超顺磁性氧化铁和LSMO/BCFO复合多铁薄膜的制备及其物性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化铁纳米颗粒具有超顺磁性和良好的稳定性,是作为磁共振造影剂的最佳材料。磁共振成像(Magnetic Resonance Imaging, MRI)是一项先进的医学成像诊断技术,已广泛应用于人体多种疾病的检测和早期诊断,磁共振成像造影剂(MRI Contrast Agent)是该技术的重要组成部分,它可以缩短成像时间,提高成像的对比度和清晰度。本文以超顺磁性氧化铁(Superparamagnetic Iron Oxide, SPIO)纳米颗粒为核心,以葡聚糖为分散剂,通过水相共沉淀法制备了葡聚糖包覆的SPIO,然后在表氯醇的催化作用下,加入乙二胺,让氨基官能团取代葡聚糖表面的羟基基团,最终得到氨基官能团修饰的SPIO (SPIO-NH2)纳米颗粒。在制备工艺方面,对于SPIO氨基化的实验工艺进行了探讨,找到了最佳的实验工艺,该工艺可让SPIO-NH2表面的氨基含量达到最大。我们通过晶体结构、磁性测量结果发现,SPIO-NH2在室温下具有较好的超顺磁性,在磁共振仪下能够有效缩短家兔肝脏组织信号的驰豫时间;另外,将SPIO-NH2纳米颗粒和带有荧光的多肽Tat (FITC)进行偶联,得到了具有磁性/荧光双功能的纳米颗粒探针,它不仅能够进入神经干细胞内进行细胞标记,还能够缩短神经干细胞的磁共振信号驰豫时间,做为磁性标记物。
     多铁材料是指在一定温度范围内共存的铁电有序和磁性有序的材料,并且铁电相和铁磁相的耦合作用还可以产生磁电效应,该材料在半导体器件方面具有重要的应用前景,近几年来受到了全世界的广泛关注。多铁材料分为单相多铁材料和复合多铁材料。复合多铁材料除了具有单相多铁材料所具有的优点之外,还能产生更强的磁电耦合效应,因而其应用也更加广泛,受到的关注也越来越多。本文利用纯相的铁磁性材料和纯相的多铁材料来制备复合的多铁材料。镧锶锰氧(La0.67Sr0.33MnO3, LSMO)是一种钙钛矿结构的铁磁性材料,而铁酸铋(BiFeO3, BFO)也是一种典型的钙钛矿型的多铁材料,其居里温度为TC=1103K,奈尔温度为TN=643K,在室温下表现出共存的铁电性和很弱的反铁磁性。我们正是利用了LSMO的室温铁磁性和BFO的室温铁电性,通过溶胶-凝胶法而制备了LSMO/BFO复合的多铁薄膜,并研究了不同BFO层数的LSMO(7层)/BFO复合多铁薄膜的结构、形貌、铁电性、介电性等性质,研究发现复合多铁薄膜的铁电性较单纯的BFO薄膜有明显的增强。另外,我们还通过A位Ca掺杂,制备了不同Ca掺杂比例的Bi1-xCaxFeO3 (BCFO)多铁薄膜;之后再和LSMO层进行复合,制备出了LSMO/BCFO复合的多铁薄膜,同时也研究了上述两类薄膜的结构形貌、铁电性、介电性等性质,研究结果发现Ca掺杂可以明显提高BCFO薄膜的铁电性,这来源于BCFO薄膜的晶格结构变化,并且还发现复合了LSMO层的BCFO薄膜,比单纯BCFO薄膜的铁电性要好,表现为具有较大剩余极化强度和饱和极化强度,这来源于LSMO铁磁层和BCFO铁电层的磁电耦合作用。
Superparamagnetic iron oxide (SPIO) nanoparticles show superparamagnetism and good stability, which make them the best candidate for the widely used as a magnetic resonance imaging (MRI) contrast agent. MRI is a powerful clinical diagnostic modality for the detection and diagnosis of a wide varity of diseases. MRI contrast agent is a diagnostic agent that could be administered to a patient in order to shorten the relaxation times of protons in tissues in which the agent accumulates, enhancing the imaging contrast between normal and diseased tissue. In this thesis, as the SPIO is core, the dextran is dispersant, we synthezise the dextran-coated SPIO nanoparticles by coprecipitation technique at first; under the catalysis of epichlorohydrin, the ethylenediamine was added, the hydroxyl on the surface of dextran is replaced by the amino-group, finally amino-group functionalized SPIO (SPIO-NH2) was obtained. In preparation process, we focus on the functionalization of SPIO with amino-group, and optimize the preparation technology, in which the amount of surface amino-group of the SPIO-NH2 nanoparticles is highest. The structure and magnetism of these SPIO-NH2 nanoparticles were also studied, it found that SPIO-NH2 nanoparticles possess superparamagnetic behavior. In a 1.5 T MR system, SPIO-NH2 nanoparticles can shorten the T2 signal relaxation time of liver tissue dramatically. Furthermore, Tat (FITC) peptide was choosen to conjugated with SPIO-NH2 nanoparticles, we obtain the magnetic/fluorescent bifunctional labeling prode; The obtained probe not only can enter the neural stem cells for cells labeling, but also result in significant negative T2 signal contrast enhancement, and can be used for magnetically labeling in a MR system.
     In a certain temperature range, multiferroics shows coexistent ferroelectric order and magnetic order, the coexistent ferroelectricity and magnetism can couple with each other and result in magneto-electric effects, so the multiferroics was considered to have important potential application in the semi-conductor devices, such as sensors, switches and modulators et al. In recent years, much attention were paid on multiferroics, which can be divided into single-phase multiferroics and composite multiferroics. The composite multiferroics prior to single-phase counterpart since they can produce stronger magneto-electric effects, which makes them possess widely application value, and also evokes more and more attention. In this thesis, single-phase ferromagnetic material and single-phase ferroelectric material were adopted to prepare multiferroic composite thin films. La0.67Sr0.33MnO3 (LSMO) is a typical ferromagnetic material with perovskite structure; while BiFeO3 (BFO) is also a perovskite typed multiferroics, which ferroelectric-paraelectric transition Curie temperature is Tc= 1103 K and its antiferromagnetic-paramagnetic transition Neel temperature is TN= 643 K, so BFO shows coexistent ferroelectricity and weak magnetism at room temperature. Based on the above, the ferromagnetic material LSMO (at room temperature) and the ferroelectric material BFO (at room temperature) were choosen to fabricate LSMO (7 layers)/BFO multiferroic composite thin films with different BFO layers by sol-gel technique, and further focus on its structure, morphology, ferroelectricity, dielectric properties et al, we found that the ferroelectricity of LSMO/BFO multiferroic thin films is enhanced when compared with that of BFO films. In addition, A site Ca substituted Bi1-xCaxFeO3 (BCFO) single-phase thin films was prepared by adding Ca(NO3)2*4H2O as starting material, and LSMO/BCFO multiferroic thin films was also obtained; the structure, morphology, ferroelectricity, dielectric properties et al of BCFO thin films and LSMO/BCFO composite thin films were also analysed. The results show that the doping of Ca can dramatically enhance the ferroelectricity of BCFO multiferroic thin films, which arises from the structure evolution of BFO. In addition, the remnant polarization and saturated polarization of LSMO/BCFO thin films are higher than that of pure BCFO thin films, shows enhanced ferroelectricity in LSMO/BCFO thin films, which originate from the magneto-electric coupled effects between LSMO layer and BCFO layer.
引文
[1]沈关心,周汝霖.现代免疫学实验技术.湖北科学技术出版社,2002年1月.
    [2]Akihiko Kondo, Hiroko Kamura, Ko Higashitani. Development and application of thermo-sensitive magnetic immunomicrospheres for antibody purification. Applied Microbiology Biotecholigy,1994,41:99-105.
    [3]M. Koneracka, F Kopcansky, M. Antalik. Immobilization of proteins and enzymes to fine magnetic particles. Journal of Magnetism and Magnetic Materials,1999,201: 427-430.
    [4]Kandzia, M. D. Anderson, W Muller-Ruchholtz. Ceil Separation Antibody-coupled Magnetic Microspheres and their Application in Conjunction with Monoclonal HLA-Antibodies. Clinical Oncology,1981,26:164-169.
    [5]Claude Sestier, Domagoj Sabolovic. Particle eletrophoresis of rnicrometric-sized superparamagnetic particles designed for magnetic purification of cells. Electrophoresis,1998,19:2485-2490.
    [6]Molday R, Yen S.P. Application of magnetic microspheres in labeling and separation of cells. Nature,1977,268:437-438.
    [7]透视人体的神眼——核磁共振成像技术. Tsinghua Tongfang Optical Disc Co. Ltd. Jan 2004.
    [8]刘迎春.医疗诊断新技术——磁共振成像术.化学教育,2005年第五期.
    [9]罗毅,卓仁禧,史玉亭.磁共振成像造影剂研究的近况.国外医学临床放射学分册(合成药、生化药、制剂分册)1995,1,20-22.
    [10]林红霞,陈骐.磁共振成像造影剂的研究进展.沈阳药科大学学报,Mar2002,19,2.
    [11]高元桂,蔡幼锉,蔡祖龙.磁共振成象诊断学.北京:人民军区出版社,1992.
    [12]陈星荣,沈天真,段新祥等.全身CT和MRI.上海:上海医科大学出版社(第一版).1993,73-80.
    [13]Jun Y W, Lee J H and Cheon J W. Chemical design of nanoparticle probes for high-performance magnetic resonance imaging. Angew. Chem. Int. Ed.2008,47: 5122-5135.
    [14]Jinwoo Cheon and Jae-Hyun Lee. Synergistically Integrated Nanoparticles as Multimodal Probes for Nanobiotechnology. Ace. Chem. Res.,2008,41 (12), 1630-1640.
    [15]陈龙华.磁共振成像对比剂增强理论与治疗.北京:人民卫生出版社.1995,1-113.
    [16]Umar mahmood and Lee Josephson. Molecular MR Imaging Probes. Proceedings of the IEEE, April 2005,93,4.
    [17]Haerim Lee, Eunhye Lee, Do Kyung Kim, Nam Kyu Jang, Yong Yeon Jeong and Sangyong Jon. Antibiofouling Polymer-Coated Superparamagnetic Iron Oxide Nanoparticles as Potential Magnetic Resonance Contrast Agents for in Vivo Cancer Imaging. J. Am. Chem. Soc.2006,128,7383-7389.
    [18]湛彦强.靶向磁性纳米材料在老年痴呆分子影像学诊断上的应用.华中科技大学博士学位论文,2010.
    [19]http://cmir.mgh.harvard.edu/chem/chem probes.php?menuID_=111.
    [20]Lewin M, Nadia C, Tung C H, Tang X W, David C, David T S and Weissleder R. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nature Biotechnology,2000,18:410-414.
    [21]Josephson L, Tung C H, Moore A and Weissleder R. High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates. Bioconjugate Chem.1999,10,186-191.
    [22]Wadghiri Y Z et al. Detection of alzheimer's amyloid in transgenic mice using magnetic resonance microimaging. Magnetic Resonance in Medicine,2003,50, 293-302.
    [23]Wengenack T M, Curran G L and Joseph F P. Targeting alzheimer amyloid plaques in vivo. Nature Biotechnology,2000,18,868-872.
    [24]David E S et al. Magnetic resonance imaging of cardiomyocyte apoptosis with a novel magneto-optical nanoparticle. Magnetic Resonance in Medicine,2005,54, 718-724.
    [25]Ho-Taek Song, Jin-sil Choi, Yong-Min Huh, Sungjun Kim, Young-wook Jun, Jin-Suck Suh, and Jinwoo Cheon. Surface Modulation of Magnetic Nanocrystals in the Development of Highly Efficient Magnetic Resonance Probes for Intracellular Labeling. J. Am. Chem. Soc.2005,127,9992-9993.
    [26]Yong-Min Huh, Young-wook Jun, Ho-Taek Song, Sungjun Kim, Jin-sil Choi, Jae-Hyun Lee, Sarah Yoon, Kyung-Sup Kim, Jeon-Soo Shin, Jin-Suck Suh, and Jinwoo Cheon. In Vivo Magnetic Resonance Detection of Cancer by Using Multifunctional Magnetic Nanocrystals. J. Am. Chem. Soc.2005,127, 12387-12391.
    [27]Young-wook Jun, Yong-Min Huh, Jin-sil Choi, Jae-Hyun Lee, Ho-Taek Song, Sungjun Kim, Sarah Yoon, Kyung-Sup Kim, Jeon-Soo Shin, Jin-Suck Suh, and Jinwoo Cheon. Nanoscale Size Effect of Magnetic Nanocrystals and Their Utilization for Cancer Diagnosis via Magnetic Resonance Imaging. J. Am. Chem. Soc.2005,127,5732-5733.
    [28]Norased Nasongkla, Erik Bey, Jimin Ren, Hua Ai, Chalermchai Khemtong, Jagadeesh Setti Guthi, Shook-Fong Chin, A. Dean Sherry, David A. Boothman, and Jinming Gao. Multifunctional Polymeric Micelles as Cancer-Targeted, MRI-Ultrasensitive Drug Delivery Systems. Nano Letters, June 2006,11,2427-2430.
    [29]钟维烈.铁电体物理学.北京:科学出版社,1998,1-4.
    [30]Scott J.F铁电存储器.朱劲松,吕笑梅,朱旻译.北京:清华大学出版社,2000,1-4.
    [31]刘小辉,屈绍波和陈江丽等.磁电材料的研究进展及发展趋势.稀有金属材料与工程,2006,35,13-16.
    [32]许煌寰.铁电与压电材料.北京:科学出版社,1978,41-43.
    [33]R. Ramesh and Nicola A. Spaldin. Multiferroics:progress and prospects in thin films. Nature materials,2007,6,21-29.
    [34]谢奉洋.复合多铁性CoFe2O4-BaTiO3材料的制备和电磁性能研究.华中科技大学硕士学位论文,2011.
    [35]殷之文.电介质物理学.北京:科学出版社,2003.
    [36]Zheludev I. S., Solid State Physics,26, ed. By H. Ehrenreich, F. Seitz and D.Turnball, Academic Press, New York,1971,429-450.
    [37]刘红日.BiFeO3薄膜的溶胶凝胶方法的制备、掺杂及电磁性质的研究.华中科技大学博十学位论文.2006.
    [38]陈克兵Ba0.5Sr0.5TiO3铁电薄膜和La0.67Sr0.33MnO3多铁薄膜的制备和性质研究.华中科技大学硕士学位论文,2009.
    [39]薛增泉等.薄膜物理.北京:电子工业出版社,1991.
    [40]肖定全.热释电效应在物理学基础研究中应用的进展.物理,1986,15:527-531.
    [41]N. Setter, D. Damjanovic and L. Eng et al. Ferroelectric thin films:Review of materials, properties, and applications. Journal of Applied Physics,2006,100, 051606.
    [42]J. F. Scott. Ferroelectric Memories. Springer Series in Advanced Microelectronics. Springer-Verlag, Berlin,2000.
    [43]H. Ishiwara, M. Okuyama and Y. Arimoto. Ferroelectric Random Access Memories. Fundamentals and Applications (Topics in Applied Physics). Springer-Verlag, Berlin, 2004,93.
    [44]T. Zhao, A. Scholl, F. Zavaliche, K. Lee, M. Barry, A. Doran, M. P. Cruz, Y. H. Chu, C. Ederer, N. A. Spaldin, R. R. Das, D. M. Kim, S. H. Baek, C. B. Eom and R. Ramesh. Electrical control of antiferromagnetic domains inmultiferroic BiFeO3 films at room Temperature. Nature Materials, Oct 2006,5.
    [45]Joonghoe Dho, Xiaoding Qi, Hyunho Kim, Judith L. MacManus-Driscoll, and Mark G. Blamire. Large Electric Polarization and Exchange Bias in Multiferroic BiFeO3. Advanced Materials.2006,18,1445-1448.
    [46]Ying-Hao Chu, Qian Zhan, Lane W. Martin, Maria P. Cruz, Pei-Ling Yang, Gary W. Pabst, Florin Zavaliche, Seung-Yeul Yang, Jing-Xian Zhang, Long-Qing Chen, Darrell G. Schlom, I.-Nan Lin, Tai-Bor Wu, and Ramamoorthy Ramesh. Nanoscale Domain Control in Multiferroic BiFeO3 Thin Films. Advanced Materials.2006,18, 2307-2311.
    [47]F. Zavaliche, P. Shafer, and R. Ramesh, M. P. Cruz, R. R. Das, D. M. Kim, and C. B. Eom. Polarization switching in epitaxial BiFeO3 films. Applied Physics Letters.2005, 87,252902.
    [48]Li Jie-Fang, Wang Jun-Ling and Wuttig M et al. Dramatically enhanced polarization in (001), (101), and (111) BiFeO3 thin films due to eptiaxial-induced transitions. Applied Physics Letters.2004,84,5261-5263.
    [49]李宁,卢迪芬和陈森凤.溶胶-凝胶法制备薄膜的研究进展.玻璃与搪瓷,2004,32,50-55.
    [50]冯涛.三明治结构Si/LSMO/PAN (DBSA掺杂)/Co/Al有机自旋阀制备及研究.华中科技大学硕士学位论文,2009.
    [51]专利:一种制备纳米Fe304颗粒的方法。刘祖黎、姚凯伦、刘永基、陶晋、丁宗华、王欣、龚非力。专利号:ZL02154130.2
    [52]Josephson L, Gaw DA.(2009) Amine Functionalized Superparamagnetic Nanoparticles for the Synthesis of Bioconjugates and Uses Therefor. Boston, MA, USA. US patent:20090068115.
    [53]Sun S H, Zeng H, Robinson D B, Raoux S, Rice P M, Wang S X and Li G X Monodisperse MFe2O4 (M=Fe, Co, Mn) nanoparticles. J. Am. Chem. Soc.2004, 126,273-279.
    [54]Laurent S, Forge D, Port M, Roch A, Robic C, Elst L V and Muller R N. Magnetic iron oxide nanoparticles:synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chemical Reviews,2008,108, 2064-2110.
    [55]Du G H et al. Fe3O4/CdSe/ZnS magnetic fluorescent bifunctional nanocomposites. Nanotechnology,2006,17,2850-2584.
    [56]Du G H, Liu Z L, Xia X, Chu Q and Zhang S M. Characterization and application of Fe3O4SiO2 nanocomposites. Journal of Sol-gel Science and Technology,2006,39, 285-291.
    [57]Liu Z L, Wang H B, Lu Q H, Du G H, Peng L, Du Y Q, Zhang S M and Yao K L. Synthesis and characterization of ultrafine well-dispersed magnetic nanoparticles. Journal of Magnetism and Magnetic Materials,2004,283,258-262.
    [58]Liu Z L, Yang X B, Yao K L, Du G H and Liu Z S. Preparation and characterization of magnetic P(St-co-MAA-co-AM) microspheres. Journal of Magnetism and Magnetic Materials,2006,302,529-535.
    [59]Du G H, Liu Z L, Xia X, Jia L H, Chu Q and Zhang S M. Functionalization of magnetic nanoparticles. Nanoscience,2006,11,49-54.
    [60]Pittet M J, Swirski F K, Reynolds F, Josephson L and Weissleder R. Labeling of immune cells for in vivo imaging using magnetofluorescent nanoparticles. Nature Protocols,2006,1,1-7.
    [61]冯拉俊,刘毅辉,雷阿利.纳米颗粒团聚的控制.微纳电子技术,2003,7/8:536-539.
    [62]王光信,陈宗淇.均分散Fe2O3粒子的制备.物理化学学报,1991,7(6):699-702.
    [63]王世敏,许祖勋,傅品.纳米材料制备技术.北京:化学工业出版社,2001.
    [64]顺百胜等.壳聚糖氨基含量测定方法的改进.华东理工大学学报,2003年6月,29,3,58-61.
    [65]Ngo, T. T. A simple spectrophotometric determination of solid supported amino groups. J. Biochem. Biophys. Methods.1986,12,349-354.
    [66]马铭.具有高驰豫速率的超顺磁性磁共振造影剂的制备和性质研究.华中科技大学硕士学位论文,2008.
    [67]Ming Ma, Yanqiang Zhan, Yaqi Shen, Xing Xia, Suming Zhang, Zuli Liu. Synthesis of amino-group functionalized superparamagnetic iron oxide nanoparticles and applications as biomedical labeling probes. Journal of Nanoparticle Research,2001. DOI:10.1007/s11051-011-0239-9.
    [68]陈虹锦.无机与分析化学.北京:科学出版社,2002.
    [69]Gupta AK, Wells S. Surface-Modified Superparamagnetic Nanoparticles for Drug Delivery:Preparation, Characterization, and Cytotoxicity Studies. IEEE Trans Nanobiosci,2004,3,66-73.
    [70]Hofmann H, Juillerat J, Petri-Fink A, Chastellain M. Development of biocompatible functionalized superparamagnetic iron oxide nanoparticles for human cancer cell uptake. Eur Cells Mater.,2004,7 Supp.1:14.
    [71]Fengqin Hu, Li Wei, Zhuan Zhou, Yuliang Ran, Zhen Li, and Mingyuan Gao. Preparation of Biocompatible Magnetite Nanocrystals for In Vivo Magnetic Resonance Detection of Cancer. Advanced Materials.2006,18,2553-2556.
    [72]Tanimoto A, Kuribayashi S. Application of superparamagnetic iron oxide to imaging of hepatocellular carcinoma. Eur. J. Radiol.2006,58,200-216.
    [73]Lee J H, Huh Y M, Jun Y W et al. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nature Medicine.2007,13,95-99.
    [74]Eken AE, Ozenbas M. Characterization of nanostructured magnetite thin films produced by sol-gel processing. J Sol-Gel Sci Technol,2009,50,321-327.
    [75]Xuan SH, Wang YXJ, Yu JC, Leung KCF. Tuning the Grain Size and Particle Size of Superparamagnetic Fe3O4 Microparticles. Chem Mater.2009,21,5079-5087.
    [76]姜寿亭、李卫编著.凝聚态磁性物理.北京:科学出版社,2003年第一版.
    [77]丁劲,马斌,刘军,薛采芳. HIV-Tat蛋白转导域在医学研究中的应用.中国生物工程杂志,2003年6月,23,6,6-13.
    [78]陈菁,傅蓉,刘树滔,何火聪,饶平凡.Tat蛋白转导区域位于融合蛋白C端时的跨膜递送作用.中国生物化学与分子生物学报,2005年8月21(4):459-464.
    [79]梁英民,蒋姗姗,韩骅,孙强,刘利,郝淼旺,邓中荣,陈任安,刘强.TAT蛋白转导域介导BCR/ABL融合蛋白通过小鼠血脑屏障的作用.细胞与分子免疫学杂志,2002,18 (3):244-247.
    [80]Wunderbaldinger P, Josephson L, Weissleder R. Tat peptide directs enhanced clearance and hepatic permeability of magnetic nanoparticles. Bioconjugate Chem. 2002,13,264-268.
    [81]Frankel A D, Pabo Co. Cellular uptake of the Tat protein from human immunodeficiency virus. Cell,1988,55:1189-1193.
    [82]Green M, Loewenstein PM. Autonomous functional domains of chemically synthesized human immunodeficiency virus Tat trans-activator protein. Cell,1988, 55:1179-1188.
    [83]Fawell S, Seery J, Daikh Y, et al. Tat-mediated delivery of heterologous proteins into cells. Proc. Natl Acad Sci USA,1994,91:664-668.
    [84]Vives E, Brodin P, Lebieu B. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem,1997,272:16010-16017.
    [85]Schwarze S R, Dowdy S F. In vivo protein transduction:intracellular delivery of biologically active proteins, compounds and DNA. Trends Pharmacol Sci,2000,21: 45-48.
    [86]Schwarze S R, Ho A, Vocero-Akbani A. In vivo protein transduction:delivery of a biologically active protein into the mouse. Science,1999,285:1569-1572.
    [87]Derossi D, Joliot A H, Chassaings G. The third helix of the antennapedia homeodomain translocates through biological membranes. J Biol Chem,1994,269: 10444-10450.
    [88]Elloitt G, O'Hare P. Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell,1997,88:223-233.
    [89]Koch A M, Reynolds F, Kircher M F, Merkle H P et al. Uptake and metabolism of a dual fluorochrome tat-nanoparticle in HeLa cells. Bioconjugate Chem.2003,14, 1115-1121.
    [90]Dodd C H, Hsu H C, Chu W J, Yang P et al. Normal T-cell response and in vivo magnetic resonance imaging of T cells loaded with HIV transactivator-peptide-derived superparamagnetic nanoparticles. J Immunol Methods. 2001,256,89-105.
    [91]Majumder S. B., Roy B., and Katiyar S. Effect of neodymium (Nd) doping on the dielelctric and ferroelectric characteristics of sol-gel derived lead zirconate titanate (53/47) thin films. Journal of Applied Physics.2001,90(6):2975-2984.
    [92]Tang X.G., Ding A.L., and Ye Y.et al. Preparation and chrarcterization of highly (111)-oriented(Pb,La)(Zr,Ti)O3 thin films by sol-gel processing. Thin Solid Films. 2003,423:13-17.
    [93]Melgarejo R. E., Tomar M. S. and Bhaskar S.et al. Large ferroelectric response in Bi4-xNdxTi3O12 films prepared by sol-gel process. Applied Physics Letters.2002, 81(14):2611-2613.
    [94]Watanabe T., Funakubo H.and Osada M., Effect of cosubstitution of La and V in Bi4Ti3O12 thin films on the low-temperature deposition. Applied Physics Letters. 2002,80(7),100-102.
    [95]Zuli Liu, Hongri Liu, Guihuan Du, Jian Zhang, and Kailun Yao. Electric properties of BiFeO3 films deposited on LaNiO3 by sol-gel process. Journal of Applied Physics. 2006,100,044110.
    [96]Hongri Liu, Zuli Liu, Qing Liu, Kailun Yao. Ferroelectric properties of BiFeO3 films grown by sol-gel process. Thin Solid Films.2006,500,105-109.
    [97]Liu Hongri, Liu Zuli, Liu Qing and Yao Kailun. Electric and magnetic properties of multiferroic (BiFeO3)1-x-(PbTiO3)x films prepared by the sol-gel process. Journal of Physics D-Applied Physics.2006,39,1022-1027.
    [98]Liu Hongri and Sun Yuxia. Substantially enhanced ferroelectricity in Ti doped BiFeO3 films. Journal of Physics D-Applied Physics.2007,40,7530-7533.
    [99]Liu Hongri, Sun Yuxia and Wang Xiuzhang. Study of the electric properties of PbTiO3-BiFeO3 multilayer film structure. Journal of Physics D-Applied Physics. 2008,41,095302 (5pp).
    [100]C.-H. Yang, J. Seidel, S. Y. Kim, P. B. Rossen, P. Yu, M. Gajek, Y. H. Chu, L.W. Martin, M. B. Holcomb, Q. He, P. Maksymovych, N. Balke, S. V. Kalinin, A. P. Baddorf, S. R. Basu, M. L. Scullin and R. Ramesh. Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films. Nature Materials. June 2009,8.
    [101]T. Choi, S. Lee, Y. J. Choi, V. Kiryukhin, S.-W. Cheong. Switchable Ferroelectric Diode and Photovoltaic Effect in BiFeO3. Science,3 Apr 2009,324.
    [102]Wang J., Tang X. G.and Chan H. L. W. Dielectric relaxation and electrical properties of 0.94Pb(Fe1/2Nb1/2)O3-0.06PbTiO3 single crystals, Applied Physics Letters.2005,86(15):152907.
    [103]Amarendra K. Singh and T. C. Goel et al. Dielectric properties of Mn-substituted Ni-Zn ferrites. Journal of Applied Physics.2002,91(10):6626-6629.
    [104]刘恩科,朱秉升,罗晋生.半导体物理学.北京:电子工业出版社,2003.
    [105]H. Bea, M. Bibesa, M. Sirena, G. Herranz, K. Bouzehouane, and E. Jacquet, S. Fusil, P. Paruch and M. Dawber, J.-P. Contour and A. Barthelemy. Combining half-metals and multiferroics into epitaxial heterostructures for spintronics. Applied Physics Letters.2006,88,062502.
    [106]P. Murugavel and W. Prellier. The magnetotransport properties of La0.7Sr0.3MnO3 /BaTiO3 superlattices grown by pulsed laser deposition technique. Journal of Applied Physics,2006,100,023520.
    [107]S. Habouti, R. K. Shiv, C-H. Solterbeck, and M. Es-Souni, V. Zaporojtchenko. La0.8Sr0.2MnO3 buffer layer effects on microstructure, leakage current, polarization, and magnetic properties of BiFeO3 thin films. Journal of Applied Physics.2007,102, 044113.
    [108]S. Habouti, C-H. Solterbeck, and M. Es-Souni. LaMnO3 effects on the ferroelectric and magnetic properties of chemical solution deposited BiFeO3 thin films. Journal of Applied Physics.2007,102,074107.
    [109]Y. P. Lee, S. Y. Park, Y. H. Hyun, and J. B. Kim, V. G. Prokhorov and V. A. Komashko, V. L. Svetchnikov. Microstructural and magnetotransport properties of La0.7Ca0.3MnO3/BaTiO3 and Lao0.7Sr0.3MnO3/BaTiO3 bilayered films. Physical Review B.2006,73,224413.
    [110]朱磊.有机自旋阀LSMO/PANI(DBSA掺杂)/Co/Pt的制备及其MR效应研究.华中科技大学硕士学位论文.2011.
    [111]王小军.La2/3Sr1/3MnO3薄膜和La2/3Sr1/3MnO3/Pani/Al多层膜器件的制备和电磁性质研究.华中科技大学硕士学位论文.2008.
    [112]陈晶.有机磁隧道阀的制备及物理性质的研究.华中科技大学硕士学位论文.2007.
    [113]Sonalee Chopra, Seema Sharma, and T. C. Goel et al. Structural,dielectric and pyroelectric studies of Pb1-xCaxTiO3 thin films. Solid State Commun.2003,127: 299-304.
    [114]Coey J. M. D.,Moukarika A. and ballet O. Magnetic order in silicate minerals. J. Appl. Phys.53 (11):8320-8325.
    [115]焦正宽,曹光旱.磁电子学.杭州:浙江大学出版社,2005.
    [116]Good enough J. B. and Longo, L B Series. New York:Springer,1978.
    [117]Sosnowska I., Zvezdin A. K. Origin of the long period magnetic ordering in BiFeO3, J. Magn. Magn. Mater.1995,140-144:167-168.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700