用户名: 密码: 验证码:
正极材料Li_3V_2(PO_4)_3溶胶—凝胶法的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用溶胶-凝胶法合成了Li_3V_2(PO_4)_3材料,利用XRD和SEM对产物的微观结构和形貌进行了分析;并采用恒流充放电、循环伏安(CV)和电化学阻抗谱(EIS)技术研究了其电化学性能。重点考察了不同合成温度、不同锂源、不同pH值和不同预烧气氛对Li_3V_2(PO_4)_3材料的结构和电化学性能的影响。
     以水合氢氧化锂为锂源,柠檬酸为配位体,采用溶胶-凝胶法制备Li_3V_2(PO_4)_3,研究了不同温度、不同气氛和溶胶pH值对样品Li_3V_2(PO_4)_3的组织结构和电化学性能的影响。结果表明,当以水合氢氧化锂为锂源时,干凝胶在氢氩混合气氛中300℃预烧4 h之后,再600℃氢氩混合气烧结8 h制备的Li_3V_2(PO_4)_3样品结晶较好,颗粒均匀,具有较好的电化学性能。当放电电流为0.1C时,在3.0 V-4.2 V充放电范围内下,首次放电容量可以达到130 mAh·g-1。当放电电流为1C时,在2.5 V-4.2 V充放电范围内下,首次放电容量可以达到128 mAh·g-1,经40次循环后仍为126 mAh·g-1,容量保持率达98 %,表现出较好的循环性能。溶胶pH值对样品的放电容量有较大的影响,与pH=8时制备的Li_3V_2(PO_4)_3相比,溶胶pH=3时所得的样品具有更高的放电容量。
     以氟化锂为锂源,柠檬酸为配位剂,采用溶胶-凝胶法制备Li_3V_2(PO_4)_3,研究了不同温度和pH值对样品Li_3V_2(PO_4)_3的组织结构和电化学性能的影响。结果表明,当烧结温度在600℃-800℃范围内,均可得到结晶较好,晶相较纯的Li_3V_2(PO_4)_3颗粒。在1C倍率放电电流,充放电范围为2.5 V-4.2 V条件下,800℃烧结所得样品首次放电容量最高,为111 mAh·g-1,经过36次循环后容量仅有82 mAh·g-1,容量保持率为74 %。600℃烧结所得样品首次放电容量为91 mAh·g-1,经过30次1C循环后容量剩余84 mAh·g-1,容量保持率为92 %。而在700℃烧结时所得样品具有较好的循环性能,首次放电容量为108 mAh·g-1,经过70次1 C放电后容量仍为106 mAh·g-1,容量保持率为98 %,容量衰减很小。相比较而言,700℃烧结时所得样品具有较好的电化学性能。pH值对样品的组织结构影响并不明显,但对电化学性能影响较大。
     从CV扫描的结果可知,在两次扫描过程中氧化峰和还原峰重合的较好,说明样品循环稳定性较好,第二次氧化峰和还原峰之间的相位差变小,说明材料的可逆性变好; EIS的测试结果可知,合成温度升高电化学反应电阻变小。
Li_3V_2(PO_4)_3 material was synthesized by sol-gel method, and The surface morphologies and structures was observed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The electrochemical performances were characterized by charge-discharge test, cycle voltammogram(CV) and electrochemical impedance spectroscopy (EIS). The effects of different synthesis temperatures, lithium sources, pH values and reaction ambiences on the structures and electrochemical performance of Li_3V_2(PO_4)_3 material.
     Li_3V_2(PO_4)_3 material was synthesized by sol-gel method using citric acid and LiOH·H2O as a chelating agent and lithium source, respectively, and the effect of different synthesis temperatures, pH values and reaction ambiences on the structures and electrochemical performance of Li_3V_2(PO_4)_3 material. The results show that the dry gel was pre-baked at 300℃for 4 h, then baked at 600℃for 8 h in H2/Ar ambience, yielding Li_3V_2(PO_4)_3 material which has better crystallinity, uniform particle sizes and electrochemical performance. The initial discharge capacity reaches 130 mAh·g-1 between 3.0 V-4.2 V at 0.1 C discharge rate.The initial discharge capacity reaches 128 mAh·g-1 between 2.5 V-4.2 V at 1 C discharge rate, and the discharge capacity after 40 cycles is 126 mAh·g-1, and the capacity retention is 98 %, which exhibits better cycle performance. The pH values of solution obviously affect the discharge capacity, and Li_3V_2(PO_4)_3 material synthesized at pH=3 has higher discharge capacity than that of material synthesized at pH=8.
     Li_3V_2(PO_4)_3 material was synthesized by sol-gel method using citric acid and LiF as a chelating agent and lithium source, respectively, and the effect of different synthesis temperatures and pH values on the structures and electrochemical performance of Li_3V_2(PO_4)_3 material. The results indicate that all samples have high phase purity and are well crystallized when the synthesis temperature is between 600℃-800℃. The samples synthsized 800℃have the best initial discharge capacity which reaches 111 mAh·g-1 between 2.5 V-4.2 V at 1 C discharge rate ,and the discharge capacity after 36 cycles is 82 mAh·g-1, and the capacity retention is 74 %. The initial discharge capacity of samples synthsized 600℃is 91 mAh·g-1, and the discharge capacity after 30 cycles at 1 C discharge rate is 84 mAh·g-1, and the capacity retention is 92 %. The samples synthsized 700℃has better cycle performance, and the initial discharge capacity is 108 mAh·g-1, and the discharge capacity after 70 cycles is 106 mAh·g-1 at 1 C discharge rate, and the capacity retention is 98%. As a result, the samples synthsized 700℃has better electrochemical performance, and the pH value has almost no effects on the structure, but it has significant effects on the electrochemical performance.
     CV results reveal that the oxidation peak and reduction peak lapped well from the two scanning process,meaning that the samples has good cycle performance, and the separation of peak potentials between the oxidation peak and reduction peak decreases at the twice scanning process, indicating that the reversibility of the samples becomes better. EIS results exhibit that electrochemical reaction resistance decreases with increasing of synthesis temperatures of samples
引文
1 N. Treuil, C. Labrugere, M. Menetrier et al. Relationship between Chemical Bonding Nature and Electrochemical Property of LiMn2O4 Spinel Oxides with Various Particle Sizes:“Electrochemical Grafting”Concept. J. Phys. Chem. B. 1999, 103(12): 2100~2106
    2 A. K. Padhi, K. S. Nanjundaswamy, C. Masquelier, et al. Effect of Structure on the Fe3+/Fe2+ Redox Couple in Iron Phosphates. Electrochem Soc. 1997, 144(5): 1609~1613
    3 M. Lazzari and B. Scrosati. A Cyclable Lithium Organic Electrolute Cell Based on two Intercalation Electrodes. J. Electrochem.Soc. 1980, 127: 773~778
    4 B. D. Pietro, M. Patriarca and B. Scrosati.On the Use of Rocking Chair Configurations for Cyclable Lithium Organic Electrolyte Batteries. J.Power Sources. 1982, 8: 289~294
    5 K. W. Senkow and A. F. Sammels. A Lithium Oxygen Secondary Battery. J.Electrochem.Soc. 1991, 38: 2207~2211
    6 T. Nagura and K. Tazawa. Lithium Ion Rechargeable Battery, Prog. Batteries Sol. Cells. 1990, 9: 20~27
    7 J. R. Dahn, U. V. Sacken,M. W. Jukow et al. Rechargeable LiNiO2/Carbon Cells. J.Electrochem. Soc. 1991, 38: 2282~2286
    8 J. M. Tarascon and D. Guyomard. Li Metal-free Rechargeable Batteries Based on LiMn2O4 Carbon Anodes. J.Electrochem. Soc. 1991, 138: 2864~2870
    9 K. Padhi, K. S. Nanjundaswamy and J. B. Goodenough. Phospho-olivines as Positive-electrode Materials for Rechargeable Lithium Batteries. J.Electrochem. Soc. 1997, 144: 1188~1194
    10 W. Van Schalkwijk, B. Scrosati. Advances in Lithium-Ion Batteries. Kluwer Academic/Plenum Publishers. 2002
    11 M. Wakihara. Recent Developments in Lithium Ion Batteries. Mater Sci Eng. 2001, 33: 109~134
    12 S. Lee, Y. K. Sun, K. S. Nahm. Synthesis and Characterization of LiNiO2 Cathode Material Prepared by an Adiphic Acid-assisted Sol–gel Method for Lithium Secondary Batteries. Solid State Ionics. 1999, 118(1-2): 159~168
    13吴宇平,戴晓兵,马军旗等编著.锂离子电池应用与实践.北京:化学工业出版. 2004, 6, 210~212
    14 S. M. Whitingham.Lithium Batteries and Cathode Materials. Chem. Rev. 2004, 104: 4271~4301
    15 A. Wijayasinghe. LiFeO2-LiCoO2-NiO Cathcdes for Molten Carbonate Fuel Cells. J.Electrochem.Soc. 2003, 150(5): 558~564
    16李新海. LiCoO2结构及性能与锂离子电池电压特性的关系.中国有色金属学报. 2002, 12(4): 737~744
    17廖春发.稀土掺杂对锂离子电池正极材料LiCoO2的影响研究.江西有色金属. 2004, 18(2): 33~39
    18李运姣.锂离子电池正极材料LiCoO2和LiMn2O4的研究进展.稀有金属与硬质合金. 2002, 30(1): 38~45
    19李辉.锂离子电池正极材料LiNi1-yAlyO2的制备及性能.中国有色金属学报.2003, 13(3): 623~629
    20宋桂明.锂离子电池正极材料LiNi0.5Co0.5O2的制备与电化学性能.稀有金属材料与工程. 2001, 30 (4): 299~307
    21徐宁.尖晶石型LiNixMn2-xO4锂离子电池正极材料的电化学性能.中国有色金属学报. 2003, 13 (1): 81~86
    22李智敏. LiMn2O4正极材料高温电化学性能的研究.硅酸盐学报. 2004, 32(1): 10~18
    23 A. Eftekhari. Mixed-metals, Codeposition as A novel Method for the Preparation of LiMn2O4 Eelectrodes with Reduced Capacity. J.Electrochem.Soc. 2003, 150(7): 966~974
    24伊廷锋,霍慧彬,胡信国等.锂离子电池正极材料稀土掺杂研究进展.电源技术. 2006, 30(5): 419~423
    25麦立强.锂离子电池正极材料的研究进展.材料导报. 2004, 14(7): 32-36
    26 M. Thackeray. Lithium-ion Battries:An Unexpected Conductor.Nature Mater. 2002, (1-2): 81~82
    27 J. M. Tarascon, M. Armand. Issues and Challenges Facing Rechargeable Lithium Batteries. Nature. 2001, 414: 359~367
    28 A. K. Padhi, K. S. Nanjundaswamy, C. Masquelier et al. Mapping of Transition Metal Redox Energies in Phosphates with NASICON Srtucture by Lithium intercalation. J. Electrochem. Soc. 1997, 144: 2581~2586
    29 K. S. Nanjundaswamy, A. K. Padhi, J. B. Goodenough et al. Synthesis, Redox Potential Evaluation and Electrochemical Characteristic of NASICON-related-
    3D Framework Compounds. Solid State Ionics. 1996, 92: 1~10
    30周恒辉(Zhou H H) ,陈继涛(Chen J T) ,徐小明(Xu X M).金属资源与电动车电池可持续发展战略.电池. 2002, 32(6): 337~339
    31 A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough et al. Phospho-olivines as Positive-electrode Materials for Rechargeable Lithium Batteries. J.Electrochem Soc. 1997, 144(4): 1188~1194
    32 A. S. Andersson, B. Kalska, L. H?GGSTR?M et al. Lithium Extraction/Insertion in LiFePO4:An X-ray Diffraction and Spectroscopy Study. Solid States Ionics. 2001, 130: 41~47
    33 N. Treuil, C. Labrugere, M. Menetrier et al. Relationship between Chemical Bonding Nature and Electrochemical Property of LiMn2O4 Spinel Oxides with Various Particle Sizes:“Electrochemical Grafting”Concept. J. Phys. Chem. B. 1999, 103(12): 2100~2106
    34 M. Christopher. Raman and FTIR Spectroscopic Study of LixFePO4. J.Electrochem.Soc. 2004, 151 (7): A1032~A1039
    35 Yaoqin Hu. Electrochemical Performance of Sol-gel Synthesized LiFePO4 in Lithium Batteries. J.Electrochem.Soc. 2004, 151(8): A1279~A1285
    36卢俊彪.一种新型的锂离子电池正极材料-LiFePO4.稀有金属材料与工程. 2004, 33(7): 679~685
    37 M. Y. Saidi, J. Barker, H. J. Huang et al. Elect rochemical Properties of Lithium Vanadium Phosphate as Acathode Materials for Lithium Ion Batteries. Elect rochemical and Solid State Letters. 2002, 5 (7): A149~A151
    38 S. C. Yin, H. Grondey, L. F. Nazar et al . J. Charge Ordering in Lithium Vanadium Phosphate:Elect rode Materials for Lithium Ion Batteries. Am. Chem Soc. 2003, 125 (2): 326~327
    39 J. Barker, M. Y. Saidi, J. L. Swoyer et al. Electrochemical Propertied of Beta-LiVOPO4 Prepared by Carbothermal Reduction. J. Electrochem. Soc. 2004,151 (6): A796~A800
    40 J. Barker, M. Y. Saidi. US 6 203 946 B1, 2001.
    41 A. K. Padhi, K. S. Nanjundaswamy, C. Masquelier et al. Mapping of Transition Metal Redox Energies in Phosphates with NASICON Srtucture by LithiumIntercalation. J. Electrochem. Soc. 1997, 144: 2581~2586
    42 P. P. Prosini, D. Zane, M. Pasquali et al. Improved Electrochemical Performance of A LiFePO4-based Composite Cathode. Electrochem. Acta. 2001, 46(23): 3517~3523
    43 F. Croce, A. D. Epifanio, J. Hassoun et al. A novel Concept for the Synthesis of An Improved LiFePO4 Lithium Battery Cathode. Electrochemical and Solid-State Letters. 2002, 5(3):A47~A53
    44 P. S. Herle, B. Ellis, N. Coombs et al. Nano-network Electronic Conduction in Iron and Nickel Olivine Phosphates. Nature Mater. 2004, 3: 147~152
    45 A. S. Andersson, B. Kalska, L. Haggstrom et al. Lithium Extraction/insertion in LiFePO4 : An X-ray Diffraction and M?ssbauer Spectroscopy Study. Solid State Ionics. 2001, 130 (1/2): 41~52
    46 M. O. Garcia, V. M. Alvarez, A. F. Garcia et al. Influence of the Structure on the Electrochemical Performance of Lithium Transition Metal Phosphates as Cathodic Materials in Rechargeable Lithium Batteries: A New High-Pressure Form of LiMPO4 (M = Fe and Ni). Chem.Mater. 2001,13(5): 1570~1576
    47 K. Amine, H. Yasuda, M. Yamachi et al. Olivine LiCoPO4 as 4.8 V Electrode Material for Lithium Batteries. Electrochemical and Solid-State Letters. 2000, 3(4): 178~179
    48 S. Okada, S. Sawa, M. Egashira et al. Cathode Properties of Phospho-olivine LiMPO4 for Lithium Secondary Batteries. J. Power Sources. 2001, 97-98: 430~432
    49 S. Franger, C. F. Le, C. Bourbon et al. LiFePO4 Synthesis Routes for Enhanced Electrochemical Plerformance. Electrochemical and Solid-State Letters. 2002, 5(10): A231~A234
    50 K. Rissouli, K. Benkhouja, J. R. Ramos-Barrado et al. Electrical Conductivity in Lithium Orthophosphates.Mater. Sci. Eng. B. 2003, 98(3): 185~189
    51 J. Molenda, A. Stoklosa, T. Bak et al. Modification in the Electronic Structure of Cobalt Bronze LixCoO 2 and the Resulting Electrochemical Properties. Solid State Ionics. 1989, 36: 53~58
    52 H. Kawaia, M. Nagatab, H. Kageyamac et al. 5 V Lithium Cathodes Based on Spinel Solid Solutions Li 2 Co1+xMn3?xO8 : -1≤x≤1. Electrochem. Acta. 1999, 45(1/2): 315~327
    53 N. Ravet, Y. Chouinard, J. F. Magnan et al. Electroactivity of Natural and Synthetic Triphylite. J. Power Sources. 2001, 97-98: 503~507
    54 S. Yang, Y. Song, P. Y. Zavalij et al. Reactivity, Stability and Eectrochemical Behavior of Lithium Iron Phosphates. Electrochem. Comm. 2002, 4(3): 239~244
    55 Z. Chen, J. R. Dahn. Reducing Carbon in LiFePO4/C Composite Electrodes to Maximize Specific Energy, Volumetric Energy, and Tap Density. J. Electrochem. Soc. 2002, 149 (9): A1184~A1189
    56 S. Franger, C. F. Le, C. Bourbon et al. LiFePO4 Synthesis Routes for Enhanced Electrochemical Performance. Electrochem. Solid State Lett. 2002, 5(10): A231~A233
    57施志聪( Shi Z C),李晨(Li C),杨勇( Yang Y).电化学. 2003, 9(1): 9~14
    58 F. Croce, A. D. Epifanio, J. Hassoun et al. A novel Concept for the Synthesis of An Improved LiFePO4 Lithium Battery Cathode. Electrochem. Solid State Lett. 2002, 5(3): A47~A50
    59 J. Barker, M. Y. Saidi, J. L. Swoyer et al. Electrochemical Propertied of Beta-LiVOPO4 Prepared by Carbothermal Reduction.J. Electrochem. Soc. 2004, 151 (6): A796~A800
    60 C. Masquelier, A. K. Padhi, K. S. Nanjundaswamy et al. New Cathode Materials for Rechargeable Lithiumbatteries:the 3-D Framework Structures Li3 Fe2 (XO4)3. Solid State Chem. 1998, 135: 228~234
    61 D. Morgan, G. Ceder, M. Y. Saidi et al. Experimental and Computational Study of the Structure and Electrochemical Properties of Li3M2 (PO4)3 Compounds with the Monoclinic and Rhombohedral Structure. Chem. Mater. 2002, 14: 4684~4693
    62 J. Gaubicher, C. Wurm, G. Goward et al. Hombohedral Form of Li3V2(PO4)3 as a Cathode in Li-ion Batteries. Chem. Mater. 2000, 12(11): 3240~3242
    63 S. C. Yin, H. Grondey, P. Strobel et al. Charge Ordering in Lithium Vanadium Phosphate:Elect rode Materials for Lithium Ion Batteries. Am. Chem. Soc. 2003, 125 (2): 326~327
    64 D. Morgan, G. Ceder, M. Y. Saidi et al. Experimental and Computational Study of the Structure and Electrochemical Properties of Monoclinic LixM2 (PO4)3 Com-pounds. J. Power Sources. 2003, 119-121: 755~759
    65 M. Y. Saidi, J. Barker, H. Huang et al. Performance Characteristics of LithiumVanadium Phosphate as a Cathode Materials for Lithium Ion Batteries. J. Power Sources. 2003, 119-121: 266~272
    66 H. Huang, S. Yin, T. Kerr et al. Nanost Ructured Composites: a High Capacity, Fast Rate Li3V2(PO4)3/Carbon Cathode for Rechargeable Lithium Batteries. Adv. Mater. 2002, 21: 1525~1528
    67 J. B. Goodenough, V. Manivannan, A. K. Padhi et al. Tuningthe Position of the Redox Couples in Materials with NASICON Structure by Anionic Subsitiution. J. Electrochem. Soc. 1998, 145 (5): 1518~1520
    68 S. Patoux, C. Wurm, M. Morcrette et al. A Comparative Ctructural and Electroc-hemical Study of Monoclinic Li 3F e 2 (PO4 )3 and Li 3V 2 (PO4 )3. J. Power Sources. 2003, 119-121: 278~284
    69 M. Sato, H. Ohkawa, K. Yoshida et al. Enhancement of Discharge Capacity of Li3V2 (PO4)3 by Stabilizing Theorthorhombic Phase at Room Temperature. Solid State Ionics. 2000, 135: 137~142
    70 S. C. Yin, H. Gronodey, P. Strobel et al. Electrochemical Property:Structure Relationships in Monoclinic Li3-yV2(PO4)3. Am. Chem. Soc. 2003, 125 (34): 10402~10411

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700