新型荧光功能Ag纳米簇的制备与性质
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属纳米簇,由几个到几十个原子构成的纳米结构,作为一种新型的荧光纳米材料引起了各方面广泛的研究兴趣。而由于在水溶液中Ag纳米簇比较其他贵金属纳米簇具有更优越的荧光性质,在生物标记,离子检测,荧光传感器等多个领域具有较强的应用前景,因而得到了普遍的关注。然而,由于Ag原子自身强的聚集趋势,在水中合成荧光强度高的Ag纳米簇非常困难,目前在这方面的研究产物,大多由于稳定性方面的问题在实际应用中表现得并不理想,因此,制备稳定的水溶性荧光Ag纳米簇是目前研究的热点之一。
     本文主要完成了以下两个方面的工作:第一,在室温条件下,采用谷胱甘肽(GSH)作为稳定剂,水合肼作为还原剂,制备了一种新型水溶性荧光Ag纳米簇。所制备的荧光GSH-Ag纳米簇纳米复合物展示了红色荧光发射,主峰位为620nm;同时具有很窄的尺寸分布,平均粒径为2.0nm。在产物中,纳米簇被GSH分子所保护,而GSH是一种具有多个活性官能团的生物小分子,例如羧基和氨基。因此,良好的生物相容性和反应活性使制备的荧光GSH-Ag纳米簇纳米复合物在生物标记,免疫测定,感光元件多个领域具有应用的潜能。在本章中,其作为荧光探针,应用于对重金属Hg2+进行检测,检测限达到ppb级别,且具有良好的特异性,能够在复杂的混合离子条件下和饮用水中进行检测Hg2+应用。第二,在室温条件下,制备了一种新型的荧光Ag纳米簇-SiO2纳米微球。该产物改变传统的贵金属纳米簇的稳定方式,采用SiO2纳米微球作为模板剂,利用其内部的三维网状结构为Ag纳米簇提供所需要的稳定作用,从而不需要传统小分子配体,合成一种Ag纳米簇在二氧化硅中分散均匀的具有稳定生物相容性良好的新型荧光SiO2-Ag纳米簇纳米微球。产物的荧光发射为595nm,特别是这个荧光发射峰的半峰宽很窄,仅为10nm,表明产物具有良好的光学纯度。加热试验中,产物的荧光能够在700℃的高温下得到保持,具有良好的荧光热稳定性。
As a new type of luminescent nanomaterials, metal nanoclusters (NCLs), whichcontain from of a few to roughly a hundred of metal atoms, recently have attracted agreat deal of interest. In particular, Ag NCLs show more excellent fluorescenceproperties than other noble metal NCLs in solution and have received considerableattention due to the potentials, such as biological labeling, immunoassays, opticalsensing. However, Ag NCLs is very difficult to be synthesized in the aqueous solutionbecause of the aggregation and also exhibie poor stability. Hence, there is an enduringchallenge to prepare novel, stable and water–soluble Ag NCLs with intenseluminescent propenties.
     In this study, two parts of work had been completed: Firstly, the water soluble andfluorescent Ag NCLs were successfully prepared at room temperature with usingglutathione as stabilizing reagent and hydrazine hydrate as reducing reagent. Thechemical structure and properties of resultant Ag NCLs were characterized byultraviolet/visible (UV/Vis) spectroscopic, photoluminescence spectroscopic, X–raypHotoelectron spectroscopy (XPS), X–ray diffraction (XRD), transmission electronmicroscope (TEM) and FT–IR spectrum. The as-prepared Ag NCLs showed redemission line with full width at half maximum about~90nm and narrow sizedistribution with average size of~2.0nm. The time–dependent UV–Vis absorptionand fluorescent spectroscopic were investigated to confirm the formation progress ofNCLs. The as-prepard Ag NCLs were protected by glutathione and exhibitedchemical stability, which possessed many potential applications in various fields suchas biological labeling, immunoassays, optical sensing, and so on. In this study, AgNCLs were used as fluorescent probe for selective detection of Hg2+ions. Secondly,the water soluble and fluorescent Ag NCLs-SiO2microspheres were successfullyprepared and were characterized by ultraviolet/visible (UV/Vis) spectroscopic,photoluminescence spectroscopic, X–ray pHotoelectron spectroscopy (XPS), X–raydiffraction (XRD), transmission electron microscope (TEM). This resultantmicrospheres exhibited fluorescent properties with a emission peak at595nm under395nm excitation. And Ag NCLs could maintain the photo luminescent propertiesafter the Ag NCLs-SiO2microspheres were calcination at high temperature (700℃).More importantly, the full width at half maximum of the fluorescent peak was only10 nm which was much less than those reported previously. The resultant microsphereswere possessed many potential applications, owing to their excellent fluorescence andbiocompatibility, such as optical sensing, biological labeling. Furthermore, weillustrated the formation process of the fluorescent microspheres and proposed anon-ligand mechanism about the formation of fluorescent Ag NCLs-SiO2microspheres, which was significant for preparing similar fluorescent particles.
引文
[1] G. Hodes, Adv. Mater.2007,19,639.
    [2] J. Park, J. Joo, S. G. Kwon, Y. Jang, T. Hyeon, Angew. Chem. Int. Ed.2007,46,4630.
    [3] M. A. El-Sayed, Acc. Chem. Res.2004,37,326.
    [4] Y.N. Xia, Y. J. Xiong, B. Lim, S. E. Skrabalak,Angew.Chem. Int. Ed.2009,48,60.
    [5] C. J. MurpHy, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C.Goldsmith, S. C. Baxter, Acc. Chem. Res.2008,41,1721.
    [6] J. P. Wilcoxon, B. L. Abrams, Chem. Soc. Rev.2006,35,1162.
    [7] J. Zheng, P. R. Nicovich, R. M. Dickson, Annu. Rev. PHys. Chem.2007,58,409.
    [8] M.C. Roco, Curr. Opin. Biotechnol.2003,14,337—346.
    [9] Y.C. Cao, Nanomedicine2008,3,467—469.
    [10] F. Wang, W.B. Tan, Y. Zhang, X. Fan, M. Wang, Nanotechnology2006,17, R1.
    [11] M. Baker, Nat. Methods2010,7,957—962.
    [12] X. Michalet, F. Pinaud, L. Bentolila, J. Tsay, S. Doose, J. Li, G. Sundaresan, A.Wu, S. Gambhir, S. Weiss, Science2005,307,538—544.
    [13] J. Yan, M.C. Estévez, J.E. Smith, K. Wang, X. He, L. Wang, W. Tan, Nano Today2007,2,44—50.
    [14] D.K. Chatterjee, M.K. Gnanasammandhan, Y. Zhang, Small,2010,6,2781—2795.
    [15] S.N. Baker, G.A. Baker, Angew. Chem. Int. Ed.2010,49,6726—6744.
    [16] G.U. Nienhaus, Angew. Chem. Int. Ed.2008,47,8992—8994.
    [17] S. Fedrigo, W. Harbich, J. Buttet, J. Chem. PHys.1993,99,5712.
    [18] W. Schulze, I. Rabin, G. Ertl, ChemPHysChem2004,5,403.
    [19] G. A. Ozin, F. Hugues, J. PHys. Chem.1983,87,94.
    [20] A. D. Stevens, M. C. R. Symons, J. Chem. Soc. Farad. T.11989,85,1439
    [21] A. Henglein, Chem. PHys. Lett.1989,154,473.
    [22] T. Linnert, P. Mulvaney, A. Henglein, H. Weller, J. Am. Chem. Soc.1990,112,4657.
    [23] A. Henglein, J. PHys. Chem.1993,97,5457.
    [24] B. G. Ershov, A. Henglein, J. PHys. Chem. B1998,102,10663.
    [25] P. Mulvaney, A. Henglein, Chem. PHys. Lett.1990,168,391.
    [26] M. Mostafavi, N. Keghouche, M. O. Delcourt, J. Belloni, Chem. PHys. Lett.1990,167,193.
    [27] A. Henglein, P. Mulvaney, T. Linnert, Faraday. Discuss.1991,92,31.
    [28] M. Treguer, F. Rocco, G. Lelong, A. Le Nestour, T. Cardinal, A. Maali, B. Lounis,Solid State Sci.2005,7,812.
    [29] J. T. Petty, J. Zheng, N. V. Hud, R. M. Dickson, J. Am. Chem. Soc.2004,126,5207.
    [30] T. Vosch, Y. Antoku, J. C. Hsiang, C. I. Richards, J. I. Gonzalez,R. M. Dickson,Proc. Natl. Acad. Sci. USA2007,104,12616.
    [31] C. M. Ritchie, K. R. Johnsen, J. R. Kiser, Y. Antoku, R. M. Dickson, J. T. Petty,J.PHys. Chem. C2007,111,175.
    [32] B. Sengupta, C. M. Ritchie, J. G. Buckman, K. R. Johnsen, P. M. Goodwin,J. T.Petty, J. PHys. Chem. C2008,112,18776.
    [33] E. G. Gwinn, P. O’Neill, A. J. Guerrero, D. Bouwmeester, D. K. Fygenson,Adv.Mater.2008,20,279.
    [34] P. R. O’Neill, L. R. Velazquez, D. G. Dunn, E. G. Gwinn, D. K. Fygenson,J.PHys. Chem. C2009,113,4229.
    [35] C. I. Richards, S. Choi, J. C. Hsiang, Y. Antoku, T. Vosch, A. Bongiorno,Y. L.Tzeng, R. M. Dickson, J. Am. Chem. Soc.2008,130,5038.
    [36] J. H. Yu, S. M. Choi, C. I. Richards, Y. Antoku, R. M. Dickson,PHotochem.PHotobiol.2008,84,1435.
    [37] J. H. Yu, S. Choi, R. M. Dickson, Angew. Chem. Int. Ed.2009,48,318.
    [38] T. H. Lee, J. I. Gonzalez, J. Zheng, R. M. Dickson, Acc. Chem. Res.2005,38,534.
    [39] N. Makarava, A. Parfenov, I. V. Baskakov, BiopHys, J2005,89,572.
    [40] W. W. Guo, J. P. Yuan, E. K. Wang, Chem. Commun.2009,3395.
    [41] N. Cathcart, P. Mistry, C. Makra, B. Pietrobon, N. Coombs,M. Kelokhani-Niaraki,V. Kitaev, Langmuir2009,25,5840.
    [42] S. S. Narayanan, S. K. Pal, J. PHys. Chem. C2008,112,4874.
    [43] A. Ledo-Suarez, J. Rivas, C. F. Rodriguez-Abreu, M. J. Rodriguez, E. Pastor,A.Hernandez-Creus, S. B. Oseroff, M. A. Lopez-Quintela, Angew. Chem.Int. Ed.2007,46,8823.
    [44] L. A. Peyser, A. E. Vinson, A. P. Bartko, R. M. Dickson, Science2001,291,103.
    [45] J. Zheng, R. M. Dickson, J. Am. Chem. Soc.2002,124,13982.
    [46] J. G. Zhang, S. Q. Xu, E. Kumacheva, Adv. Mater.2005,17,2336.
    [47] Z. Shen, H. W. Duan, H. Frey, Adv. Mater.2007,19,349.
    [48] D. G. Shchukin, I. L. Radtchenko, G. B. Sukhorukov, ChemPHysChem2003,4,1101.
    [49] L. Shang, S. J. Dong, Chem. Commun.2008,1088.
    [50] I. Diez, M. Pusa, S. Kulmala, H. Jiang, A. Walther, A. S. Goldmann,A. H. E.Muller, O. Ikkala, R. H. A. Ras, Angew. Chem.Int. Ed.2009,48,2122.
    [51] L. Shang, S. J. Dong, Biosens. Bioelectron.2009,24,1569.
    [52] L. Shang, S. J. Dong, J. Mater. Chem.2008,18,4636.
    [53] R. Jin, Nanoscale2010,2,343—362.
    [54] S. Link, A. Beeby, S. FitzGerald, M. El-Sayed, T. Schaaff, R. Whetten, J. PHys.Chem. B2002,106,3410—3415.
    [55] B. Adhikari, A. Banerjee, Chem. Mater.2010,22,4364—4371.
    [56] T. Udaya Bhaskara Rao, T. Pradeep, Angew. Chem. Int. Ed.2010,49,3925—3929.
    [57] T.U.B. Rao, B. Nataraju, T. Pradeep, J. Am. Chem. Soc.2010,132,16304—16307.
    [58] J.G. Zhang, S.Q. Xu, E. Kumacheva, Adv. Mater.2005.17.2336—2340.
    [59] Z. Shen, H.W. Duan, H. Frey, Adv. Mater.2007,19,349—352.
    [60] L. Shang, S.J. Dong, Chem. Commun.2008,1088—1090.
    [61] I. Díez, M. Pusa, S. Kulmala, H. Jiang, A. Walther, A.S. Goldmann, A.H.E.Muller, O. Ikkala, R.H.A. Ras, Angew. Chem. Int. Ed.2009,48,2122—2125.
    [62] H. Xu, K.S. Suslick, ACS Nano2010,4,3209—3214.
    [63] S. Liu, F. Lu, J.-J. Zhu, Chem. Commun.2011,47,2661—2663.
    [64] S. Pitchiaya, Y. Krishnan, Chem. Soc. Rev.2006,35,1111—1121.
    [65] N. Dattagupta, D.M. Crothers, Nucl. Acids Res.1981,9,2971—2985.
    [66] K.F.S. Luk, A.H. Maki, R.J. Hoover, J. Am. Chem. Soc.1975,97,1241—1242.
    [67] J.T. Petty, J. Zheng, N.V. Hud, R.M. Dickson, J. Am. Chem. Soc.2004,126,5207—5212.
    [68] T. Vosch, Y. Antoku, J.C. Hsiang, C.I. Richards, J.I. Gonzalez, R.M. Dickson,Proc. Natl. Acad. Sci. U.S.A.2007,104,12616—12621.
    [69] C.M. Ritchie, K.R. Johnsen, J.R. Kiser, Y. Antoku, R.M. Dickson, J.T. Petty, J.PHys. Chem. C2007,111,175—181.
    [70] B. Sengupta, C.M. Ritchie, J.G. Buckman, K.R. Johnsen, P.M. Goodwin, J.T.Petty, J. PHys. Chem. C2008,112,18776—18782.
    [71] E.G. Gwinn, P. O’Neill, A.J. Guerrero, D. Bouwmeester, D.K. Fygenson, Adv.Mater.2008,20,279—283.
    [72] B. Sengupta, K. Springer, J.G. Buckman, S.P. Story, O.H. Abe, Z.W. Hasan, Z.D.Prudowsky, S.E. Rudisill, N.N. Degtyareva, J.T. Petty, J. PHys. Chem. C2009,113,19518—19524.
    [73] J. Sharma, H.-C. Yeh, H. Yoo, J.H. Werner, J.S. Martinez, Chem. Commun.2010,46,3280—3282.
    [74] C.I. Richards, S. Choi, J.C. Hsiang, Y. Antoku, T. Vosch, A. Bongiorno, Y.L.Tzeng, R.M. Dickson, J. Am. Chem. Soc.2008,130,5038—5039.
    [75] P.R. O’Neill, L.R. Velazquez, D.G. Dunn, E.G. Gwinn, D.K. Fygenson, J. PHys.Chem. C2009,113,4229—4233.
    [76] Z. Huang, F. Pu, D. Hu, C. Wang, J. Ren, X. Qu, Chem. Eur. J.2011,17,3774—3780.
    [77] J. Yu, S.A. Patel, R.M. Dickson, Angew. Chem. Int. Ed.2007,46,2028—2030.
    [78] B. Adhikari, A. Banerjee, Chem. Eur. J.2010,16,13698—13705.
    [79] S.S. Narayanan, S.K. Pal, J. PHys. Chem. C2008,112,4874—4879.
    [80] M. Muhammed, P. Verma, S. Pal, R. Kumar, S. Paul, R. Omku-mar, T. Pradeep,Chem. Eur. J.2009,15,10110—10120.
    [81] A. Mooradian, PHys. Rev. Lett.1969,22,185—187.
    [82] B.N.G. Giepmans, S.R. Adams, M.H. Ellisman, R.Y. Tsien, Science2006,312,217—224.
    [83] J. Wiedenmann, G.U. Nienhaus, Expert Rev. Proteom.2006,3,361—374.
    [84] G.U. Nienhaus, J. Wiedenmann, ChemPHysChem2009,10,1369—1379.
    [85] H. Chen, X. Kou, Z. Yang, W. Ni, J. Wang, Langmuir2008,24,5233—5237.
    [86] S.A. Patel, M. Cozzuol, J.M. Hales, C.I. Richards, M. Sartin, J.-C. Hsiang, T.Vosch, J.W. Perry, R.M. Dickson, J. PHys. Chem. C2009,113,20264—20270.
    [87] R. Zhou, M. Shi, X. Chen, M. Wang, H. Chen, Chem. Eur. J.2009,15,4944—4951.
    [88] K.A. Willets, R.P. Van Duyne, Ann. Rev. PHys. Chem.2007,58,267—297.
    [89] P.T.C. So, C.Y. Dong, B.R. Masters, K.M. Berland, Annu. Rev. Biomed. Eng.2000,2,399—429.
    [90] S.A. Patel, C.I. Richards, J.-C. Hsiang, R.M. Dickson, J. Am. Chem. Soc.2008,130,11602—11603.
    [91] X.-B. Yin, S. Dong, E. Wang, Trends Anal. Chem.2004,23,432—441.
    [92] R.J. Forster, P. Bertoncello, T.E. Keyes, Annu. Rev. Anal. Chem.2009,2,359—385.
    [93] P. Holmes, K.A.F. James, L.S. Levy, Sci. Total Environ.2009,408,171—182.
    [94] W. Guo, J. Yuan, E. Wang, Chem. Commun.2009,3395—3397.
    [95] L. Shang, S.J. Dong, J. Mater. Chem.2008,18,4636—4640.
    [96] G.-Y. Lan, C.-C. Huang, H.-T. Chang, Chem. Commun.2010,46,1257—1259.
    [97] Y.-T. Su, G.-Y. Lan, W.-Y. Chen, H.-T. Chang, Anal. Chem.2010,82,8566—8572.
    [98] X. Chen, Y. Zhou, X. Peng, J. Yoon, Chem. Soc. Rev.2010,39,2120—2135.
    [99] L. Shang, S. Dong, Biosens. Bioelectron.2009,24,1569—1573.
    [100] B. Han, E. Wang, Biosens. Bioelectron.2011,26,2585—2589.
    [101] Z. Huang, F. Pu, Y. Lin, J. Ren, X. Qu, Chem. Commun.2011,47,3487—3489.
    [102] J. Sharma, H.-C. Yeh, H. Yoo, J.H. Werner, J.S. Martinez, Chem. Commun.2011,47,2294—2296.
    [103] W. Guo, J. Yuan, Q. Dong, E. Wang, J. Am. Chem. Soc.2010,132,932—934.
    [104] H.-C. Yeh, J. Sharma, J.J. Han, J.S. Martinez, J.H. Werner, Nano Lett.2010,10,3106—3110.
    [105] G.-Y. Lan, W.-Y. Chen, H.-T. Chang, Biosens. Bioelectron.2011,26,2431—2435.
    [106] M. Fernandez-Suarez, A. Ting, Nat. Rev. Mol. Cell Biol.2008,9,929—943.
    [107] N. Makarava, A. Parfenov, I.V. Baskakov, BiopHys. J.2005,89,572—580.
    [108] J. Yu, S. Choi, C.I. Richards, Y. Antoku, R.M. Dickson, PHo-tochem.PHotobiol.2008,84,1435—1439.
    [109] S. Choi, J. Yu, S.A. Patel, Y.-L. Tzeng, R.M. Dickson, PHo-tochem. PHotobiol.Sci.2011,10,109—115.
    [110] L. Shang, R.M. D rlich, S. Brandholt, R. Schneider, V. Trouillet, M. Bruns, D.Gerthsen, G.U. Nienhaus, Nanoscale2011,3,2009—2014.
    [111] Y.-C. Jao, M.-K. Chen, S.-Y. Lin, Chem. Commun.2010,46,2626—2628.
    [112] S.-Y. Lin, N.-T. Chen, S.-P. Sum, L.-W. Lo, C.-S. Yang, Chem. Commun.2008,4762—4764.
    [113] S.-Y. Lin, N.-T. Chen, S.-P. Sun, J.C. Chang, Y.-C. Wang, C.-S. Yang, L.-W. Lo,J. Am. Chem. Soc.2010,132,8309—8315.
    [114] M. A. H. Muhammed, T. Pradeep, small2011,7,204–208
    [115] a) G. Mie, Ann. PHys.1908,25,377; b) S. S. Narayanan, S. K. Pal, J. PHys.Chem. C2008,112,4874–4879

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700