic acid)hydrogels.Chem.J.Chin.Univ.-Chin.,2004,25(12) :2370. [15] .R.X.Zhuo,W.Li,Preparation and characterization of macroporous Poly(N-isopropylacrylamide)hydrogels for the controlled release of proteins.J.Polym.Sci.Pol.Chem.,2003,41(1) :152. [16] .W.Loyens,P.annasch,F.H.J.Maurer,Poly(ethylene oxide)/Laponite nanocomposites via melt-compounding:effect of clay modification and matrix molar mass.Polymer,2005,46(3) :915. [17] .E.Loizou,P.Butler,L.Porcar,G.Schmidt,Dynamic responses in nanocomposite hydrogels.Macromolecules,2006,39(4) :1614.
    [1]. H.B. Bohidar, R Dubin, Y. Osada, "Polymer Gels: Fundamentals and Applicaions". American Chemical Society, Washington DC,. 2002.
    [2]. G.V.R. Rao, M. E. Krug, S. Balamurugan, H. F. Xu, Q. Xu, G. P. Lopez, Synthesis and characterization of silica-poly(N-isopropylacrylamide) hybrid membranes: Switchable molecular filters. Chem. Mat., 2002, 14(12): 5075.
    [3]. M. R. Guilherme, R. Silva, E.M. Girotto, A.F. Rubira, E.C. Muniz, Hydrogels based on PAAm network with PNIPAAm included: hydrophilic-hydrophobic transition measured by the partition of Orange Ⅱ and Methylene Blue in water. Polymer, 2003, 44(15): 4213.
    [4] .Y.Liu,M.F.Zhu,X.L.Liu,W.Zhang,B.Sun,Y.M.Chen,H.J.P.Adler,High clay content nanocomposite hydrogels with surprising mechanical strength and interesting deswelling kinetics.Polymer,2006,47(1) :1. [5] .H.A.Ketelson,D.L.Meadows,R.P.Stone,Dynamic wettability properties of a soft contact lens hydrogel.Colloids and Surfaces B:Biointerfaces,2005,40,1.
    [6] .Z.B.Hu,Y.Y.Chen,C.J.Wang,YD.Zheng,Y.Li,Polymer gels with engineered environmentally responsive surface patterns.Nature,1998,393(6681) :149. [7] .D.J.Beebe,J.S.Moore,J.M.Bauer,Q.Yu,R.H.Liu,C.Devadoss,B.H.Jo,Functional hydrogel structures for autonomous flow control inside microfluidic channels.Nature,2000,404(6778) :588. [8] .L.Dong,A.K.Agarwal,D.J.Beebe,H.R.Jiang,Adaptive liquid microlenses activated by stimuli-responsive hydrogels.Nature,2006,442(7102) :551. [9] .D.Kuckling,J.Hoffmann,M.Plotner,D.Ferse,K.Kretschmer,H.J.P.Adler,K.F.Arndt,R.Reichelt,Photo cross-linkable poly(N-isopropylacrylamide)copolymers Ⅲ:micro-fabricated temperature responsive hydrogels.Polymer,2003,44(16) :4455. [10] .A.Richter,S.Howitz,D.Kuckling,K.Kretschmer,K.F.Arndt,Automatically and electronically controllable hydrogel based valves and microvalves-Design and operating performance.Macromol.Symp.,2004,210,447. [11] .Y .Tanaka,J.P.Gong,Y.Osada,Novel hydrogels with excellent mechanical performance.Prog.Polym.Sci.,2005,30(1) :1. [12] .Y.Okumura,K.Ito,The polyrotaxane gel:Atopological gel by figure-of-eight cross-links.Adv.Mater.,2001,13(7) :485. [13] .K.Haraguchi,T.Takehisa,Nanocomposite hydrogels:A unique organic-inorganic network structure with extraordinary mechanical,optical,and swelling/de-swelling properties.Adv.Mater.,2002,14(16) :1120. [14] .J.P.Gong,Y.Katsuyama,T.Kurokawa,Y.Osada,Double-network hydrogels with extremely high mechanical strength.Adv.Mater.,2003,15(14) :1155. [15] .K.Haraguchi,T.Takehisa,S.Fan,Effects of clay content on the properties of nanocomposite hydrogels composed of poly(N-isopropylacrylamide)and clay.Macromolecules,2002,35(27) :10162. [16] .M.Shibayama,T.Karino,S.Miyazaki,S.Okabe,T.Takehisa,K.Haraguchi,Small-Angle Neutron Scattering Study on Uniaxially Stretched Poly(N-isopropylacrylamide)-Clay Nanocomposite Gels.Macromolecules, 2005,38(26) :10772. [17] .K.Haraguchi,H.J.Li,K.Matsuda,T.Takehisa,E.Elliott,Mechanism of forming organic/inorganic network structures during in-situ free-radical polymerization in PNIPA-clay nanocomposite hydrogels.Macromolecules,2005,38(8) :3482. [18] .J.J.Nie,B.Y.Du,W.Oppermann,Swelling,elasticity,and spatial inhomogeneity of poly(N-isopropylacrylamide)/clay nanocomposite hydrogels.Macromolecules,2005,38(13) :5729. [19] .Y.Liu,M.F.Zhu,X.L.Liu,W.Zhang,B.Sun,Y.M.Chen,H.P.Adler,High Clay Content Nanocomposite Hydrogels with Surprising Mechanical Strength and Interesting Deswelling Kinetics.Polymer,2006,47(1) :1. [20] .M.F.Zhu,Y.Liu,B.Sun,W.Zhang,X.Liu,H.Yu,Y.Zhang,K.Dirk,H.P.Adler,A Novel High Resilient Nanocomposite Hydrogel with Low Hysteresis and Ultrahigh Elongation Macromolecular Rapid Communications,2006,27,1023.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700