渗透型再生剂的制备及其对再生沥青及混合料性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
废旧沥青混合料再生利用既能保护环境,又可节约大量的新石料、新沥青等不可再生资源,是一项符合可持续发展要求的沥青路面再生技术。废旧沥青混合料由于沥青老化导致其路用性能恶化,无法满足使用要求,因此再生剂通过渗透至裹覆在回收集料表面的老化沥青薄膜内部恢复老化沥青的化学组分和胶体结构从而改善老化沥青的物理性能,对提高再生沥青混合料的路用性能具有重要的影响。然而目前再生剂的渗透性尚未得到足够的重视,以致现有再生剂渗透性能差,对废旧沥青混合料路用性能的改善效果有限,制约了再生沥青混合料在高等级公路中的推广与应用。因此,开发具有优良渗透性能的沥青再生剂对促进废旧沥青混合料再生利用技术的发展具有重要的意义。
     基于组分调节理论和溶解渗透新思路,本文采用催化裂化油浆为沥青组分调节剂、含有极性环氧基团的化学油分作为溶解渗透剂,制备了渗透型再生剂,评价了渗透型再生剂的渗透能力;采用沥青质溶解实验和红外光谱分析探讨了渗透剂对再生剂渗透性能的改善机理;将渗透型再生剂用于老化沥青的再生,研究了渗透型再生剂对不同老化程度老化沥青再生性能的影响;将渗透型再生剂用于制备再生沥青混合料,评价了渗透型再生剂对废旧沥青混合料路用性能的改善效果。主要研究结论如下:
     (1)基于再生剂渗透对老化沥青针入度和化学组分的影响,本文提出了一种再生剂渗透性能评价方法,即通过测试再生剂渗透至老化沥青内部后老化沥青化学组分和针入度的变化对再生剂的渗透性能进行评价。
     (2)采用含有极性环氧基团的化学油分和催化裂化油浆作为主要原料制备了渗透型再生剂,并采用上述方法评价了再生剂的渗透性能,研究结果表明渗透型再生剂向老化沥青内部渗透的能力远强于普通再生剂向老化沥青内部渗透的能力。
     (3)沥青质溶解实验和红外光谱测试研究表明渗透剂之所以能增强再生剂的渗透能力是因为渗透剂不仅能有效溶解分散老化沥青中的沥青质,而且其含有的极性环氧基团还能与沥青质发生化学反应削弱沥青质分子之间较强的吸引力,促使老化沥青中凝聚的沥青质重新均匀溶解分散在沥青胶体体系中,使沥青质团聚形成的空间网络结构受到破坏,削弱沥青质空间网络结构对再生剂渗透的阻碍,从而改善再生剂的渗透能力。
     (4)渗透型再生剂和普通再生剂对不同老化程度老化沥青的物理性能影响研究结果表明,在相同用量下,渗透型再生剂能更有效地改善老化沥青的物理性能,使老化沥青的物理性能恢复接近新沥青的物理性能水平,这可能是因为普通再生剂只能改变老化沥青中的芳香分和沥青质的相对含量,对老化沥青胶体结构的恢复作用有限,而渗透型再生剂不仅能调节老化沥青中的芳香分和沥青质的相对含量,而且其含有的极性环氧基团还能与沥青质发生化学反应促进老化沥青中凝聚沥青质的重新分散,能更有效地恢复老化沥青的胶体结构。
     (5)低温弯曲梁流变实验结果表明,向老化沥青中加入15%的渗透型再生剂之后,老化沥青的蠕变劲度下降至294MPa,蠕变速率上升至0.317,而加入同等掺量的普通再生剂之后,老化沥青的蠕变劲度下降至327MPa,蠕变速率上升至0.273,表明渗透型再生剂对老化沥青低温抗裂性能的改善作用更加显著,这同样可归因于渗透型再生剂能更有效地恢复老化沥青的胶体结构。
     (6)渗透型再生剂和普通再生剂对老化沥青胶体结构的影响研究结果表明向老化沥青中加入15%的渗透型再生剂后,其胶体稳定指数由2.76增加至3.85,针入度指数由3.36下降至1.14,老化沥青的胶体结构由凝胶型转变成为溶—凝胶型;而向老化沥青中加入相同掺量的普通再生剂后,其胶体稳定指数由2.76增加至3.25,针入度指数由3.36下降至2.23,其胶体结构仍为凝胶型结构,这一结果证实了渗透型再生剂能更有效地恢复老化沥青的胶体结构。
     (7)原子力显微镜研究结果表明向老化沥青中加入渗透型再生剂之后,老化沥青体系中因沥青质团聚所形成的“蜂形”结构的尺寸减小、分布变均匀、微观形貌变平滑,接近新沥青表面的微观形貌,而向老化沥青中加入相同掺量的普通再生剂之后,其微观形貌并未发生明显的变化,进一步证实了渗透型再生剂能更有效地溶解分散老化沥青中凝聚的沥青质,使老化沥青的胶体结构得到更有效的恢复。
     (8)再生沥青混合料路用性能测试结果表明,掺加15%渗透型再生剂后,再生沥青混合料在20%加载应力比下的疲劳寿命达到10005次,抗弯拉应变达到2473,而添加相同掺量的普通再生剂后,再生沥青混合料的疲劳寿命为7473次,抗弯拉应变为2077,说明渗透型再生剂能更显著地提高废旧沥青混合料路用性能,这是因为渗透型再生剂能更有效地渗透至裹覆在回收集料表面的老化沥青薄膜内部,使老化沥青的胶体结构得到更好的恢复,从而更显著地改善了老化沥青的性能。
The recycling of reclaimed asphalt pavement (RAP), which can protect the environment and conserve nonrenewable resources, is a recycling technology for asphalt pavement in conformity with the principle of sustainable development. The road performance of RAP deteriorates due to the ageing of bitumen wrapping around the surface of reclaimed aggregates, thus the diffusing of rejuvenator into the aged bitumen, which can restore the properties of aged bitumen by reconstituting the chemical component and colloidal structure, is crucial to the road performance enhancement of recycled asphalt pavement. However, the diffusibility of rejuvenator is commonly not considered highly, making the diffusibility of rejuvenator too poor to improve performance of recycled asphalt mixture effectively, therefore the the popularization and application of recycled asphalt mixture in high-grade highways is restricted. Therefore it is necessary to develop a rejuvenator with good diffusibility for the popularization and application of recycling of RAP.
     Based on the theories of dissolving-diffusion and chemical component reconstituenting, catalytic cracking slurry and chemical oil with epoxide group were selected as chemical component reductant and penetrant respectively for the preparation of diffusible rejuvenator. Influence of penetrant on the diffusibility of rejuvenator was investigated; asphaltenes dissolving experiment and infrared spectrum were employed to explore the mechanism of penetrant on the diffusibility enhancement of rejuvenator. Effects of rejuvenator on the properties of recycled bitumen and recycled asphalt mixture were studied. The main conclusions are as following:
     (1) Based on influence of rejuvenator diffusing on the penetration and chemical components of aged bitumen, a new method, which employs the changing of penetration and chemical components of aged bitumen after rejuvenator diffusing into aged bitumen to characterize the diffusibility of rejuvenator, was developed.
     (2) Diffusible rejuvenator composed of chemical oil with epoxide group and catalytic cracking slurry was prepared, its diffusibility was evaluated by the method mentioned above, the result indicates that the rejuvenator with penetrant exhibits better diffusibility than the rejuvenator without penetrant.
     (3) Asphaltenes dissolving experiment and infrared spectrum results reveal that the asphaltenes can be dissolved in the penetrant with epoxide group and the attraction force between asphaltenes can be reduced by the chemical reaction between epoxide group and asphaltenes, which can facilitate the dispersion of accumulated asphaltenes of aged bitumen and destory the network model dimensional structure caused by asphaltenes accumulating, therefore the physical obstacle of the structure on the rejuvenator diffusing into aged bitumen declined and the diffusibility of rejuvenator into aged bitumen was enhanced.
     (4) Investigations on influence of diffusible rejuvenator and common rejuvenator on the physical properties of aged bitumen indicate that the diffusible rejuvenator can restore the physical properties of aged bitumen with different aging degree more effectively; it can restore the physical properties of aged bitumen with different aging degree to the condition that is of the virgin bitumen. which can be explained as that the commom rejuvenator can only restores the colloidal structure of aged bitumen by changing the contents of aromatic and asphaltenes, the effect is finite; however, for diffusible rejuvenator, it can restore the colloidal structure of aged bitumen by both changing the contents of aromatic and asphaltenes and dissolving asphaltenes at the same time, therefore the effect of the diffusible rejuvenator on the colloidal structure restoration of aged bitumen is more effective than commom rejuvenator.
     (5) Result of Bending-Beam Rheometer testing indicates that the creep stiffness of the aged bitumen declined to294MPa and the creep rate increased to0.317after adding15%diffusible rejuvenator, however, after adding the same content of commom rejuvenator, the creep stiffness of the aged bitumen declined to327MPa and the creep rate increased to0.273, which indicates that the diffusible rejuvenator is more effective on the improvement of cracking resistance under low temperature than commom rejuvenator, which can be also explained as that the influence of diffusible rejuvenator on the colloidal structure restoration of aged bitumen is more effective than commom rejuvenator.
     (6) The colloidal stability index of the aged bitumen increased from2.76to3.85, penetration index declined from3.36to1.14after adding15%diffusible rejuvenator, indicating that the colloidal structure of aged bitumen transformed from Gel to Sol-Gel; however, after adding the same content of commom rejuvenator, the colloidal stability index increased from2.76to3.25, penetration index declined from3.36to2.23, the colloidal structure of aged bitumen was still Gel structure, which can prove that the diffusible rejuvenator on the colloidal structure restoration is more effective than commom rejuvenator.
     (7) The investigation of Atomic Force Microscope (AFM) indicates that after adding diffusible rejuvenator into aged bitumen, the size of bee structure caused by asphaltenes accumulating in aged bitumen declined, the distribution of the bee structure got even, the microstructure of aged bitumen became smooth, which was close to the microstructure of virgin bitumen; however, when adding the same content of commom rejuvenator, the microstructure of aged bitumen changed slightly, which can further prove that the diffusible rejuvenator on the colloidal structure restoration is more effective than commom rejuvenator.
     (8) Road performance testing of recycled asphalt mixture indicate that the fatigue life under0.2stress ratio and of the failure strain of the recycled asphalt mixture containing15%diffusible rejuvenator were10005and2473respectively; whereas for the recycled asphalt mixture containing the same content of commom rejuvenator, the fatigue life at0.2stress ratio and the failure strain were7473and2077respectively, indicating that the diffusible rejuvenator can improve the road performance testing of recycled asphalt mixture more significantly than common rejuvenator, which can be explained as that the diffusible rejuvenator can diffuse into the aged bitumen wrapping around the surface of reclaimed aggregates more deeply and restore the colloidal structure of aged bitumen more effectively, so as to improve the properties of aged bitumen better more significantly.
引文
[1]韩君.耐紫外老化沥青的制备与性能研究[D].武汉:武汉理工大学,2011.
    [2]魏荣梅.道路沥青的老化与再生研究[D].武汉:武汉理工大学,2006.
    [3]耿九光.沥青老化机理及再生技术研究[D].西安,长安大学,2009.
    [4]Mouillet V., Farcas F., Besson S. Ageing by UV radiation of an elastomer modified bitumen[J]. Fuel,2008,87:2408-2419.
    [5]Durrieu F., Farcas F., Mouillet V. The influence of UV aging of a styrene/butadiene/styrene modified bitumen:comparison between laboratory and on site aging[J]. Fuel,2007,86:1446-1451.
    [6]Zhang F., Yu J. Y., Wu S. P. Effect of ageing on rheological properties of storage-stable SBS/sulfur-modified asphalts[J]. Journal of Hazardous Materials,2010,182:507-517.
    [7]Airey G. D. Rheological properties of styrene butadiene styrene polymer modified road bitumens[J]. Fuel,2003,82:1709-1719.
    [8]Vargas X. A., Afanasjeva N., Alvarez M., et al. Asphalt rheology evolution through thermo-oxidation (aging) in a rheo-reactor[J]. Fuel,2008,87:3018-3023.
    [9]杨林江.沥青路面厂拌再生利用设计与施工技术[M].北京,人民交通出版,2008.
    [10]拾方治,马卫民.沥青路面再生技术手册[M].北京:人民交通出版社,2006.
    [11]徐剑,黄颂昌,邹桂莲.高等级公路沥青路面再生技术[M].北京:人民交通出版社,2011.
    [12]董平如,沈国平.京津塘高速公路沥青混凝土就地热再生技术[J].公路,2004,1(1):123-130.
    [13]满都拉,银华,信志刚等.沥青路面就地热再生技术应用现状分析[J].内蒙古公路与运输,2011(2):49-51.
    [14]江燕青.沥青路面就地热再生技术的研究[D].西安:长安大学,2006.
    [15]吕伟明,严家佶.沥青路面再生技术手册[M].北京:人民交通出版社,1989.
    [16]成家胜.沥青路面再生剂及再生方法研究[D].大连:大连理工大学,2005.
    [17]日本道路协会.日本路面废旧再生利用技术指南[M].王元勋,张文魁.北京:人民交通出版社,1990.
    [18]张昌波.沥青混凝土厂拌热再生技术研究[D].西安:长安大学,2006.
    [19]范勇军.高等级公路沥青路面厂拌热再生技术研究[D].长沙:长沙理工大学,2007.
    [20]江燕青.沥青路面就地热再生技术的研究[D].西安:长安大学,2006.
    [21]张金喜.道路工程材料资源循环利用技术[M].北京:科学出版社,2008.
    [22]Asphalt Institute. Asphalt Recycling Manual [M]. Lexington,1998.
    [23]Asphalt Recycling and Reclaiming Association. Proven guidelines for hot-mix recycling[R]. Annapolis:Maryland,1992.
    [24]NCHRP. Recommended use of reclaimed asphalt pavement in the Superpave mix design method:technician manual[R]. Washington, D. C.,2001.
    [25]Asphalt Recycling and Reclaiming Association. Guidelines for cold in-place recycling[M]. Annapolis,1991.
    [26]耿九光.高速公路旧沥青混合料热再生技术研究[D].西安,长安大学,2007.
    [27]李龙.沥青混合料再生利用研究[D].西安:长安大学,2003.
    [28]杨平.沥青路面厂拌热再生利用研究[D].长沙:长沙理工大学,2005.
    [29]美国沥青再生协会(ARRA).美国沥青再生指南[M].北京:人们交通出版社,2001.
    [30]Ronald L., Stephen Q. S. Hot in-place recycling of asphalt pavements:experience in an urban setting using new technology[R]. Al-Ain, United Arab Emirates,1997.
    [31]Ronald L., Jon A., Sorenson J. B. Hot in-place recycling:State of the practice[R]. Salt Lake City,1997.
    [32]Ronald L., Jon A., Sorenson J. B. New developments in hot in-place recycling of asphalt pavements[R]. Washington D.C.,2001.
    [33]He G. P., Wong W. G. Laboratory study on permanent deformation of foamed asphalt mix incorporating reclaimed asphalt pavement materials[J]. Construction and Building Materials,2007,21(5):1809-1819.
    [34]刘欣楠,马涛,陶向华等.沥青路面就地热再生养护技术研究[J].公路交通科技,2011(3):28-31.
    [35]满都拉,银华,信志刚等.沥青路面就地热再生技术应用现状分析[J].内蒙古公路与运输,2011(2):49-51.
    [36]戴合理.就地热再生工艺处治沥青混凝土路面车辙的适应性探讨[J].公路,2010(6):219-223.
    [37]易鑫,赵光德,陈希梅.沥青路面就地热再生关键技术研究[J].公路交通技术,2009(1):39-42.
    [38]Peter E., Gabriel B., Edgard H., et al. Performance of Cold In-Place Recycling in Nevada[J]. Transportation Research Record:Journal of the Transportation Research Board, 2004(1896):162-169.
    [39]Lewis A., Collings D. The 7th conference on asphalt pavement for Southern Africa[C]. Cold in place recycling:A relevant process for road rehabilitation and upgrading,1999.
    [40]Todd T., Kadrmas A. Performance-related tests and specifications for cold in-place recycling:lab and field experience. Transportation Research Board[C],2003.
    [41]Stephen A. Experimental cold in-place recycling with hydrated lime[J]. Transportation Research Record:Journal of the Transportation Research Board,2007(1684):186-193.
    [42]Yongjoo K., Lee H., D. Development of mix design procedure for cold in-place recycling with foamed asphalt[J]. Journal of Materials in Civil Engineering,2005,18(1):116-124.
    [43]Becca L., Kazmierowski T. Implementation of cold in-place recycling with expanded asphalt technology in Canada[J]. Transportation Research Record:Journal of the Transportation Research Board,2006(1905):17-24.
    [44]Yongjoo K., Lee H., D. Validation of new mix design procedure for cold in-place recycling with foamed asphalt[J]. Journal of Materials in Civil Engineering,2007,19(11):357-367.
    [45]Loizos A., Papavasiliou V. Evaluation of foamed asphalt cold in-place pavement recycling using nondestructive techniques[J]. Journal of Transportation Engineering,2006, 132(12):970-978.
    [46]Holtz, K., and Eighmy, T. T., Scanning European advances in the use of recycled materials in highway construction[J]. Public Roads,2000,64(1):34-40.
    [47]Epps J.A., Terrel, R. L., Little, D. N., et al. Guidelines for recycling asphalt pavements[J]. Proceedings of the Association of Asphalt Paving technologist.1980,49:144-176.
    [48]Wolters R. O. Bitumenous hot mix recycling in Minnesota[J]. Proceedings of the Association of Asphalt Paving Technologists,1979,48:295-327.
    [49]Jones G.M., Recycling of bituminous pavements on the road[J]. Proceedings of the Association of Asphalt Paving Technologists.1979,48:240-251.
    [50]Ikeda, T., Kimura M. Recent developments in recycling asphalt pavements in Japan[J]. Proceedings of 8th international conference on asphalt pavements. Washington,1997, 99-106.
    [51]Betenson W. D., Recycled asphalt concrete in Utah[J]. Proceedings of the Association of Asphalt Paving Technologists,1979,48:272-295.
    [52]Mosey, J. R., Defoe J. H. In-place recycling of asphalt pavements[J]. Proceedings of the Association of Asphalt Paving Technologists,1979,48:261-272.
    [53]Wijk A. V., Wood L. E. Use of foamed asphalt in recycling of an asphalt pavement[J]. Transportation Research Record,1983(911):96-103.
    [54]Rajib B. M, Grant H. J. Use of foamed asphalt in recycling incinerator ash for construction of stabilized base course[J]. Resources, Conservation and Recycling,2004, 42(3):239-248.
    [55]张金喜.道路工程材料资源循环利用技术[M].北京:科学出版社,2008.
    [56]李进,王金凤,徐萌等.再生剂对再生沥青感温性的影响[J].石油化工高等学校学报,2010,23(1): 34-38.
    [57]张昌波.沥青混凝土厂拌热再生技术研究[D].西安:长安大学,2006.
    [58]Lachance A.M. Properties of Asphalt Mixtures Containing RAP[D]. New Hampshire:University of New Hampshire,2006.
    [59]Kennedy T Asphalt Pavement and Mansour Solaimanian. Effect of Reclaimed Binder Properties Using the Superpave System [R].University of Texas at Austin:Center for Transportation Research,1996.
    [60]U. S. Department of Transportation Federal Highway Administration. Information:Formal policy on the use of recycled materials,2002.
    [61]Shen J. A., Amirkhanian S., Miller J. A. Effect of rejuvenator agent on Superpave mixtures containing reclaimed asphalt pavement[J]. Journal of Materials in Civil Engineering,2007, 19(5):376-384.
    [62]Valdes G, Perez-Jimenez F., Miro R., et al. Experimental study of recycled asphalt mixtures with high percentages of reclaimed asphalt pavement[J]. Construction and Building Materials,2011,25(3):1289-1297.
    [63]Tabakovic A., Gibney A., McNally C., et al. Influence of recycled asphalt pavement on fatigue performance of asphalt concrete base courses[J]. Journal of Materials in Civil Engineering,2010,22(6):643-650.
    [64]Shen J. A., Amirhanian S., Lee S. J. The effect of rejuvenator agents on recycled aged CRM binders[J]. The International Journal of Pavement Engineering,2005,6(4):273-279.
    [65]Shu X., Huang B. S., Vukosavljevic D. Laboratory evaluation of fatigue characteristics of recycled asphalt mixture[J]. Construction and Building Materials,2008,22(7):1323-1330.
    [66]Shen J.A, Ohne Y, Amirkhanian S.J. Determining Rejuvenator Content for Recycling Reclaimed Asphalt Pavement by SHRP Binder Specifications [J]. The International Journal of Pavement Engineering,2002,3(4):261-268
    [67]Shen J.A., Amirkhanian S.N., Miller J.A. Effect of rejuvenating agents on Superpave mixtures containing reclaimed asphalt pavements[J]. The International Journal of Pavement Engineering,2007 (19):376-384.
    [68]Valdes G., Perez-Jimenez F., Miro R., et al. Experimental study of recycled asphalt mixtures with high percentages of reclaimed asphalt pavement[J]. Construction and Building Materials,2011,25(3):1289-1297.
    [69]Tabakovic A., Gibney A., McNally C., et al. Influence of recycled asphalt pavement on fatigue performance of asphalt concrete base courses[J]. Journal of Materials in Civil Engineering,2010,22(6):643-650.
    [70]Shen J. A., Amirhanian S., Lee S. J. The effect of rejuvenator agents on recycled aged CRM binders[J]. The International Journal of Pavement Engineering,2005,6(4):273-279.
    [71]Shu X., Huang B. S., Vukosavljevic D. Laboratory evaluation of fatigue characteristics of recycled asphalt mixture[J]. Construction and Building Materials,2008,22(7):1323-1330.
    [72]Shen J.A, Ohne Y, Amirkhanian S.J. Determining Rejuvenator Content for Recycling Reclaimed Asphalt Pavement by SHRP Binder Specifications [J]. The International Journal of Pavement Engineering,2002,3(4):261-268
    [73]侯月军,周志刚,高及阳.不同再生剂对旧沥青性能的改善[J].交通科学与工程,2009,25(3):17-21
    [74]马涛,黄晓明,张久鹏.基于材料复合理论的老化沥青再生规律[J].东南大学学报(自然科学版),2008,38(5):520-524.
    [75]王为民,王永刚,廖克俭等.调和法在废旧沥青再生技术中的应用[J].石油化工高等学校学报,2004,17(1):20-24.
    [76]张金喜,林翔,苗英豪等.再生沥青混合料变异性影响因素正交实验[J].北京工业大学学报,2010,36(6):771-778.
    [77]张志祥,吴建浩.再生沥青混合料疲劳性能实验研究[J].中国公路学报,2006,19(2):31-35.
    [78]李进,王金凤,徐萌等.再生剂对再生沥青感温性的影响[J].石油化工高等学校学报,2010,23(1):34-38.
    [79]成家胜.沥青路面再生剂及再生方法研究[D].大连:大连理工大学,2005.
    [80]丁湛,栗培龙.再生沥青的粘度复合模型研究[J].新型建筑材料,2008,5:61-65.
    [81]张辉.沥青路面热再生技术研究[D].西安:长安大学,2006.
    [82]余国贤,周晓龙,金亚清等.废旧沥青再生剂的实验研究2006,22(5):96-100.
    [83]刘崇理.沥青路面的再生机理与再生剂研究[J].北方交通,2010(5):6-9.
    [84]刘军,杨彦海,李和平等.沥青再生剂的研究选择[J].环境工程,2004,22(1):44-47.
    [85]胡曙光,丁庆军,黄冲等.废旧沥青再生剂及其制备方法.中国,200910060532.3[P].20090708.
    [86]王永刚,廖克俭,赵崇峰.再生沥青感温性的初步考察[J].石油沥青,2004,18(1):18-21.
    [87]王永刚,廖克俭,闰锋.再生沥青路用性能的室内研究[J].石油炼制与化工2004,35(4):58-62.
    [88]吴少鹏,黄晓明,赵永利.路用沥青再生剂的研究[J].外国建材科技,2001,22(4):47-50.
    [89]王继山.热再生沥青混合料的再生剂研究[J].北方交通,2007(14):29-31.
    [90]Austroads. Asphalt recycling guide [M]. Sydney, Australia,1997.
    [91]Carpenter S.H, Wolosick J.R. Modifier Influence in the Characterization of Hot-mix Recycled Materials [M]. Transporation Research Record, Transporation Research Board, Washington DC,1980:15-22
    [92]Carpenter S.H, Wolosick J.R. Modifier Influence in the Characterization of Hot-mix Recycled Materials [M]. Transporation Research Record, Transporation Research Board, Washington DC,1980:15-22
    [93]Robert F.L. Hot mix asphalt mixture design and construction[R]. NAPA Education Foundation, Lanham, Maryland,1996.
    [94]Cussler E.L. Diffusion-mass transfer in fluid systems[M]. Cambridge:Cambridge University Press,1997:11-89.
    [95]Karlsson R, Isacsson U. Application of FTIR-ART to characterization of bitumen rejuvenator diffusion[J]. Journal of Materials in Civil Engineering,2003,15(2):157-165.
    [96]Karlsson R, Isacsson U, Ekblad J. Rheological characterization of bitumen diffusion[J].. Journal of Materials Science,2007,42(1):101-108.
    [97]Ramera R, Santamaria A, Pena J.J, et al. Rheological aspects of the rejuvenation of aged bitumen [J]. Rheologica Acta,2006,45:474-478.
    [98]Durrieu F., Farcas F., Mouillet V. The influence of UV aging of a styrene/butadiene/styrene modified bitumen:comparison between laboratory and on site aging[J]. Fuel,2007,86: 1446-1451.
    [99]丁录玲,黄晓明.沥青再生剂扩散机理与扩散模拟实验研究[J].交通科技,2009(5):75-78.
    [100]俞方英,郑南翔.再生剂与沥青的扩散研究[J].中外公路,2009,29(5):229-232.
    [101]李进,徐萌,张小英等.老化沥青与再生剂混合相行为[J].辽宁石油化工大学学报,2009,29(4):19-23.
    [102]Traxler R. N., Coombs C. E. The colloidal nature of asphalt as shown by its flow properties[J]. The Journal of Physical Chemistry,1936,40:113-147.
    [103]Lee S. J., Amirkhanian S. N., Kim K. W. Laboratory evaluation of the effects of short-term oven aging on asphalt binders in asphalt mixtures using HP-GPC[J]. Construction and Building Materials,2009,23(9):3087-3093.
    [104]李耀伟.催化裂化油浆改善沥青品质的优化研究[D].青岛:山东科技大学,2006.
    [105]Cussler E.L. Diffusion-mass transfer in fluid systems[M]. Cambridge:Cambridge University Press,1997:11-89.
    [106]张永明.热拌再生沥青混凝土技术研究及应用[D].天津:天津大学,2010.
    [107]Bueno-Ferrer C, Garrigos M.C, Jimenez A. Characterization and thermal stability of poly(vinyl chloride) plasticized with epoxidized soybean oil for food packaging[J]. Polymer Degradation and Stability,2010,95(11):2207-2212.
    [108]王龙江,于元章,王志刚等.PVC增塑剂渗透剂生产新技术研究[J].广东化工,2009,36(8):41-43.
    [109]Sharma V, Kundu P.P. Condensation polymer from natural oils[J]. Progress in Science, 2008,7(33):1199-1215.
    [110]Ahmad S, Ashraf S.M., Kumar G.S. et al. Studies on epoxy-butylated melamine formaldehyde-basd anticorrosive coatings from a sustainable resource[J]. Progress in Organic coatings,2006,6(33):207-213.
    [111]Tsujimoto T, Uyama H, Kobayshi S. Synthesis of high-performance green nanocomposites from renew natural oils[J]. Polymer Degradation and Stability,2010,4(95):1399-1405.
    [112]Shen J.A, Ohne Y, Amirkhanian S.J. Determining Rejuvenator Content for Recycling Reclaimed Asphalt Pavement by SHRP Binder Specifications [J]. The International Journal of Pavement Engineering,2002,3(4):261-268.
    [113]Kuang D.L., Feng Z.G., Yu J.Y., et al. A new approach for evaluating rejuvenator diffusing into aged bitumen[J]. Journal of Wuhan University of Technology-Mater, Sci.Ed, 2011,1(26):43-46.
    [114]王日彬,王全学,吕连洪.废旧沥青混合料再生利用[J].黑龙江交通科技,2002,2:17-19.
    [115]Standard Practice for Classifying Hot-Mix Recycling Agent[S]. American Society of Testing Materials,1992 (Reapproved 2004).
    [116]Lamontagne J., Dumas P., Mouillet V., et al. Comparison by fourier transform infrared (FTIR) spectroscopy of different ageing techniques:application to road bitumens[J]. Fuel, 2001,80:483-488.
    [117]Efa A. K., Tsyro L. V., Andreeva L. N., et al. The causes of structural aging of asphalt[J]. Chemistry and Technology of Fuels and Oils,2002,38(2):115-123.
    [118]张敏英,龙水根.沥青热再生材料与设备研究及关键技术要求[J].筑路机械与施工机械化,2005(2):32-34.
    [119]Prithvi S., Kandhal S.S., Rao D.E., et al. Performance of recycled hot mix asphalt mixture[D]. NCAT Report No.95-1.1995.
    [120]Lu X.H., Isacsson Ulf. Effect of aging on bitumen chemical and rheology[J]. Construction and Building Materials,2002,16(1):15-22.
    [121]Oyekunle L.O. Certain relationships between chemical composition and properties of petroleum asphalts from different origin [J]. Oil & Gas Science and Technology-Rev. IFP,2006,61(3):433-441.
    [122]Li S.H, Liu C.G, Que G.H, et al. Colloidal structures of vacuum residua and their thermal stability in terms of saturates, aromatics, resin and asphaltene composition [J]. Journal of Petroleum Science and Engineering,1999,22(1):37-45.
    [123]Guern M.L, Chailleux E, Farcas F, et al. Physico-chemical analysis of five hard bitumens: Indentification of chemical Species and molecular organization before and after artificial aging [J]. Fuel,2010,89(11):3330-3339.
    [124]Loeber L, Muller G, J Morel, et al. Bitumen in colloid science:a chemical, structure and Theological approach [J]. Fuel,1998,77(13):1443-1450.
    [125]Bonemazzi F, Giavarini C. Shifting the bitumen structure from sol to gel [J]. Journal of Petroleum Science and Engineering,1999,22(2):17-24.
    [126]Zhang H.L., Wang H.C., Yu J.Y. Effect of aging on morphology of organo-montmorillonite modified bitumen by atomic force microscopy[J]. Journal of Microscopy,2011,242(1): 37-45.
    [127]Zhang H.L., Yu J.Y., Xue L.H. Effect of montmorillonite organic modification on microstructures and ultraviolet aging properties of bitumen[J]. Journal of Microscopy, 2011,244(1):85-92.
    [128]Binnig G, Quate C. F. Atomic force microscope [J]. Physical Review Letters,1986,56: 930-933.
    [129]Jandt K.D., Finke M., Cacciafesta P. Aspects of the physical chemistry of polymers, biomaterials and mineralised tissues investigated with atomic force microscopy (AFM) [J]. Colloids and Surfaces B:Biointerfaces,2000,19:301-314.
    [130]张恒龙.TLA改性沥青的制备与性能研究[D].武汉:武汉理工大学,2010.
    [131]Chi L. F, Li H. B., Zhang X., et al. Atomic force microscopic (AFM) study on a self-organizing polymer film[J]. Polymer Bulletin,1998,41:695-699.
    [132]Loeber L., Sutton O., Morel J., et al. New direct observations of asphalts and asphalt binder by scanning electron microscopy and atomic force microscopy. Journal of Microscopy,1996,182:32-39.
    [133]Giessibl F. J. Advances in atomic force microscopy [J]. Reviews of Modern Physics,2003, 75(3):949-983.
    [134]Jandt K.D., Finke M., Cacciafesta P. Aspects of the physical chemistry of polymers, biomaterials and mineralised tissues investigated with atomic force microscopy (AFM) [J]. Colloids and Surfaces B:Biointerfaces,2000,19:301-314.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700