二氧化锡涂层的制备和气敏性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二氧化锡由于其具有敏感性高,响应时间短以及消耗低等优点,一直是作为制备半导体式金属氧化物气体传感器的广普材料。气体传感器的气敏特性受到很多因素的影响,诸如晶粒尺寸,多孔性,织构,小平面,晶粒间的连接方式等等。对制备参数,结构,形态和气敏特性之间的关系进行研究就显得尤为重要。
     在本文中,以结晶四氯化锡和乙二醇为前驱体,采用溶胶凝胶法成功地制备了纳米级别的二氧化锡涂层。在二氧化锡涂层制备过程中,前驱体之间的反应过程我们用傅里叶红外光谱仪进行了表征。与采用金属醇盐作为前驱体和水溶液做为溶剂相比,不仅价格便宜,而且溶胶稳定性也较好,即使是在高浓度的溶胶溶液中,凝胶化过程也不易受氯离子的影响。用热重—差热和傅里叶红外光谱仪对干凝胶的结晶过程进行了表征。结晶开始于179℃,有机物开始分解,到430℃的时候结晶完成。用X射线衍射光谱仪,拉曼光谱仪和扫描电镜对二氧化锡涂层的结构和形态进行了表征。用超声波喷雾高温分解法成功制备了小孔直径为30~50纳米的多孔小球,用溶胶凝胶旋涂法制备了纳米级别尺寸且具有良好分散性的二氧化锡涂层。用半导体参数仪测试了不同浓度下电阻的变化规律,不同涂敷次数下电阻率的变化规律,以及二氧化锡涂层电阻的热稳定性。以乙醇和丙酮做为测试气体,采用气敏测试系统对浓度为0.4mol/l,凃敷次数为6次,在600℃烧结制备得的样品进行了气敏性能测试。结果表明,制备得的涂层对乙醇有较好的敏感性和选择性。且对于测试的不同气体,存在一个最优的加热电压值,对于乙醇和丙酮分别是4.5V和5.0V.
Tin dioxide (SnO2), is a suitable material for gas sensors application because ofits low cost, high sensitivity and fast response. The characteristics of the gas sensors areinfluenced by many factors, such as grain size, porosity, texture, faceting, grain network,etc. There are important factors for improving gas-sensing characteristics of tin dioxideresistive (conducto-metric) type sensors. So optimizing the preparation parameters andresearch on the relationships between the preparation parameters, micro-structure,morphology and sensitive properties are essential for the application of tin dioxide.
     In this dissertation, a sol-gel process starting with the tin tetrachloride andethylene glycol as precursors is successfully used to prepare nano-structured tin dioxidecoatings. The molecular structure evolution during the process has been identified usingFourier Transform infrared spectroscopy (FTIR). Compared to a sol-gel process usingmetal alkoxides or water“route”as precursors, this process is not only cost-effective butalso simple to control; the sol solution is extremely stable even in the presence of highconcentration of hydrochloride and the kinetics of the gelation process is not susceptibleto chloride ions. Further, conversions of xerogel to tin dioxide are studied using ThermoGravimetric Analysis-Differential Scanning Calorimeter (TG-DSC) and FTIR. It isfound that tin dioxide begins to form at a temperature as low as 179℃when organicsbegin to burn off. However, the tin dioxide coatings are formed only after the completecrystallization at about 430℃. As shown by X-Ray Diffraction (XRD), tin dioxidecoatings are prepared using ultrasonic spray pyrolysis and spin coating technology, themicro-structure and morphology are characterized by XRD, Raman Spectroscopy (RS)and Scanning Electron Microscopy (SEM). Porous tin dioxide coatings, made up ofballs (300~500nm in diameter) with 30~50nm micro-pores are successfully prepared.
     The resistance changes with concentration, the resistivity changes with coatingnumbers and the thermal stability of the resistance about the tin dioxide coatings underdifferent operation temperature are characterized by LCR meters (E4980A, Aglient). The optimum preparation parameters for lowest resistance and uniform tin dioxidecoatings are obtained. The sensor properties are measured by WS-60A test system withethanol and acetone as the target gases. There is an optimum heating voltage for ethanoland acetone, 4.5V and 5.0V respectively, and for the coating prepared, there is a bettersensitivity and selectivity for ethanol with the heating voltage in the range from 4.0 to4.75V.
引文
1 T. Seiyama (Ed.). Chemical Sensor Technology, 1 and 2, Elsevier, Amsterdam, 1988,1990.
    2 N. Yamazoe (Ed.). Chemical Sensor Technology, 3, Elsevier, Amster- dam, 1991.
    3 S. Yamauchi (Ed.). ChemicalSensorTechnology, 4, Elsevier, Amster-dam, 1992.
    4 W. Gopel, J. Hesse, J.N. Zemel (Eds.). Sensors, a comprehensive survey, SensorsUpdate, 1989–1995, 1:9.
    5 H. Baltes, W. Gopel, J. Hesse (Eds.). Thermal CMOS sensors-an overview, SensorsUpdate, 1996, 1:5.
    6 G. Korotecnkov. The role of morphology and crystallographic structure of metaloxides in response of conductometric-type gas sensor, Materials Science andEngineering, 2008, 61:1-39.
    7 J.W. Fergus. Perovskite oxides for semiconductor-based gas sensors, Sensors andActuators B: Chemical, 2007, 123:1169–1179.
    8 ICCD 41-1445 (SnO2).
    9 K. Ihokura, J. Waston. The Stannic Oxide Gas Sensors: Principles and Application,CRC Press, Boca Raton, 1994.
    10 Juan Dominguez. Electrical properties and microstructure of SnO2 thin filmsdeposited by pulsed laser ablation for gas sensing applications, Sensors and ActuatorsB: Chemical, 2003, 2:3.
    11 A.M. Gas’kov, M.N. Rumyantseva. Materials for Solid-State Gas Sensors, InogranicMaterial, 2000, 36(3):293-301.
    12 S. Lenaerts, J. Roggen, G. Maes. Spectrochimica acta part A: molecular andbiomolecular spectroscopy, 1995, 51:883.
    13 J.P. Joly, L. Gonzalez-Cruz, Y. Arnaud. An intermittent temperature-programmeddesorption method for studying kinetics of desorption from heterogeneous surfaces,Applied Surface Science, 2004, 15:91-96.
    14 B. Gillot, C. Fey, D. Delafosse. Determination of deuteron quadrupole couplingconstants from direct 13C–D couplings in 2H-NMR spectra, Journal ChemistryPhysics, 1976, 73:19.
    15 N. Yamazoe, J. Fuchigami, M. Kishikawa, Seiyama. Chapter V HeterogeneousInclusions, Surface Science, 1979, 86:335.
    16 A.M. Volodin, A.E. Cherkasin. Photocatalysis on small particle TiO, ReactionKinetics Catalysis Letter, 1981, 17:329.
    17 S.C. Chang, Structural and sensing properties of nanocrystalline SnO2 filmsdeposited by spray pyrolysis from a SnCl2 precursor, Journal of Vacuum Scienceand Technollogy, 1980, 17:366.
    18 Z.T. Yue,G.Z. Yao,Z.P. Zhou. Journal of South China University of Technology(nature science edition), 1997, 25(7):35-39.
    19 O.D. Velev, T.A. Jede, R.F. Lobo, A.M. Lenhoff. Porous silica via colloidalcrystallization, Nature, 1997, 389:447.
    20 A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S.W. Leonard, C. Lopez,F. Meseguer, H. Miguez, J.P. Mondia, G.A. Ozin, O. Toader, H.M. Van Driel, Largescalesynthesis of a silicon photonic crystal with a complete three-dimensionalbandgap near 1.5 micrometres, Nature, 2000, 405:437-440.
    21 C. Xu, J. Tamaki, N. Miura, N. Yamazoe. Nature of Sensitivity Promotion in Pd-Loaded SnO2 Gas Sensor, Journal of The Electrochemical Society, 1990,58:1143–1148.
    22 T. Hyoda, N. Nishida, Y. Shimizu, M. Egashira. Preparation and gas-sensingproperties of thermally stable mesoporous SnO2, Sensors and Actuators B:Chemical, 2002, 83:209–215.
    23 A. Dieguez, A. Romano, J.L. Alay, J.R. Morante, N. Barsan, J. Kappler, U. Weimar,W. Gopel. Parameter optimization in SnO2 gas sensors for NO2 detection with lowcross-sensitivity to CO: sol-gel preparation, film preparation, powder calcinations,doping and grinding, Sensors and Actuators B: Chemical, 2000, 65:166–168.
    24 V. Golovanov, T. Pekna, A. Kiv, V. Litovchenko, G. Korotcenkov, V. Brinzari, A.Cornet, J. Morante. Distinguishing feature of metal oxide films' structuralengineering for gas sensor applications, Ukrainian Journal of Physics, 2005, 50(4):374–380.
    25 G. Sberveglieri, G. Faflia, S. Groppelli. RGTO: A New Technique for PreparingSnO2 Sputtered Thin Films as Gas Sensors, Sensors and Actuators B: Chemical,1991, 91[C]:165.
    26 F. Lu, X.P. Wang, Y.Y. Chen. Ultra fine SnO2 powder used in low-temperature gassensingmaterial and its Mechanism, Journal of Yunnan University (nature scienceedition), 1997, 19(2):109一113.
    27 G. Williams. Gas sensing properties of nanocrystalline metal oxide powdersproduced by a laser evaporation technique, Journal of Materials Chemistry, 1998,8(7):1657-1664.
    28 Z.H. Jin, Z.L. Jin. Crystalline Porous tin oxide thin film for CO sensing, Sensorsand Actuators, 1998, 52(1-2):188-194.
    29 J.P. Li, Y. Wang. The preparation methods for prepare micro-structure gas sensorthin film, Journal of Vacuum Science and Technology, 2000, 20(3):161一165.
    30 A. Konrasmee. Study the ethanol sensing characteristics of sol-gel derived thin filmgas sensor, Sensors and Actuators, 2000, 66(l-3):256-259.
    31 T. Sahm, L. M?dler, A. Gurlo, N. Barsan, S. E. Pratsinis, U. Weimar. Flame spraysynthesis of tin dioxide nanoparticles for gas sensing, Sensors and Actuators B,2004, 98(2-3):148-153.
    32 B.Y. Wei, M.C. Hu, P.G. Su, H.M. Lin, R.J. Wu, H.J. Lai. A novel SnO2 gassensor doped with carbon nanoubes operation at room temperature, Sensors andActuators B, 2004, 101:81-89.
    33 S.R. Wang, Y.Q. Zhao, J. Huang, Y. Wang, S.H. Wu, S.M. Zhang, W.P. Huang. Lowtemperaturecarbon monoxide gas sensors based gold/tin dioxide, Solid-StateElectronics, 2006, 50(11-12):1728-1731.
    34 Y.H. Chen, S.H. Hong. H2 sensing properties in highly oriented SnO2 thin films,Sensors and Actuators B, 2007, 125(2):504-509.
    35 K. Hieda, T. Hyodo, Y. Shimizu, M. Egashira. Preparation of porous tin dioxidepowder by ultrasonic spray pyrolysis and their application to sensor materials,Sensors and Actuators B, 2008, 1 (133):144-150.
    36 H. Baltes, W. Gopel, J. Hesse (Eds.). Progress in micro-sensor interfaces, SensorsUpdate, 1996, 1:5.
    37 R.C. Mehrotra. Molecular design of novel heterometallic alkoxides as precursors,Journal of Non-Crystalline Solids, 1990, 121:1.
    38 B. Orel, U. Lavvencic, Z. Crnjak, P. Bukorec, M. Kose. Structural and FTIRspectroscopic studies of gel-xerogel-oxide transitions of SnO2 and SnO2: Sbpowders and dip-coated films prepared via inorganic sol-gel route, Sensors andActuators B, 1994, 167:272.
    39 R.S. Hiratsuka, S.H. Ulcinell, C.V. Santilli. Study on the gold, silver doped tin oxidefilms and its sensing performance of carbon monoxide, Sensors and Actuators, 1990,121:76.
    40 C.B. Lim, S. Ohet. Electrical behavior of SnO2 thin films in humid atmosphere,Sensors and actuators B, 1996, 39:223.
    41 R.S. Hirratuka, C.V. Snatillti, D.V. Silva, S.H. Pulcinelli. Electrical and opticalcharacteristics of SnO2 thin films prepared by dip coating from aqueous colloidalsuspensions, Journal of Non-Crystalline Solids, 1992, 147/148:76.
    42 J.P. Chatelon, C. Terrier, E. Bernstein, R. Berjoan, J.A. Roger. Direct-patterning ofSnO2 thin film by photochemical metal-organic deposition, Thin solid Films, 1994,247:162.
    43 J.F. Goodman, S. J. Gregg. Synthesis of mesoporous crystalline SnO2 of largesurface area by combination of supramolecule templating and reduced graingrowth, Chemical Science, 1960, 337:1162.
    44 R.P. Howson, H. Barankova, A.G. Spenoz. Reactive sputtering of electricallyconducting tin oxide, Thin Solid Films, 1991, 196:315.
    45 T. Kato, M. Tashiro, K. Sugimura, T. Hyodo, Y. Shimizu, M. Egashira.Preparation of hollow alumina microspheres by ultrasonic spray pyrolysis, Journalof the ceramic Society of Japan, 2002, 110:146–148.
    46 M. Egashira, T. Kato, T. Hyodo, Y. Shimizu. Porous Tin Dioxide Materials for GasSensor Application, Key Engineering materials, 2003, 247:427–432.
    47 F. Iskandar, M. Krajuddin, K. Okuyama. In situ production of spherical silicaparticles containing self-organized mesopores, Nano Letters, 2001, 1:231–234.
    48 Kagamiyama, H. Hiroshima. Controllability of pore size and porosity on selforganizedporous silica particles, Nano Letters, 2002, 2:389–392.
    49 R.S. Katiyar, P. Dawson, M.M. Hargreave, G.R. Wilkinson. Dynamics of the rutilestructure, III. Lattice dynamics, infrared and Raman spectra of SnO2, Journal ofPhysics C: Solid State Physics, 1971, 4:2421.
    50 A. Dieguez, A. Pomano-Rodriguez, A. Vila, J,R. Morante. The complete Ramanspectrum of nanometric SnO2 particle, Journal of Applied Physics, 2001, 90:499.
    51 P. Merle, J. Pascual, J. Camassel, H. Mathieu. Uniaxial-stress dependence of thefirst-order Raman spectrum of rutile, Physics Review B, 1980, 21:1617.
    52 B. Orel, U. Laverencic-Stangar, Z. Crnjak-Orel. Preparation and characterization ofSnO2 thin film by MOD method, Journal of Non-crystalline solids, 1994, 167:272.
    53 S, Man. Examples of FT-TR analysis [M], Science Press, 1984.
    54 J.P. Chatelon, C. Terrier, E. Bernstein. Electrical and optical properties of Sb: SnO2thin films obtained by the sol-gel method, Thin Solid Films, 1994, 247:162.
    55 F.M. Liu. Preparation Sn0.5Ti0.5O2 solid solution thin films and study on the gasSensing properties, Journal of Functions Materials, 2004, 35:2.
    56 K. Hieda, T. Hyodo, Y. Shimizu, M. Egashira, Preparation of porous tin dioxidepowder by ultrasonic spray pyrolysis and their application to sensor materials.Sensors and Actuators B, 2008, 133:144–150.
    57 P. Lee. The study of fabrication, microstructure and functions of SnO2 thin films,Journal of Non-Crystalline Solids, 1992, 147/148:67.
    58 J.C. Giuntini, W. Granier, T.V. Zanchetta, A. Taha. Sol-gel preparation and transportproperties of a tin oxide, Journal pf Material Science Letter, 1990, 9:1383.
    59 X.H. Hu. Gas sensing elements and materials, Electronics Industry Press, 1992.
    60 S.R. Morrison. Mechanism of semiconductor gas sensor operation, Sensors andActuators, 1987, 12: 425.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700