纳米复合催化剂催化氧化环已烷制丁二酸酐的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以气态环己烷选择性催化氧化制取琥珀酸酐为目标反应,采用溶胶—凝胶的方法,在Al_2O_3和ZRP—5分子筛两种常规载体上负载纳米TiO_2,从而制得一系列的复合载体。并以V_2O_5为主组分,添加不同含量的P、Mo、Sb、K等助剂,制得一系列探索目标反应的催化剂。用正交实验法对催化剂载体、组分以及制备条件等进行优化筛选。催化反应在常压微型固定床反应器中进行。实验结果表明,复合载体、催化剂组成、反应条件均对目标反应产生较大的影响。
     实验结果表明:纳米复合载体上TiO_2的含量对载体性能影响较大,其负载量以10%为宜;活性最好的催化剂组成为:V_2O_5负载量为载体质量的5.5%、P与V的原子比为1.5、Mo含量为1.15%、Sb含量为0.5%、K含量为3.8%。
     借助差热—热重分析(DTA—TG)、X—射线衍射(XRD)、傅立叶—红外(FT-IR)和TEM等表征手段,研究了催化剂和载体热处理过程中的物理化学变化、表面结构、晶体结构、表面形貌。结果表明:TiO_2在600℃左右就开始晶型转变,最大失重范围与相变温度一致:转变过程中纳米粒子在载体上分散良好,负载的纳米粒子和载体之间存在一定的作用,催化剂对环己烷的主要吸附位为V=O和Mo=O。XRD和TEM测试结果显示,复合载体仍保留着Al_2O_3和ZRP—5的骨架,负载在Al_2O_3上的TiO_2粒径约为35 nm、而负载在ZRP—5分子筛上的粒径约为26 nm,并且两种载体中TiO_2都以锐钛矿形式存在。
     催化剂活性评价结果表明,溶胶—凝胶法比浸渍法和混凝胶法制得的催化剂能显示更好的催化活性。适当的氧含量、环己烷浓度和气相中CO_2浓度均能提高催化剂对环己烷的转化率和琥珀酸酐的选择性。实验范围内的最佳反应条件为:反应温度290~310℃,空速1400 h~(-1),环己烷浓度2%,氧含量15%~20%。
In this thesis, butanedioic anhydride preparation acted as the target reaction by selectively catalytic oxidation of gaseous cyclohexane, nano-TiO2 was loaded on the general supporters of Al2O3 and ZRP-5 molecular sieves based on sol-gel method and a series of composite supporters were obtained. A series of catalysts probing into the target reaction were obtained with main active ingredient of V2O5 and doped reagent of different content such as P, Mo, Sb and K. The catalyst supporters, active ingredients and the conditions of preparation were optimized by the orthogonal test. The catalytic reactions were processed in the bed-secured micro-reactor under normal pressure. It showed that the composite supporters, the catalyst component and the reaction conditions could have great influence on the target reaction.
    The results showed that the content of TiO2 on the composite supporters had great effect on the performance of the supporters. The appropriate content of TiO2 was 10wt%. The catalysts containing 5.5 wt% V2O5, 1.15 wt% Mo, 0.5 wt% Sb, 3.8 wt% K and P/V atomic ratios of 3/2 exhibited high activity.
    Techniques, such as differential thermal analysis thermogravimetry (DTA-TG), X-ray diffraction (XRD), Fourier transform infrared (FT-IR), transmission electron microscope (TEM) were performed to study the physicochemical change during the heat treatment process, the surface structure, the crystalline structure and surface morphology of the catalysts and supporters. The DTA-TG results showed that the transformation from anatase phase to rutile phase started at 600. The temperature scope that samples lost weight was in conformity to its transformation temperature. The nanoparticals could be dispersed on the composite supporters very well during the transformation. There was interaction between nanoparticals and the supporters. The cyclohexane was mainly adsorpted on V=O and Mo = O of the catalysts. The results of XRD and TEM showed that the composite supporters still reserved the framework Al2O3 and ZRP-5, the particle sizes of TiO2 loaded on the Al2O3 and ZRP-5 were around 35 nm and 26 nm respectively, and Ti
    O2 of the two supporters was present in an anatase state on the supporters.
    The evaluation results of the catalyst activity showed that catalyst obtained by sol-gel method exhibited higher catalytic activity than by impregnation method and mixing gel method. The proper content of O2. cyclohexane and CO2 could increase the conversion rate of cyclohexane and the selectivity of butanedioic anhydride. The optimal reaction conditions in the target reaction were reaction temperature 90-310,
    7
    
    
    GHSV=1400h-1, the concentration of cyclohexane 2 vol%, and the content of O2 15-20 vol %.
引文
[1] 洪仲苓主编.有机化工原料深加工.北京:化学工业出版社,1997.484-485
    [2] 魏文德主编.有机化工原料大全.北京:化学工业出版社,1989,615-625
    [3] 化学工业出版社组织编写.中国化工产品大全.增补本.北京:化学工业出版社,1994,73-74
    [4] 天津轻工业学院食品工业教学研究室编著.食品添加剂.北京:轻工业出版社,1985,7-10
    [5] 苏力宏,吴婉娥.医药级琥珀酸酐生产工艺研究.陕西化工,1998,27(3):39-40
    [6] 刘浦,刘晔,殷元骐等.钯-三苯膦催化体系选择氢化顺酐制各琥珀酸酐.应用化学,1999,16(1):58-61
    [7] 王大为,史迥,苏元复等.从水溶液中提取琥珀酸.高校化学工程学报,1994,8(1): 143-148
    [8] 化工部情报司编.化工产品手册.北京:化学工业出版社,1993,342-345
    [9] 张可喜.日本应用转基因微生物制造琥珀酸.http://www.edu.cn/HomePage/,2004-5-15
    [10] 白庚辛,曹栋兴,常文保.化工百科全书(7).北京:化学工业出版社,1994,655-661
    [11] Cuettler. Process for the making succinic acid, microorganisms for use in the process and methods of obtaining the microorganisms. US. Patent: 5723322, 1998
    [12] 张涌,徐朝霞.温和型表面活性剂.日用化学工业信息,2003,13:11-12
    [13] 恽魁宏著.有机化学.北京:高等教育出版社,1990,356-357
    [14] 化工部科技情报研究所编.世界精细化工手册.北京:科学技术出版社,1982,128-132
    [15] Kirk O.Encyclopedia of Chemical Technology,3rd ed. New York: interscience Publishers Co, 1976.21,854-859
    [16] 南方饲料信息网.琥珀酸钠对奶牛产奶性能的影响.http://www.sfe.net.cn,2003-04-11
    [17] 郭圣荣.医药生物降解性高分子材料.北京:化工信息中心出版社,1999,5-10
    [18] 徐克勋著.精细有机化工原料及中间体手册.北京:化学工业出版社,1999,3:658-667
    [19]《精细与专用化学品》编辑部编.精细与专用化学品.北京:化工信息中心出版
    
    社,2000,157-158
    [20] 刘程主编.表面活性剂应用手册.第二版.北京:化学工业出版社,1999,5:234-236
    [21] 顾良荧.日用化工产品及原料制造与应用大全.北京:化学工业出版社,1997,8:792-799
    [22] 刘浦,朱卫卫.琥珀酸酐均相催化加氢生成γ-丁内酯的反应动力学研究.化学研究,2003,13(1):7-10
    [23] Igarashi H, Tsuji K, Okuhara T, et al. Effects of consecutive oxidation on the production of Maleic anhydride in butane oxidation over four kinds of well characterized vanadylpyroph osphates.Phys.Chem., 1993, 97:7065-7071
    [24] 王大勋,马铁宁.从深度氧化石蜡中提取琥珀酸.化学工程师,2003,96(3):15-16
    [25] 罗发兴,黄强,阳元娥等.辛烯基琥珀酸淀粉酯的制备及应用.应用化工,2003,31(7): 82-85
    [26] 詹晓北,朱一晖.琥珀酸发酵生产工艺及其产品市场.食品科技,2003,2:44-49
    [27] Holtzberg F, Reism an A, Berry M et al. Reactions of the Group V_B Pentoxides with Alkali Oxides and Carbonates Ⅱ . Phase Diagram of the System K2CO3 -V_2O_5. J.Am.Chem.Soc., 1956,78:1536-1541
    [28] Garfunkel E L, Maj J J, Frost J C et al. Interaction of Potassium with electron Orbital Cont- aining Moleculeson Pt(Ⅲ).J phys.Chem.,1983,87:3629-3634
    [29] Brunauver S,Emmett P H. Chem sorption of Gas on Iron Synthetic Ammonia Catalysts.J .Am.Chem. Sot., 1940,62:1732-1733
    [30] Mehri Sanati, Arne Anderson, Kinetics and mechanisms in the ammoxidation of toluene over a titania (B)-supported vanadium oxide monolayer catalyst. 2. Combustion reaetions.Ind.Eng. Chem.Res.,1991,30:320-326
    [31] Srinivasan S, Datye A K, Peden C H F. The Morphology of oxide-suported M oS_2.J.Catal, 1992,137:513-522
    [32] Tanaka K., Capule M. F.V., Hisanaga T. Effect of erystallinity of TiO2 on its photocatalytic action. Chem.Phys.Lett, 1991, 187 (12): 73-76
    [33] 曾翎,祝巨.制备方法对钒磷氧复合氧化物晶相和比表面的影响.分子催化,2003,17(5):367-370
    [34] 周亚松,范小虎.TiO_2-SiO_2复合载体氧化物的制备与性质.高等学校化学学报.2003,24(7):1266-1270
    [35] RE, Duffield, AM. Dicarboxylic acids in the Murchison meteorite. Nature, 1974, 5470 (251),40-47
    
    
    [36] Berglund,et al. Succinic acid production and purification.US Patent: 595874 4,1999
    [37] Corma A, Martin-Aranda R M. Application of Solid Base Catalysts in the preparation by condensation of Kotones and Malononitrile. Appl.Cataly: A,1993,105:271-279
    [38] Pino, P.and Miglierina, A., Hydrogen transfer reactions accompanying the cobalt catalyzed synthesis from acetylene, carbon monoxide and methanol J.Am.Chem. Soc., 1952,74,5551 -5558
    [39] Wei Z B, Xin Q, Guo X X et al. Titania-modified hydrodesulphuriz- ation catal -ysts : Ⅰ. Effect of preparation techniques on morphology and proper -ties of TiO_2-Al_2O_3 carrier. Appl.Catal., 1990,63:305-317
    [40] 叶代启,梁红,黄仲涛.V_2O_5/TiO_2催化剂活性组份与载体相互作用研究.物理化学学报,1993,4(9):501-508
    [41] Classner,et al. Process for the production and purification of succinic acid. US. Patent: 5143834,1992
    [42] Zeikus J G, Jain M K, Elankovan P. Biotechnology of succinic acid production and market for derived industrial products. Appl.Microbiol., 1988,32: 128-130
    [43] Berglund. Carboxylic acid purification and crystallizetion process. US.Patent: 5034105,1991
    [44] Guettler. Recovery of carboxylic acid from organic solution that contains an amine and an extraction enhancer. US.Patent: 5780276, 1998a
    [45] Baniel A M. Recovery of carboxylic acid from organic solution that contains an amine and an extraction enhancer. US.Patent: 5773653,1998b
    [46] Guettler M V. Production of succinic acid by Anaerobiospirillum succinici producens. Appl.Biochem. Biotechnol., 1989, 65:565-576
    [47] Datta. Fermentation and purification process for succinic acid. US Patent: 5168 055,1992
    [48] O'Herrin SM. Glucose and carbon dioxide metabolism by Succinivibriodextrinosolvens. Appl.Environ.Microbiol., 1990, 59:748-755
    [49] Schneidre M,Baiker A.Aerogels in catalysis.Cat. Rev-Sic Eng.1995, 37 (4): 515-557
    [50] Pajonk G M.Aerogel Catalyst.Applied Catalysis,1991.72:217-266
    [51] 胡林华,戴松元.王孔嘉.Sol-gel法制备的纳米TiO2结构相变及晶体生长动力学.2002年ASIPP中文研究报告.5月总第063期
    [52] Masuda M, Sano T. Mizukami F, et al. Effect of the type of support preparation
    
    on the thermostability and the oxidation activity of CeO_x/BaO/Al_2O_3-supporte d Pd catalys- ts .Appl.Catal., 1995,133:59-65
    [53] 桂琳琳,朱永法,唐有祺.MoO3负载在新型TiO_2/γ_Al_2O_3载体上的表面状态与性质.物理化学学报,1990,6(4):392-398
    [54] 傅贤智,罗胜成,桂琳琳等.MoO3-CoO/TiO_2-Al_2O_3催化剂中TiO_2-Al_2O_3的载体效应.自然科学进展,1991,1(6):543-548
    [55] 阎子峰.纳米催化技术.北京:化学工业出版社,2003,10-20
    [56] 胡见波,李传,张明慧等.负载型纳米TiO_2复合载体催化剂及其HDS活性研究.南开大学学报,2002,35(3):1-5
    [57] 傅贤智,罗胜成,桂琳琳等.Mo-Co系加氢精制催化剂中TiO_2.Al_2O_3载体效应的PASCA研究.化学学报,1992,50:342-348
    [58] Nakamura M, Kawai K, Fujiwara. The Structure and the Activity of Vanadyl Phosphate Catalysts. J.Catal., 1974, 34:345-355
    [59] 朱沁伟,余晴春,黄海燕等.V_2O_5干凝胶的制备新方法.功能材料,2000,6(31):660-661
    [60] Efstathiou A M, Boudouvas D,Vam vouka Net al.Kinetic of Methane Oxidat -ion Coupling on Li Dopden TiO_2 Catalysts. J.Catal., 1993,140:1-9
    [61] A I M.The Oxidation Aeitity and Acid-Base Properties of Mixed Oxide Cataly sts Contaning Titania.I The TiO_2-MoO_3 and TiO_2 -V_2O_5 Systems. Bull. Chem. Soc. Jpn., 1976,49:1328 -1332
    [62] 郑珊,高濂,郭景坤.TiO_2在MCM-41内表面单层及双层分散的结构表征.无机材料学报,2001;1(16):98-102
    [63] Andersson S L T. The Use of TiO_2 Contaminated with Phosphorus and Potassium as a Support For V_2O_5 Catalysts in the Selective Oxidation of Toluene. J. Chem,Soc.Faraday Trand. 1, 1986, 82:1537
    [64] 王翔,周烈华,罗孟飞等.甲苯气相选择性氧化制苯甲醛Ⅰ.V_2O_5/TiO_2-AI_2O_3催化剂研究.分子催化,1995,10(5):373-379
    [65] Zhu T, Andersson S L T. Influence of Potassium on the Catalystic Proper-ties of V_2O_5/ TiO_2 Catalysts for Toluene Oxidation. J Chem Soc., Faraday Transl., 1989, 85 (11):3629
    [66] 罗胜成,桂琳琳,唐有祺,TiO_2-Al_2O_3复合载体的比较研究.物理化学学报,1996,1(1):7-11
    [67] 黄开辉,万惠霖著.催化原理.北京:科学出版社,1983,551-554
    [68] Van Hengstum A J,Pranger J,Van OmmenJG et al. Influence of Phosphorus and Potassium Impurities on the Properties of Vanadium Oxide Supported on
    
    TiO_2.Appl.Catal., 1984, 11: 317-321
    [69] 朱永法,桂琳琳,唐有祺.负载型TiO_2/γ·Al_2O_3体系的制备及其表面状态表征.催化学报,1989,10(2):118
    [70] 徐国财,张立德.纳米复合材料(第一版).化学工业出版社,北京:2002,3:32-44
    [71] ZhengX M, He W L, Yuan X X et al. Investigation of Mechanisum About Effects of Promoters P_2O_5,K_2O and Al_2O_3 on Onidation of O-Xylene to Phthalic Anhydride. Chem. J. Chinese .Univ (English), 1990, 6 (2): 14-20
    [72] 唐有祺,谢有畅,桂琳琳.氧化物和盐类在载体表面的自发单层分散及其应用.自然科学进展,1994,6:642~651
    [73] Hodent B K, Delmon B. Influence of calcinations condition on phase composition of Vanadium-phorsphorus oxide catalysts. Appl.Catal., 1984, 9:177-182
    [74] 王翔,袁贤鑫.甲苯气相选择性氧化制苯甲醛Ⅱ V_2O_5/TiO_2催化剂焙烧温度和反应条件探讨.分子催化,1996,10(4):294-299
    [75] Hatayam A F, Ohno T. Structure and Acidity of Vanadium Oxide Layered on Titania (Anatase and Rutile). J. Chem. Soc. Farday. Trans. Ⅰ, 1991,87(16):2629
    [76] 金松寿.有机催化.上海:上海科学技术出版社,1986,141-142
    [77] Nakamura M, Kawai K, Fujiwara Y. The structure and activity of vanadyl phosphate catalysts. J.Catal, 1974, 34:345-355

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700