Mn基钙钛矿氧化物与不同磁性相的复合及其磁与电子输运性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锰基钙钛矿氧化物由于庞磁电阻效应的发现成为近年来凝聚态与材料物理领域中热点的研究。另外一方面,锰基钙钛矿氧化物具有~100%的自旋极化度,利用这一特性,将其作为铁磁金属以形成三明治式铁磁多层膜或铁磁金属颗粒系统,可以实现与边界有关的非本征磁电阻效应,这方面的研究正受到越来越多的关注。本论文在锰基钙钛矿氧化物颗粒系统的基础上,通过样品设计和制备工艺的探索,试图将不同磁行为的第二相引入到锰基钙钛矿氧化物颗粒系统中,以得到“锰基钙钛矿氧化物/不同磁行为的第二相”的颗粒复合系统,对这些复合系统的磁行为、电子输运、磁电阻等性质进行了系统的实验研究,主要研究内容和结果如下:
     1)通过溶胶凝胶法制备出La_(2/3)Ca_(1/3)MnO_3(LCMO)/CuMn_2O_4复合体系,从实验上研究了低居里温度(~72 K)亚铁磁性绝缘体CuMn_2O_4对LCMO磁性及电子输运性质的影响。研究结果表明,在低场0.3 T下,x=0.1复合样品的非本征磁电阻几乎比纯LCMO非本征磁电阻值大2倍。在高场3 T下,相对于纯LCMO,复合样品在相应的绝缘体—金属转变温度T_(IM)附近的本征磁电阻显著增强。此外,复合样品的磁化小于相应理论计算值。这些结果表明,CuMn_2O_4与LCMO之间存在一定的磁耦合作用。复合系统低温下的电阻率与温度关系遵从经验关系ρ(T)=ρ_0+ρ_1T~n,但随着CuMn_2O_4复合量的增加,n数值变大,意味着亚铁磁性CuMn_2O_4的引入增加了LCMO颗粒边界的磁无序,使得电子—磁振子散射的增强。
     2)通过溶胶凝胶法成功将高居里温度亚铁磁性绝缘体CuFe_2O_4引入到LCMO颗粒边界,研究了CuFe_2O_4对LCMO磁性及电子输运性质的影响。研究结果表明,在外场3 T下,复合体系样品出现了两个磁电阻平台,其中一个磁电阻平台的起始温度在相应复合样品的金属—绝缘体温度附近,另一个磁电阻平台的起始温度在纯LCMO样品的金属—绝缘体温度附近。我们认为此奇异现象源于亚铁磁性CuFe_2O_4与LCMO颗粒边界磁矩存在的反铁磁耦合作用。实验结果表明,x=0.1复合样品在金属—绝缘体转变温度T_(IM)附近温区出现了明显的热滞现象,且其能够被外加磁场抑制。此外,还观测到向水平轴负方向移动的交换偏置现象,在矫顽力仅为100 Oe的情况下,交换偏置场高达10 Oe。复合样品中的热滞现象与交换偏置现象进一步说明LCMO与CuFe_2O_4之间存在反铁磁耦合作用。
     3)通过溶胶凝胶法成功将反铁磁性绝缘体LaMnO_3引入到LCMO的颗粒边界,研究了LCMO/LaMnO_3复合体系磁性及电子输运性质。在高场低场下,复合样品的磁电阻都显著增加。我们认为,第二相反铁磁性绝缘体LaMnO_3的引入增加了相邻LCMO颗粒间电子隧穿过程的磁势垒。加场后,磁势垒迅速减小,电子隧穿几率大幅度增加,从而导致磁电阻效应大大增强。同样采用经验关系ρ(T)=ρ_0+ρ_1T~n对低温下电阻率随温度变化关系进行拟合,随着LaMnO_3复合量的增加,拟合参数n迅速增加,且高达数值8。这表明复合样品中电子—磁振子散射为重要的散射机制,同时还有很多未知电输运散射机制有待进一步研究。
     4)通过溶胶凝胶方法以及控制烧结温度,成功制备了不同颗粒尺寸的LCMO样品,研究了其电输运行为中的低温极小值现象。实验结果表明,LCMO颗粒尺寸越小,低温极小值现象越明显。随着外磁场的增加,所有颗粒尺寸样品的极小值现象减弱。通过考虑库仑阻塞效应,对Yuan隧穿模型进行扩展,扩展后的模型在整个温区以及零场、加场下都能够很好地拟合不同颗粒尺寸样品的阻温关系。这不仅说明Yuan隧穿模型的可适性,也说明对于锰基钙钛矿氧化物颗粒系统,库仑阻塞效应是低温极小值现象的主要起因。
     5)通过常规固相反应法制备出La_(1-x)Ba_xMnO_3(x>0.33)结构相分离体系,研究了其电子输运性质和渗流行为。实验结果表明,当x>0.33,La_(1-x)Ba_xMnO_3结构相分离为金属相La_(0.67)Ba_(0.33)MnO_3与绝缘体相BaMnO_3。不论是在150 K还是300 K,La_(1-x)Ba_xMnO_3(x>0.33)结构相分离体系都表现出渗流行为。经典渗流公式能够很好地拟合实验数据,在150 K下,临界参数t=1.6,s=0.6;在300 K下,临界参数t=1.7,s=0.7,且渗流阈值同为0.18。我们认为,这是源于样品的蜂窝状结构与颗粒界面效应的共同作用。此外,界面效应导致La_(1-x)Ba_xMnO_3(x>0.33)体系在200 K附近出现第二个电阻峰,且随着BaMnO_3含量的增加,界面效应引起的电阻峰变大。这进一步说明了界面效应对La_(1-x)Ba_xMnO_3(x>0.33)体系的电输运性质和渗流行为存在一定影响。
In the past two decades, substantial attention has been focused on colossalmagnetoresistance(CMR) and extrinsic magnetoresistance due to their potential practicalapplication. As a matter of fact, extrinsic magnetoresistance gained much more attentionrecently as its driving magnetic field is lower compared with the high magnetic fielddriving CMR. However, the effect of grain boundary plays an important role in theextrinsic mangnetoresistance and electrical and magnetic properties. Therefore, we tend tomodify the gain boundaries of manganites by introduction of the second phase, in order toinvestigate the effect of the modified gain boundaries on the electrical and magnetictransport properties. The main investigations are shown as follows:
     1) The composites La_(2/3)Ca_(1/3)MnO_3(LCMO)/CuMn_2O_4 were fabricated. We applied theexperimental formulaρ(T)=ρ_0+ρ_1T~n to fit the low temperature region electricaltransport: for x=0 and 0.04, n=2; For x=0.1 and 0.2, n=3. The extrinsicmagnetoresistance is enhanced substantially. We consider with the increasing amountof the ferrimagnetic insulator CuMn_2O_4, the magnetic disorder of the grain boundariesincreases and have a great effect on the electric and magnetic properties.
     2) The ferromagnetic insulator CuFe_2O_4 was introduced into the LCMO matrix tofabricate the LCMO/CuFe_2O_4 composites. For x=0.1, a substantial thermal hysteresisbehavior is observed at the vicinity of the metal-insulator transition temperature T_(IM).This thermal hysteresis is able to be suppressed by applied magnetic field. Applyingcooling field 0.1 T on the x=0.1 composite from room temperature to 110K, we foundthe exchange bias behavior: the coactivity H_C=100 Oe, and the bias field H_(ex)=10 Oe.This exchange bias behavior supplies the proof to the antiferromagnetic couplingbetween LCMO and CuFe_2O_4. At H=3 T, there are two platform magnetoresistancefor all the composites; we also consider this behavior origins from theantiferromagnetic coupling between LCMO and CuFe_2O_4.
     3) We fabricate the LCMO/LaMnO_3 composites where LaMnO_3 is antiferromaganeticinsulator. We applied the experimental formulaρ(T)=ρ_0+ρ_1T~n to fit the lowtemperature region electrical transport: for x=0, n=3; for x=0.05, n=4; for x=0.15,n=6; for x=0.25, n=8; the n=6 and n=8 are contradictions with the max valueof n is 4.5(the electron-magnon) as far as we know. At 0.3 T and 3 T, the lowtemperature region magnetoresistance of all the composites enhance substantiallycompared with the pure LCMO.
     4) Through sol-gel and different sintering temperature, we gained LCMO particles ofdifferent size. The unusual low temperature minimum is observed in the electricaltransport of LCMO particles of small size. As grain size is closely related to Coulombblockade(CB), corresponding changes are made to a phenomenological model whichfailed to fit the low-temperature behavior before, and this modified model is inexcellent accord with the experiment date upon a field or zero field. This result givesa strong support to consider CB as one of the crucial origins of this unusual minimumbehavior.
     5) Samples of La_(1-x)Ba_xMnO_3(0.33≤x≤0.95) have been fabricated by standard solid statereaction. Microstructural studies show that manganites La_(1-x)Ba_xMnO_3(0.33≤x≤0.95)begin structural phase separation into La_(0.67)Ba_(0.33)MnO_3 and BaMnO_3 for x>0.33.These composites form a cellular-like structure when the volume faction ofLa_(0.67)Ba_(0.33)MnO_3(f_(LBMO)) is near the percolation threshold(f_C). The percolationthreshold(f_C) for our composites is 0.18. This result is not Consistent with theprevious results which prefer smaller percolation threshold value. This could beattributed to the contribution of grain boundaries. This gain-boundary contributionalso induces the large low-temperature bump in electrical transport. The criticalexponent t gained from the good fitting for the experimental data is 1.6 at 150 K and1.7 at 300 K, which is in good agreement with the previous universal result: t=1.6-2.0 for the three dimensional space.
引文
[1] Baibich M N, Broto J M, Fert A, et al., Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices, Physical Review Letters, 1988, 61:2472
    [2] Wolf S A, Awschalom D D, Buhrman R A, et al., Spintronics: A Spin-Based Electronics Vision for the Future, Science, 2001, 294: 1488-1495
    [3] Prinz G A, Magnetoelectronics, Science, 1998,282: 1660-1663 [4] Park J H, Vescovo E, Kim H J, et al., Direct evidence for a half-metallic ferromagnet, Nature, 1998, 392: 794-796
    [5] Mott N F and H. J, The theory of the properties of metals and alloys, London : Oxford University Press., 1958, 58-60
    [6] Gurney B A, Speriosu V S, Nozieres J P, et al., Direct measurement of spin-dependent conduction-electron mean free paths in ferromagnetic metals, Physical Review Letters, 1993,71:4023-4026
    [7] Thomson W, On the Electro-Dynamic Qualities of Metals: Effects of Magnetization on the Electric Conductivity of Nickel and of Iron, Proceedings of the Royal Society of London, 1856,546-550
    [8] Gr(?)nberg P, Schreiber R, Pang Y, et al., Layered magnetic structures: Evidence for antiferromagnetic coupling of Fe layers across Cr interlayers, Physical Review Letters, 1986,57:2442-2445
    [9] Parkin S S P, More N and Roche K P, Oscillations in exchange coupling and magnetoresistance in metallic superlattice structures: Co/Ru, Co/Cr, and Fe/Cr, Physical Review Letters, 1990, 64: 2304
    [10] Julliere M, Tunneling between ferromagnetic films, Physics Letters A, 1975, 54:
    [11] Miyazaki T and Tezuka N, Spin polarized tunneling in ferromagnet/ insulator/ferromagnet junctions, Journal of magnetism and magnetic materials, 1995, 151:403-410
    [12] Moodera J S, Kinder L R, Wong T M, et al., Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions, Physical Review Letters, 1963, 74: 3273
    [13] Moodera J S and Kinder L R, Ferromagnetic - insulator - ferromagnetic tunneling: Spin - dependent tunneling and large magnetoresistance in trilayer junctions (invited), Journal of Applied Physics, 1996,79:4724
    [14] Yuasa S, Nagahama T and Suzuki Y, Spin-polarized resonant tunneling in magnetic tunnel junctions, 2002,297:234-237
    [15] Von Helmolt R, Wecker J, Holzapfel B, et al., Giant negative magnetoresistance in perovskitelike La_(2/3)Ba_(1/3)MnO_x ferromagnetic films, Physical review letters, 1993, 71: 2331-2333
    [16] Jin S, Tiefel T H, McCormack M, et al., Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-O films, Science, 1994,264: 413-415
    [17] Schiffer P, Ramirez A P, Bao W, et al., Low Temperature Magnetoresistance and the Magnetic Phase Diagram of La_(1-x)Ca_xMnO_3, Physical Review Letters, 1995, 75: 3336-3339
    [18] Yakel H L, On the structures of some compounds of the perovskite type, Acta Crystallographica 1955, 8:110X
    [19] JB Goodenough, Longo J and Landolt-Bornstein., In: H. Hellwege, Editor, Tabellen New Series, Group Ⅲ/4a, Springer-Verlag, Berlin 1970,126
    [20] Haghiri-Gosnet A M and Renard J P, TOPICAL REVIEW: CMR manganites: physics, thin films and devices, Journal of Physics D: Applied Physics, 2003, 36: R127-R150
    [21] Millis A J, Littlewoood P B and Shraiman B I, Double Exchange Alone Does Not Explain the Resistivity of La_(1-x)Sr_xMnO_3, Physical Review Letters, 1995, 75: 5144-5147
    [22] Park J H, Chen C T, Cheong S W, et al., Electronic Aspects of the Ferromagnetic Transition in Manganese Perovskites, Physical Review Letters, 1996, 76: 4215-4218
    [23] Pickett W E and Singh D J, Electronic structure and half-metallic transport in the La_(1-x)Ca_xMnO_3 system, Physical Review B, 1996, 53: 1146-1160
    [24] Ramirez A P, Colossal magnetoresistance, Journal of Physics: Condensed Matter, 1997,9:8171-8199
    [25] Bents U H, Neutron Diffraction Study of the Magnetic Structures for the Perovskite-Type Mixed Oxides La(Mn, Cr) O_3, Physical Review, 1957,106: 225-230
    [26] Cheong S W and Hwang H Y, In: Tokura, Y.(Ed.), Contribution to Colossal Magnetoresistance Oxides, Monographs in Condensed Matter Science, 1999,
    [27] Yuan S L, Zhao Z Y, Xia Z C, et al., Magnetic and transport properties in polycrystalline La_(2/3)Ca_(1/3)MnO_3, Solid State Communications, 2003, 125: 653-657
    [28] Wu G R, Inoue M, Sasaki M, et al., Carrier generation/recombination processes and polaron effect in perovskite manganite thin films, Physica B: Physics of Condensed Matter, 2000, 284: 1912-1913
    [29] Mort N F and Davis E A, Electronic Processes in Non-Crystalline Materials, 1979,
    [30] Jia Y X, Lu L, Khazeni K, et al., Pr-doping of the high-magnetoresistance perovskite Nd_(2/3)Sr_(1/3)MnO_3, Solid state communications, 1995, 94: 917-920
    [31] Guo Z, Zhang J, Zhang N, et al., Electrical properties of La_(0.7-x)Pr_xSr_(0.3)MnO_3 perovskite, Applied Physics Letters, 1997, 70: 1897-1899
    [32] Zener C, Interaction between the d-Shells in the Transition Metals. Ⅱ. Ferromagnetic Compounds of Manganese with Perovskite Structure, Physical Review, 1951,82:403-405
    [33] Anderson P W and Hasegawa H, Considerations on double exchange, Physical Review, 1955, 100: 675-681
    [34] De Gennes P G, Effects of double exchange in magnetic crystals, Physical Review, 1960,118: 141-154
    [35] Hwang H Y, Cheong S W, Ong N P, et al., Spin-Polarized Intergrain Tunneling in La_(2/3)Sr_(1/3)MnO_3, Physical Review Letters, 1996, 77: 2041-2044
    [36] Li X W, Gupta A, Xiao G, et al., Low-field magnetoresistive properties of polycrystalline and epitaxial perovskite manganite films, Applied Physics Letters, 1997,71:1124
    [37] Mahesh R, Mahendiran R, Raychaudhuri A K, et al., Effect of particle size on the giant magnetoresistance of LaCaMnO, Applied Physics Letters, 1996,68: 2291
    [38] Mathur N D, Burnell G, Isaac S P, et al., Large low-field magnetoresistance in La_(0.7)Ca_(0.3)MnO_3 induced by artificial grain boundaries, Nature, 1997, 387: 266-268
    [39] Balcells L, Fontcuberta J, Martez B, et al., High-field magnetoresistance at interfaces in manganese perovskites, Physical Review B, 1998, 58: R14697
    [40] Fontcuberta J, Martinez B, Laukhin V, et al., Bandwidth control of the spin diffusion through interfaces and the electron-phonon coupling in magnetoresistive manganites, Philosophical Transactions of the Royal Society of London, Series A: Mathematical, Physical and Engineering Sciences 1998, 356:1577-1591
    [41] Simmons J G, Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film, Journal of Applied Physics, 1963, 34: 1793-1803
    [42] Viret M, Drouet M, Nassar J, et al., Low-field colossal magnetoresistance in manganite tunnel spin valves, Europhysics Letters, 1997,39: 545-550
    [43] Gupta A, Gong G Q, Xiao G, et al., Grain-boundary effects on the magnetoresistance properties of perovskite manganite films, Physical Review B, 1996, 54: R15629
    [44] Sheng P, Abeles B and Arie Y, Hopping Conductivity in Granular Metals, Physical Review Letters, 1973,31:44
    [45] Yu C, Lee S F, Tsai J L, et al., Study of domain wall magnetoresistance by submicron patterned magnetic structure, Journal of Applied Physics, 2003, 93: 8761-8763
    [46] Huang Y-H, Yan C-H, Luo F, et al., Large enhancement in room-temperature magnetoresistance and dramatic decrease in resistivity in La_(0.7)Ca_(0.3)MnO_3/Ag composites, Applied Physics Letters, 2002, 81: 76-78
    [47] Yuan X B, Liu Y, Huang B, et al., Large room-temperature magnetoresistance in Ag-Ti-added La_(0. 67)Ba_(0. 33)MnO_3, Journal of Physics D: Applied Physics, 2005, 38: 1-4
    [48] Yuan X B, Liu Y H, Huang B X, et al., Large enhancement of room temperature magnetoresistance in Ag-added La_(0. 67)(Ca_(0.65)Ba_(0. 35))_0.33MnO_3, Solid State Communications, 2005,135: 170-173
    [49] Pal S, Banerjee A, Chatterjee S, et al., Transport and magnetic properties of LaPbMnO+xAg (x= 0-20 wt%) nanocomposites, Journal of Applied Physics, 2003,94:3485
    [50] Liu J M, Li J, Huang Q, et al., Partially crystallized La_(0.5)Sr_(0.5)MnO_3 thin films by laser ablation and their enhanced low-field magnetoresistance, Applied Physics Letters, 2000, 76: 2286-2288
    [51] Yuan S L, Zhang G Q, Peng G, et al., Electrical transport and low-field magnetoresistance in the series of mixed polycrystals, Journal of Physics: Condensed Matter, 2001,13: 5691-5697
    [52] Hong C S, Kim W S and Hur N H, Wide colossal magnetoresistance around room temperature in La_(0. 7)Ca_(0. 3)MnO_3/La_(0. 7)Sr_(0.3)MnO_3 composite, Solid State Communications, 2002, 121: 657-660
    [53] Balcells L, Carrillo A E, Martinez B, et al., Enhanced field sensitivity close to percolation in magnetoresistive La_(2/3)Sr_(1/3)MnO_3/CeO_2 composites, Applied Physics Letters, 1999, 74: 4014
    [54] Petrov D K, Krusin-Elbaum L, Sun J Z, et al., Enhanced magnetoresistance in sintered granular manganite/insulator systems, Applied Physics Letters, 1999, 75:995-997
    [55] Hueso L E, Rivas J, Rivadulla F, et al., Magnetoresistance in manganite/alumina nanocrystalline composites, Journal of Applied Physics, 2001, 89: 1746-1750
    [56] Das D, Saha A, Russek S E, et al., Large magnetoresistance in (La_(1-x)Ca_xMnO_3)_(1-y):ZrO_2 composite, Journal of Applied Physics, 2003, 93: 8301-8303
    [57] Huang Y-H, Chen X, Wang Z-M, et al., Enhanced magnetoresistance in granular La_(2/3)Ca_(1/3)MnO_3 polymer composites, Journal of Applied Physics, 2002, 91: 7733-7735
    [58] Das D, Srivastava C M, Bahadur D, et al., Magnetic and electrical transport properties of La_(0.67)Ca_(0.33)MnO_3(LCMO): xZnO composites, Journal of physics. Condensed matter, 2004,16:4089-4102
    [59] Karmakar S, Taran S, Chaudhuri B K, et al., Grain boundary contribution and enhancement of magnetoresistance, Journal of Physics D: Applied Physics, 2005, 38:3757-3763
    [60] Das D, Chowdhury P, Das R N, et al., Solution sol-gel processing and investigation of percolation threshold in La_(2/3)Ca_(1/3)MnO_3: xSiO_2 nanocomposite, Journal of Magnetism and Magnetic Materials, 2002,238:178-184
    [61] Yan C H, Xu Z G, Zhu T, et al., A large low field colossal magnetoresistance in the La_(0.7)Sr_(0.3)MnO_3 and CoFe_2O_4 combined system, Journal of Applied Physics, 2000, 87: 5588
    [62] Xia Z C, Yuan S L, Zhang G H, et al., Effect of low Fe3O4 doping in La0. 67Ca0. 33MnO3, Journal of Physics D: Applied Physics, 2003, 36: 217-222
    [63] Sanchez R D, Rivas J, Vazquez-Vazquez C, et al., Giant magnetoresistance in fine particle of Lao.67Sr_(0.33)MnO_3 synthesized at low temperatures, Applied Physics Letters, 1996,68:134-136
    [64] Mangalaraja R V, Ananthakumar S, Manohar P, et al., Dielectric behavior of N_(1-x)Zn_xFe_2O_4 prepared by flash combustion technique, Materials Letters, 2003, 57: 1151-1155
    [65] Balcells L, Carrillo A E, Martinez B, et al., Enhanced field sensitivity close to percolation in magnetoresistive La_(0.7)Sr_(0.3)MnO_3/CeO_2 composites, Applied Physics Letters, 1999,74:4014-4016
    [66] Das D, Chowdhury P, Das R N, et al., Solution sol-gel processing and investigation of percolation threshold in La_(2/3)Ca_(1/3)MnO_3:xSiO_2 nanocomposite, Journal of Magnetism and Magnetic Materials, 2002,238:178-184
    [67] Schiffer P, Ramirez A P, Bao W, et al., Low Temperature Magnetoresistance and the Magnetic Phase Diagram of La_(1-x)Ca_xMnO_3, Physical Review Letters, 1995, 75: 3336
    [68] Kumar J, Singh R K, Siwach P K, et al., Low field magneto-transport in LBSMO-PMMA composite, Journal of Magnetism and Magnetic Materials, 2006, 299: 155-160
    [69] A Waskowska, L Gerward, J Staun Olsen, et al., CuMn_2O_4: properties and the high-pressure induced Jahn-Teller phase transition, Journal of Physics: Condensed Matter, 2001,13: 2549
    [70] Chun-Hua Yan Y-H H, Xing Chen, Chun-Sheng Liao and Zhe-Ming Wang, Improvement of magnetoresistance over a wide temperature range in La_(2/3)Sr_(1/3)MnO_3/polymer composites, Journal of Physics: Condensed Matter, 2002, 14: 9607
    [71] Dezanneau G, Sin A, Roussel H, et al., Synthesis and characterisation of La_(1-x)MnO_3 nanopowders prepared by acrylamide polymerisation, Solid State Communications, 2002, 121:133-137
    [72] Eshraghi M, Salamati H and Kameli P, The effect of NiO doping on the structure, magnetic and magnetotransport properties of La_(0.8)Sr_(0.2)MnO_3 composite, Journal of Alloys and Compounds, 2007, 437: 22-26
    [73] Gupta A and Sun J Z, Spin-polarized transport and magnetoresistance in magnetic oxides, Journal of Magnetism and Magnetic Materials, 1999, 200: 24-43
    [74] Huang Y-H, Chen X, Wang Z-M, et al., Enhanced magnetoresistance in granular La_(2/3)Ca_(1/3)MnO_3 polymer composites, 2002,91: 7733-7735
    [75] Liu J M, Yuan G L, Chen X Y, et al., Spin-polarized inter-grain tunneling as the probable mechanism for low-field magnetoresistance in partially crystallized La_(0.5)Sr_(0.5)MnO_3 thin films, Applied Physics A: Materials Science & Processing, 2001, 73: 625-630
    [76] Liu J M, Yuan G L, Sang H, et al., Low-field magnetoresistance in nanosized La_(0.7)Sr_(0.3)MnO_3/Pr_(0.5)Sr_(0.5)MnO_3 composites, Applied Physics Letters, 2001, 78: 1110-1112
    [77] Ren G M, Yuan S L, Yu G Q, et al., Effect of sintering temperature on electrical transport in La_(0.67)Sr_(0.33)MnO_3/BaTiO_3composites, 2006, 39: 4867
    [78] Wang X L, Dou S X, Liu H K, et al., Large low-field magnetoresistance over a wide temperature range induced by weak-link grain boundaries in La_(0.7)Ca_(0.3)MnO_3, Applied Physics Letters, 1998, 73: 396-398
    [79] Zhigao Sheng Y S, Xuebin Zhu, Wenhai Song and Peng Yan, Enhanced low-field magnetization and magnetoresistance in nano-MgO added La_(2/3)Ca_(1/3)MnO_3 composites, Journal of Physics D: Applied Physics, 2007,40: 3300
    [80] Rubinstein M, Two-component model of polaronic transport, 2000, 87: 5019-5021
    [81] Mandal P, Choudhury P and Ghosh B, Electronic transport in ferroelectric-ferromagnetic composites La_(5/8)(Ba,Ca)_(3/8)MnO_3:LuMnO_3, Physical Review B (Condensed Matter and Materials Physics), 2006, 74: 094421-094426
    [82] Rao C N R and Raveau B, Colossal magnetoresistance, charge ordering and related properties of manganese oxides, 1998,
    [83] Yan C-H, Xu Z-G, Zhu T, et al., A large low field colossal magnetoresistance in the La_(0.7)Ca_(0.3)MnO_3 and CoFe_2O_4 combined system, 2000, 87: 5588-5590
    [84] Balcells L, Carrillo A E, Martinez B, et al., Enhanced field sensitivity close to percolation in magnetoresistive La_(2/3)Sr_(1/3)MnO_3/CeO_2 composites, Applied Physics Letters, 1999,74:4014-4016
    [85] Li X W, Gupta A, Xiao G, et al., Low-field magnetoresistive properties of polycrystalline and epitaxial perovskite manganite films, Applied Physics Letters, 1997,71:1124-1126
    [86] Po-Hsiang H, Hsin-Hung H and Chih-Huang L, Coexistence of exchange-bias fields and vertical magnetization shifts in ZnCoO/NiO system, Applied Physics Letters, 2007,90: 062509-062503
    [87] Dobrynin A N, Temst K, Lievens P, et al., Observation of Co/CoO nanoparticles below the critical size for exchange bias, Journal of Applied Physics, 2007, 101: 113913-113917
    [88] Huang Q, Li J, Huang X J, et al., Effect of magnetic coupling on the magnetoresistive properties in La_(0.67)Sr_(0.33)MnO_3/BaFe_(11.3)(ZnSn)_(0.7)O_(19 )composites, Journal of Applied Physics, 2001, 90: 2924-2929
    [89] Xia Z C, Yuan S L, Tu F, et al., Grain boundaries and low-field transport properties in colossal magnetoresistance materials, Journal of Physics D: Applied Physics, 2002, 35: 177-180
    [90] Mangalaraja R V, Ananthakumar S, Manohar P, et al., Dielectric behavior of Ni_(1-x)Zn_xFe_2O_4 prepared by flash combustion technique, Materials Letters, 2003, 57: 1151-1155
    [91] Moshnyaga V, Damaschke B, Shapoval O, et al., Structural phase transition at the percolation threshold in epitaxial (La_(0.7)Ca_(0.3)MnO_3)_(1-x):(MgO)_x nanocomposite films, Nat Mater, 2003, 2: 247-252
    [92] Hwang H Y, Cheong S W, Ong N P, et al., Spin-Polarized Intergrain Tunneling in La2/3Sr1/3MnO3, Physical Review Letters, 1996, 77: 2041
    [93] Jin S, Tiefel T H, McCormack M, et al., Thousandfold Change in Resistivity in Magnetoresistive La-Ca-Mn-0 Films, Science 1994, 264: 413-415
    [94] Hueso L E, Rivas J, Rivadulla F, et al., Tuning of colossal magnetoresistance via grain size change in La_(0.67)Ca_(0.33)MnO_3, Journal of Applied Physics, 1999, 86: 3881-3884
    [95] Garcia-Hernandez M, Guinea F, de Andres A, et al., Coulomb blockade versus intergrain resistance in colossal magnetoresistive manganite granular films, Physical Review B, 2000, 61: 9549
    [96] Kumar D, Sankar J, Narayan J, et al., Low-temperature resistivity minima in colossal magnetoresistive La_(0.7)Ca_(0.3)MnO_3 thin films, Physical Review B, 2002,65: 094407
    [97] Okunev V D, Szymczak R, Baran M, et al., Effect of Coulomb blockade on the low- and high-temperature resistance of La_(1-x)M_xMnO_3(M = Sr,Ca) films, Physical Review B (Condensed Matter and Materials Physics), 2006,74: 014404-014412
    [98] Rozenberg E, Auslender M, Felner I, et al., Low-temperature resistivity minimum in ceramic manganites, Journal of Applied Physics, 2000, 88: 2578-2582
    [99] Syskakis E, Choudalakis G and Papastaikoudis C, Crossover between Kondo and electron-electron interaction effects in La_(0.75)Sr_(0.20)MnO_3 manganite doped with Co impurities?, Journal of Physics: Condensed Matter, 2003,15: 7735-7750
    [100] Zhang J, Xu Y, Cao S, et al., Kondo-like transport and its correlation with the spin-glass phase in perovskite manganites, Physical Review B (Condensed Matter and Materials Physics), 2005,72: 054410-054416
    [101] Michalopoulou A, Syskakis E and Papastaikoudis C, Low-temperature transport properties of non-stoichiometric La_(0.95-x)Sr_xMnO_3 manganites, Journal of Physics: Condensed Matter, 2001, 50:11615
    [102] Tiwari A and Rajeev K P, Low-temperature electrical transport in La_(0.7)A_(0.3)MnO_3, (A: Ca, Sr, Ba), Solid State Communications, 1999, 111: 33-37
    [103] Xu Y, Zhang J, Cao G, et al., Low-temperature resistivity minimum and weak spin disorder of polycrystalline La_(2/3)Ca_(1/3)MnO_3 in a magnetic field, Physical Review B (Condensed Matter and Materials Physics), 2006, 73:224410-224417
    [104] Auslender M, Kar'kin A E, Rozenberg E, et al., Low-temperature resistivity minima in single-crystalline and ceramic La_(0.8)Sr_(0.2)MnO_3: Mesoscopic transport and intergranular tunneling, 2001, 89: 6639-6641
    [105] Sanchez R D, Rivas J, Vazquez-Vazquez C, et al., Giant magnetoresistance in fine particle of La_(0.67)Ca_(0.33)MnO_3 synthesized at low temperatures, Applied Physics Letters, 1996, 68:134-136
    [106] Dey P and Nath T K, Effect of grain size modulation on the magneto- and electronic-transport properties of La_(0.7)Ca_(0.3)MnO_3 nanoparticles: The role of spin-polarized tunneling at the enhanced grain surface, Physical Review B (Condensed Matter and Materials Physics), 2006, 73: 214425-214414
    [107] Helman J S and Abeles B, Tunneling of Spin-Polarized Electrons and Magnetoresistance in Granular Ni Films, Physical Review Letters, 1976, 37: 1429
    [108] Yuan S L, Tang J, Liu L, et al., Temperature dependence of resistivity in polycrystalline manganites, Europhysics Letters, 2003, 63: 433
    [109] Ziese M, Searching for quantum interference effects in La_(0.7)Ca_(0.3)MnO_3 films on SrTiO_3, Physical Review B, 2003, 68: 132411
    [110] Abeles B, Sheng P, Courts M D, et al., Structural and electrical properties of granular metal films, Advances in Physics, 1975, 24:407-461
    [111] Neugebauer C A and Webb M B, Electrical Conduction Mechanism in Ultrathin, Evaporated Metal Films, Journal of Applied Physics, 1962, 33: 74-82
    [112] Gittleman J I, Goldstein Y and Bozowski S, Magnetic Properties of Granular Nickel Films, Physical Review B, 1972, 5: 3609
    [113] Yuan S L, Xiong C S, Li Z Y, et al., Phase separation and insulator-metal behaviourin highly Ba~(2+)-doped La_(1-x)Ba_xMnO_3 compounds, Journal of Physics: Condensed Matter, 2002,14: 173-179
    [114] Salamon M B and Jaime M, The physics of manganites: Structure and transport, Reviews of Modern Physics, 2001, 73: 583
    [115] Kirkpatrick S, Percolation and Conduction, Reviews of Modern Physics, 1973, 45: 574
    [116] Tiwari M K, Yarin A L and Megaridis C M, Electrospun fibrous nanocomposites as permeable, flexible strain sensors, Journal of Applied Physics, 2008, 103: 044305-044310
    [117] Mdarhri A, Carmona F, Brosseau C, et al., Direct current electrical and microwave properties of polymer-multiwalled carbon nanotubes composites, Journal of Applied Physics, 2008,103: 054303-054309
    [118] Kim B, Lee J and Yu I, Electrical properties of single-wall carbon nanotube and epoxy composites, Journal of Applied Physics, 2003, 94: 6724-6728
    [119] Gonon P and Boudefel A, Electrical properties of epoxy/silver nanocomposites, Journal of Applied Physics, 2006,99: 024308-024308
    [120] Kim W J, Taya M, Yamada K, et al., Percolation study on electrical resistivity of SiC/Si_3N_4 composites with segregated distribution, Journal of Applied Physics, 1998, 83: 2593-2598
    [121] Vertruyen B, Cloots R, Ausloos M, et al., Electrical transport and percolation in magnetoresistive manganite/insulating oxide composites: Case of La_(0.7)Ca_(0.3)MnO_3/Mn_3O_4, Physical Review B (Condensed Matter and Materials Physics), 2007,75:165112-165114
    [122] Balcells L, Carrillo A E, Martinez B, et al., Enhanced field sensitivity close to percolation in magnetoresistive La_(2/3)Sr_(1/3)MnO_3/Ce_2 composites, Applied Physics Letters, 1999,74: 4014-4016
    [123] Gupta S, Ranjit R, Mitra C, et al., Enhanced room-temperature magnetoresistance in La_(0.7)Sr_(0.3)Mn_3-glass composites, Applied Physics Letters, 2001, 78: 362-364
    [124] Budhani R C, Roy C, Lewis L H, et al., Magnetic ordering and granularity effects in La_(1-x)Ba_xMnO_3, Journal of Applied Physics, 2000, 87: 2490-2496
    [125] Roy C and Budhani R C, Raman- and infrared-active phonons in hexagonal BaMnO3, Physical Review B, 1998, 58: 8174
    [126] Roy C and Budhani R C, Raman, infrared and x-ray diffraction study of phase stability in La_(1-x)Ba_xMnO_3 doped manganites, Journal of Applied Physics, 1999, 85: 3124-3131
    [127] Ju H L, Nam Y S, Lee J E, et al., Anomalous magnetic properties and magnetic phase diagram of La_(1-x)Ba_xMnO_3, Journal of Magnetism and Magnetic Materials, 2000, 219: 1-8
    [128] Kusy R P, Influence of particle size ratio on the continuity of aggregates, Journal of Applied Physics, 1977,48: 5301-5305
    [129] Vertruyen B, Cloots R, Rulmont A, et al., Magnetotransport properties of a single grain boundary in a bulk La-Ca-Mn-0 material, Journal of Applied Physics, 2001, 90: 5692-5697
    [130] Scher H and Zallen R, Critical Density in Percolation Processes, The Journal of Chemical Physics, 1970, 53: 3759-3761
    [131] Chiteme C and McLachlan D S, ac and dc conductivity, magnetoresistance, and scaling in cellular percolation systems, Physical Review B, 2003, 67: 024206
    [132] Mamunya Y P, Davydenko V V, Pissis P, et al., Electrical and thermal conductivity of polymers filled with metal powders, European Polymer Journal, 2002, 38:1887-1897
    [133] Balberg I and Binenbaum N, Scher and Zallen criterion: Applicability to composite systems, Physical Review B, 1987, 35: 8749
    [134] Nan C-W, Physics of inhomogeneous inorganic materials, Progress in Materials Science, 1993,37: 1-116
    [135] Hueso L E, Rivas J, Rivadulla F, et al., Magnetic and intergranular transport properties in manganite/alumina composites, Journal of Non-Crystalline Solids, 2001, 287: 324-328
    [136] Jiakuan Sun W W G L F F, Electrical and optical properties of ceramic-polymer nanocomposite coatings, 2003,41: 1744-1761
    [137] Elam W T, Kerstein A R and Rehr J J, Critical Properties of the Void Percolation Problem for Spheres, Physical Review Letters, 1984, 52: 1516
    [138] Feng S, Halperin B I and Sen P N, Transport properties of continuum systems near the percolation threshold, Physical Review B, 1987,35:197
    [139] Halperin B I, Feng S and Sen P N, Differences between Lattice and Continuum Percolation Transport Exponents, Physical Review Letters, 1985, 54: 2391
    [140] Balberg I, Limits on the continuum-percolation transport exponents, Physical Review B, 1998,57:13351

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700