添加剂对脱氧胆酸钠的聚集行为的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胆盐是一种重要的生物表面活性剂,主要存在于脊椎动物中,可用作增溶剂或乳化剂以促进日常饮食中摄入的油脂的吸收,在医学中还可以治疗胆结石。胆盐类物质一般都包括两部分,其中凹陷的a面是由带有极性羟基的类固醇骨架构成,而凸出的p面则是由亚甲基组成的。这种排布方式造就了胆盐的独特性质,与传统的直链型表面活性剂有很大不同。因此,关于胆盐的聚集行为的研究具有非常重要的意义。
     关于添加剂对传统表面活性剂聚集行为影响的研究报道有很多,比如CTAB、SDS和Triton X-100等,而对于胆盐类表面活性剂的研究较少。在本论文中,我们选择脱氧胆酸钠(NaDC)为研究对象,采用表面张力、界面扩张流变、计算机模拟和荧光光谱的方法研究了三种碱性氨基酸(L-赖氨酸(L-Lys).L-精氨酸(L-Arg)和L-组氨酸(L-His))对NaDC在气/液界面上和水溶液中的聚集行为的影响,并考察了混合体系对非诺贝特的增溶作用;采用体相流变和透射电子显微镜的方法研究了无机钠盐对NaDC凝胶的流变行为的影响,以期为了解此类体系在生理环境中的聚集行为提供信息,为开拓胆盐类生物表面活性剂在不同领域的应用提供基础数据和理论依据。论文主要包括五部分内容:
     论文的第一部分概述了胆盐表面活性剂的特性,并综述了胆盐的聚集行为以及添加剂对NaDC聚集行为的影响的研究进展。
     论文的第二部分采用表面张力、界面扩张流变和计算机模拟的方法研究了三种碱性氨基酸对NaDC在气/液界面上的聚集行为的影响。结果表明,氨基酸的加入可以降低NaDC在水溶液中的临界聚集浓度(cac),NaDC之cac值的对数与氨基酸浓度的对数呈直线关系,但直线的斜率较低;随着NaDC浓度增加,体系的绝对模量呈现先上升后下降的趋势,加入氨基酸后绝对模量的峰值增大。三种氨基酸中L-Lys对NaDC的cac和界面流变性的影响最大,据此推测,NaDC和氨基酸之间的静电作用和疏水作用是主要驱动力。
     论文的第三部分采用荧光光谱法研究了氨基峻对NaDC在水溶液中的聚集行为的影响。结果表明,NaDC在水溶液中的聚集是二级缔合过程,NaDC分子间通过疏水作用形成初级聚集体,而后在氢键和疏水作用的共同驱动下形成了一级聚集体。氨基酸的加入可以降低NaDC在水溶液中的微极性和cac值,而聚集数显著增加。L-Lys对微极性、cac和聚集数的影响最大,而L-Arg和L-His对三种参数的影响较小。据此推测,NaDC和氨基酸之间的静电作用、疏水作用和氢键都是NaDC聚集体生长的重要驱动力。从氨基酸的pKa值和疏水指数来看,L-Lys对NaDC聚集行为的影响最大,而NaDC与三种氨基酸之间的氢键大小的差别不大。因此,氨基酸与NaDC相互作用的强弱主要依赖于它们之间的静电和疏水作用。
     论文的第四部分采用紫外光谱法研究了三种氨基酸对NaDC增溶非诺贝特效果的影响。结果表明,NaDC浓度越大,体系的温度越高,非诺贝特在NaDC溶液中的表观溶解度越大。在固定NaDC浓度时,可以根据公式计算得到摩尔溶解焓ΔsolHm。非诺贝特从不含NaDC的缓冲溶液转移至NaDC缓冲溶液过程的迁移焓ΔtrH和迁移熵TΔtrS都是负值,并且随着NaDC浓度的增加而降低,说明NaDC对非诺贝特的增溶过程是焓驱动过程。加入氨基酸后,NaDC增溶能力加强,且随着氨基酸浓度增加,增溶能力逐渐提高。氨基酸的结构不同,对其增溶能力的影响也不同,三种氨基酸与NaDC的混合体系对非诺贝特的增溶能力排序如下:L-Lys>L-Arg≈L-His。结合第三章的研究结果,可以推测,静电作用、疏水作用和氢键三种作用力共同控制NaDC与氨基酸混合体系对非诺贝特的增溶过程,而体系的微极性、临界聚集浓度和聚集数的变化对NaDC的增溶作用具有很大的影响。
     论文的第五部分采用体相流变和透射电子显微镜的方法对比研究了无机钠盐对NaDC凝胶的流变行为的影响。结果表明,钠盐的存在可以使得NaDC聚集体沿着一个方向生长,最终形成交错的网络结构,而其它无机盐(如KCl、MaCl2、CaCl2和AICl3)则不能诱导NaDC凝胶的形成。随着NaDC浓度增加,凝胶的三个特征参数(剪切粘度、弹性模量和松弛时间)都随之增大,说明NaDC分子数目的增大有利于形成稳定的网络结构。随着盐浓度增加,三个参数都呈现先逐渐增加后缓慢减小的趋势,说明较低盐浓度有利于网络结构的形成,而盐含量较高时将破坏网络结构,并且在盐析作用影响下,使得NaDC分子自聚集而从溶液中析出。在这三种钠盐中,NaCl对NaDC凝胶流变行为的影响最为显著(?)所形成凝胶的网络结构最稳定,强度最大,而NaBr和NaI对其影响相对较小这个排列顺序与感胶离子序一致,离子半径越小,水化作用越强,与水分子之间的作用越强,越有利于NaDC分子的自聚集。
Bile salts are important biosurfactants, which exist in the living bodies of vertebrates, and often act as solubilizing or emulsifying agents for absorption of dietary lipids, or as gallstone solubilizing agents in clinical medicine. All of them possess a rigid steroid backbone having polar hydroxyl groups on the concave a-face and methylene groups on the convexβ-face. This arrangement creates unique physiochemical properties for such a class of molecules, being different from those of conventional surfactants with a linear hydrocarbon chain. It is of great importance that the aggregation behavior of bile salts should be investigated.
     To our knowledge, the effect of additives on the aggregation behavior of the traditional surfactant, such as CTAB, SDS and Triton X-100, has been paid much more attention. However, details on the interactions between bile salts and additives have not been investigated deeply up to now. In this thesis, sodium deoxycholate (NaDC) is employed to study the effect of additives on its aggregation behavior. Surface tension, dilational viscoelasticity, molecular dynamic simulation and steady-state fluorescence spectra of pyrene of NaDC aqueous solution are investigated in the absence and presence of three kinds of alkaline amino acids, namely L-Lysine (L-Lys), L-Arginine (L-Arg) and L-Histidine (L-His), in order to study the aggregation behaviors of NaDC at the air/water surface and in aqueous solution. The effect of amino acids on the solubility of fenofibrate in NaDC solution was studied using UV-vis spectrum method. The rheological properties of NaDC hydrogel as a function of concentration of NaDC and salts were investigeted by rheological measurements. This research may open an avenue to gain a better knowledge about the behavior of such systems in the biological environment. This thesis is divided into five parts.
     In the first section, the properties of bile salt, the study progress on the aggregation behaviors of bile salts and the effect of additives on the aggregation bahavior of NaDC are summarized.
     In the second section, the aggregation behaviors of NaDC at air/water surface were investigated via surface tension and oscillating bubble measurements in the absence and presence of three alkaline amino acids. The results of surface tension show that NaDC has lower ability in reducing surface tension of water, because NaDC molecules orient at the surface with an oblique direction and tend to aggregate together, which is approved by the molecular dynamic simulation. L-Lys is the most efficient one among three amino acids in reducing critical aggregation concentration (cac) of NaDC in aqueous solution. The influence of amino acids on the dilational rheological properties of NaDC was studied using the drop shape analysis method in the frequency range from 0.02 to 0.5 Hz. The results reveal that the absolute modulus passes through a maximum value with increasing NaDC concentration. The addition of amino acids increases the absolute modulus of NaDC solution and the maximum value is observed at much lower concentration. From the perspective of structures of amino acids, the performance of L-Arg is similar to that of L-His, and both of them bring out smaller effect on the absolute modulus than that of L-Lys. From the above results, it may be presumed that electrostatic and hydrophobic effects are important impetus during the interaction between amino acids and NaDC at air/water surface. Hydrogen bonding is so ubiquitous in the system that the difference of hydrogen bonding between NaDC and amino acid is ignored.
     In the third section, the influence of three alkaline amino acids on the aggregation behaviors of NaDC in phosphate buffer (pH=7.0) was studied at 25℃. The fluorescence probe technique of pyrene was employed to determine accurately the cac, polarity of microenvironment and aggregation numbers for NaDC aggregate. The added amino acids can effectively reduce the cac values and micropolarity of NaDC, indicating that it is easier for NaDC to aggregate together and lie compactly in the presence of amino acids. Meanwhile, the aggregation numbers of NaDC are increased evidently, meaning that more NaDC molecules connect together to form stable aggregates. It is worth mentioning that the performance of L-Arg is similar to that of L-His, and both of them bring out smaller effect on the above parameters than L-Lys. In view of this, it may be inferred that both electrostatic and hydrophobic interaction are responsible for the interaction between NaDC and amino acids in aqueous solution.
     In the fourth section, the ability of NaDC to solubilize fenofibrate in the absence and presence of amino acids was studied using UV-vis spectrum method. The solubility of fenofibrate is increased with increasing NaDC's concentration and temperature. At fixed NaDC concentration, the enthalpy of solution,ΔSolHm can be calculated from the slopes of the Van't Hoff plots. The characteristics of transfer enthalpy and entropy for fenofibrate from buffer to NaDC solution reveal that,ΔtrH and TΔtrS decrease in the negative region with increasing concentration of NaDC. In the negative region, drug dissolution is enthalpy favorable and entropy unfavorable, and enthalpy effect is overcomes the entropy effect. The solubility of fenofibrate is increased with increasing concentration of amino acids. From the perspective of structures of amino acids, the performance of L-Arg is similar to that of L-His, and both of them bring out smaller effect on the solubility of fenofibrate than that of L-Lys. From the above results, it may be presumed that electrostatic, hydrophobic effects and hydrogen bonding are important impetus during the solubilization of fenofobrate in NaDC/amino acid solution. Moreover, the micropolarity, cac values and aggregation numbers of NaDC in the absence and presence of amino acids can be employed to interpret the solubilization process.
     In the fifth section, the rheological behavior of NaDC hydrogel was investigated in the presence of sodium halide, including NaCl, NaBr and NaI. The added sodium salts is favorable to the growth of NaDC aggregates in a direction and thus the entangled network is formed due to the interaction between NaDC and sodium halide. However, other inorganic salts, such as KCl, MaCl2, CaCl2 and AlCl3 are impossible to induce the formation of NaDC hydrogel. With increasing concentration of NaDC, three parameters, including the viscosity, elastic modulus and retardation time, increase remarkably. It can be inferred that the increasing NaDC molecules are favorable to the formation of network.These parameters first incerase and then decrease slowly with increasing concentration of sodium salts. At a low salt content, the added salt can effectively screen the elactrostatic interaction among hydrophilic groups of NaDC and thus factor the formation of network. Addition of more salt makes excessive aggregation and eventually the gelator molecules start to escape from the gel network by precipitation. Among three kinds of sodium halide, NaCl is most effective in improving the strength of NaDC hydrogel, while Nal bring out smaller effect than those of NaCl and NaBr. This sequence is in agreement with the lyotropic series, indicating that the ion with samller radius has stronger hydration effect and thus the interaction between it and water is much stronger. Undoubtedly, the NaDC molecules are easy to aggregate in the presence of smaller ions.
引文
[1]Ortiz, D. F.; Moseley, J.; Calderon, G.; Swift, A. L.; Li, S. H.; Alias, I. M., Identification of HAX-1 as a protein that binds bile salt export protein and regulates its abundance in the apical membrane of Madin-Darby canine kidney cells. J. Biol. Chem.2004,279 (31),32761-32770.
    [2]Reschly, E. J.; Ai, N.; Ekins, S.; Welsh, W. J.; Hagey, L. R.; Hofmann, A. F.; Krasowski, M. D., Evolution of the bile salt nuclear receptor FXR in vertebrates. J. Lipid Res.2008,49 (7), 1577-1587.
    [3]Hofmann, A. F.; Hagey, L. R., Bile acids:Chemistry, pathochemistry, biology, pathobiology, and therapeutics. Cell. Mol. Life Sci.2008,65 (16),2461-2483.
    [4]Singh, J.; Unlu, Z.; Ranganathan, R.; Griffiths, P., Aggregate properties of sodium deoxycholate and dimyristoylphosphatidylcholine mixed micelles. J. Phys. Chem. B 2008,112 (13),3997-4008.
    [5]Messina, P. V; Fernandez-Leyes, M. D.; Prieto, G.; Ruso, J. M.; Sarmiento, F.; Schulz, P. C., Spread mixed monolayers of deoxycholic and dehydrocholic acids at the air-water interface, effect of subphase pH. Characterization by axisymmetric drop shape analysis. Biophys. Chem.2008,132 (1),39-46.
    [6]Mukhopadhyay, S.; Maitra, U., Chemistry and biology of bile acids. Curr. Sci.2004,87 (12), 1666-1683.
    [7]Madenci, D.; Egelhaaf, S. U., Self-assembly in aqueous bile salt solutions. Curr. Opin. Colloid Interface Sci.2010,15 (1-2),109-115.
    [8]Sugihara, G.; Yamakawa, K.; Murata, Y.; Tanaka, M., Effects of pH, pNa, and temperature on micelle formation and solubilization of cholesterol in aqueous solutions of bile salts. J. Phys. Chem.2002,86 (14),2784-2788.
    [9]Chen, Y. P.; Lu, Y.; Chen, J. M.; Lai, J.; Sun, J.; Hu, F. Q.; Wu, W., Enhanced bioavailability of the poorly water-soluble drug fenofibrate by using liposomes containing a bile salt. Int. J. Pharm.2009,376 (1-2),153-160.
    [10]Ranganathan, R.; Tcacenco, C. M.; Rosseto, R.; Hajdu, J., Characterization of the kinetics of phospholipase C activity toward mixed micelles of sodium deoxycholate and dimyristoylphosphatidylcholine. Biophys. Chem.2006,122 (2),79-89.
    [11]Madenci, D.; Salonen, A.; Schurtenberger, P.; Pedersen, J. S.; Egelhaaf, S. U., Simple model for the growth behaviour of mixed lecithin-bile salt micelles. Phys. Chem. Chem. Phys.2011,13 (8),3171-3178.
    [12]Matsuoka, K.; Nakazawa, T.; Nakamura, A.; Honda, C.; Endo, K.; Tsukada, M., Study of thermodynamic parameters for solubilization of plant sterol and stanol in bile salt micelles. Chem. Phys. Lipids 2008,154 (2),87-93.
    [13]Ninomiya, R.; Matsuoka, K.; Moroi, Y., Micelle formation of sodium chenodeoxycholate and solubilization into the micelles:comparison with other unconjugated bile salts. BBA, Mol. Cell. Biol. Lipids 2003,1634 (3),116-125.
    [14]Maldonado-Valderrama, J.; Wilde, P.; Macierzanka, A.; Mackie, A., The role of bile salts in digestion. Adv. Colloid Interface Sci.2010, doi:10.1016/j.cis.2010.12.002
    [15]Fromm, M. F.; Kim, R. B.; Stieger, B., The role of the sodium-taurocholate cotransporting polypeptide (NTCP) and of the bile salt export pump (BSEP) in physiology and pathophysiology of bile formation. In Drug Transporters, Springer Berlin Heidelberg:2011; Vol.201, pp 205-259.
    [16]Bhattacharjee, J.; Verma, G.; Aswal, V. K.; Date, A. A.; Nagarsenker, M. S.; Hassan, P. A., Tween 80-sodium deoxycholate mixed micelles:structural characterization and application in doxorubicin delivery. J. Phys. Chem. B 2010,114 (49),16414-16421.
    [17]Small, D. M.; Nair, P. P.; Kritchevsky, D., The bile acids; physiology and metabolism. Plenum Press:New York,1971; Vol.1,54-55.
    [18]Haslewood, G. A. D., Bile salt evolution. J. Lipid Res.1967,8 (6),535-550.
    [19]Schurtenberger, P.; Mazer, N.; Kaenzig, W., Static and dynamic light scattering studies of micellar growth and interactions in bile salt solutions. J. Phys. Chem.1983,87 (2),308-315.
    [20]Matsuoka, K.; Suzuki, M.; Honda, C.; Endo, K.; Moroi, Y, Micellization of conjugated chenodeoxy- and ursodeoxycholates and solubilization of cholesterol into their micelles: comparison with other four conjugated bile salts species. Chem. Phys. Lipids 2006,139 (1),1-10.
    [21]Terech, P.; Weiss, R. G, Low molecular mass gelators of organic liquids and the properties of their gels. Chem. Rev.1997,97 (8),3133-3160.
    [22]Lydon, J., Chromonic liquid crystal phases. Curr. Opin. Colloid Interface Sci.1998,3 (5), 458-466.
    [23]Funasaki, N.; Nomura, M.; Ishikawa, S.; Neya, S., Hydrophobic self-association of sodium taurochenodeoxycholate and tauroursodeoxycholate. J. Phys. Chem. B 2000,104 (32),7745-7751.
    [24]Funasaki, N.; Ueshiba, R.; Hada, S.; Neya, S., Stepwise self-association of sodium taurocholate and taurodeoxycholate as revealed by chromatography. J. Phys. Chem.1994,98 (44), 11541-11548.
    [25]Matsuoka, K.; Moroi, Y., Micelle formation of sodium deoxycholate and sodium ursodeoxycholate. BBA 2002,1580 (2-3),189-199.
    [26]Sugioka, H.; Matsuoka, K.; Moroi, Y., Temperature effect on formation of sodium cholate micelles.J.Colloid Interface Sci.2003,259 (1),156-162.
    [27]Paula, S.; Sues, W.; Tuchtenhagen, J.; Blume, A., Thermodynamics of micelle formation as a function of temperature:a high sensitivity titration calorimetry study. J. Phys. Chem.1995,99 (30), 11742-11751.
    [28]Reis, S.; Moutinho, C. G.; Matos, C.; de Castro, B.; Gameiro, P.; Lima, J. L. F. C., Noninvasive methods to determine the critical micelle concentration of some bile acid salts. Anal. Biochem.2004,334 (1),117-126.
    [29]Mysels, K. J., Surface tension studies of bile salt association. Hepatology 1984,4 (S2), 80S-84S.
    [30]Lopez, F.; Samseth, J.; Mortensen, K.; Rosenqvist, E.; Rouch, J., Micro- and macrostructural studies of sodium deoxycholate micellar complexes in aqueous solutions. Langmuir 1996,12 (26), 6188-6196.
    [31]Kratohvil, J. P., Size of bile salt micelles:Techniques, problems and results. Adv. Colloid Interface Sci.1986,26,131-154.
    [32]Kratohvil, J. P.; Hsu, W. P.; Kwok, D. I., How large are the micelles of di-a-hydroxy bile salts at the critical micellization concentrations in aqueous electrolyte solutions? Results for sodium taurodeoxycholate and sodium deoxycholate. Langmuir 1986,2 (2),256-258.
    [33]Hofmann, A. F.; Small, D. M., Detergent properties of bile salts:correlation with physiological function. Annu. Rev. Med.1967,18 (1),333-376.
    [34]Small, D. M., Size and structure of bile salt micelles. Influence of structure, concentration, counterion concentration, pH, and temperature. Advances in Chemistry:1968;Vol.84,31-42.
    [35]Coello, A.; Meijide, F.; Nunez, E. R.; Tato, J. V., Aggregation behavior of bile salts in aqueous solution. In John Wiley & Sons, Inc.:1996; Vol.85, pp 9-15.
    [36]Pontell, K., Micellar behaviour in solutions of bile-acid salts. Colloid. Polym. Sci.1971,244 (1),246-252.
    [37]Hildebrand, A.; Garidel, P.; Neubert, R.; Blume, A., Thermodynamics of demicellization of mixed micelles composed of sodium oleate and bile salts. Langmuir 2003,20 (2),320-328.
    [38]Garidel, P.; Hildebrand, A.; Neubert, R.; Blume, A., Thermodynamic characterization of bile salt aggregation as a function of temperature and ionic strength using isothermal titration calorimetry. Langmuir 2000,16 (12),5267-5275.
    [39]Roda, A.; Hofmann, A.F.; Mysels, K. J., The influence of bile salt structure on self-association in aqueous solutions. J. Biol. Chem.1983,258 (10),6362-6370.
    [40]Carey, M. C.; Small, D. M., Micellar properties of dihydroxy and trihydroxy bile salts:effects of counterion and temperature. J. Colloid Interface Sci.1969,31 (3),382-396.
    [41]Carey, M. C.; Montet, J. C.; Phillips, M. C.; Armstrong, M. J.; Mazer, N. A., Thermodynamic and molecular basis for dissimilar cholesterol-solubilizing capacities by micellar solutions of bile salts:cases of sodium chenodeoxycholate and sodium ursodeoxycholate and their glycine and taurine conjugates. Biochemistry 1981,20 (12),3637-3648.
    [42]Ueno, M.; Asano, H.; Gotoh, N.; Uchida, S.; Sasamoto, H., Micellar properties and solubilization of cholesterol in aqueous binary mixed solutions consisting of sodium cholate and non-ionic surfactant. Colloids and Surfaces 1992,67,257-264.
    [43]Gouin, S.; Zhu, X. X., Fluorescence and NMR studies of the effect of a bile acid dimer on the micellization of bile salts. Langmuir 1998,14(15),4025-4029.
    [44]Kratohvil, J. P.; Aminabhavi, T. M.; Hsu, W.; Fujime, S.; Patkowski, A.; Chen, F. C.; Chu, B., Hydrodynamic properties of micelles of dihydroxy bile salts—sodium taurodeoxycholate and sodium glycodeoxycholate. Croatica Chem. Acta 1983,56,789-796.
    [45]Kawamura, H.; Murata, Y.; Yamaguchi, T.; Igimi, H.; Tanaka, M.; Sugihara, G.; Kratohvil, J. P., Spin-label studies of bile salt micelles. J. Phys. Chem.1989,93 (8),3321-3326.
    [46]Jana, P. K.; Moulik, S. P., Interaction of bile salts with hexadecyltrimethylammonium bromide and sodium dodecyl sulfate. J. Phys. Chem.1991,95 (23),9525-9532.
    [47]Miyajima, K.; Machida, K.; Taga, T.; Komatsu, H.; Nakagaki, M., Correlation between the hydrophobic nature of monosaccharides and cholates, and their hydrophobic indices. Journal of the Chemical Society, Faraday Transactions 1:Physical Chemistiy in Condensed Phases 1988,84 (8),2537-2544.
    [48]Venkatesan, P.; Cheng, Y.; Kahne, D., Hydrogen bonding in micelle formation. J. Am. Chem. Soc.1994,116(15),6955-6956.
    [49]Jover, A.; Meijide, F.; Nunez, E. R.; Tato, J. V., Aggregation kinetics of sodium deoxycholate in aqueous solution. Langmuir 1998,14 (16),4359-4363.
    [50]Zhang, H. M.; Wang, Y.; Jin, W. J., Study on the kinetic properties of phosphor in deoxycholate aggregates by phosphorescent quenching methodology. J. Photochem. Photobiol, B 2007,88(1),36-42.
    [51]Galantini, L.; Leggio, C.; Jover, A.; Meijide, F.; Pavel, N. V.; Soto Tellini, V. H.; Tato, J. V.; Di Leonardo, R.; Ruocco, G., Kinetics of formation of supramolecular tubules of a sodium cholate derivative. Soft Matter 2009,5 (16),3018-3025.
    [52]Funasaki, N.; Fukuba, M.; Hattori, T.; Ishikawa, S.; Okuno, T.; Hirota, S., Micelle formation of bile salts and zwitterionic derivative as studied by two-dimensional NMR spectroscopy. Chem. Phys. Lipids 2006,142 (1-2),43-57.
    [53]Santhanalakshmi, J.; Lakshmi, G.; Aswal, V.; Goyal, P., Small-angle neutron scattering study of sodium cholate and sodium deoxycholate interacting micelles in aqueous medium. J. Chem. Sci. 2001,113(l),55-62.
    [54]Jover, A.; Meijide, F.; Rodriguez Nunez, E.; Vazquez Tato, J.; Mosquera, M., Aggregation number for sodium deoxycholate from steady-state and time-resolved fluorescence. Langmuir 1997,13 (2),161-164.
    [55]Lindman, B.; Kamenka, N.; Fabre, H.; Ulmius, J.; Wieloch, T., Aggregation, aggregate composition, and dynamics in aqueous sodium cholate solutions. J. Colloid Interface Sci.1980,73 (2),556-565.
    [56]Janich, M.; Lange, J.; Graener, H.; Neubert, R., Extended light scattering investigations on dihydroxy bile salt micelles in low-salt aqueous solutions. J. Phys. Chem. B 1998,102 (31), 5957-5962.
    [57]Mazer, N. A.; Carey, M. C.; Kwasnick, R. F.; Benedek, G. B., Quasielastic light scattering studies of aqueous biliary lipid systems. Size, shape, and thermodynamics of bile salt micelles. Biochemistry 1979,18 (14),3064-3075.
    [58]Rich, A.; Blow, D. M., Formation of a helical steroid complex. Nature 1958,182 (4633), 423-426.
    [59]Blow, D. M.; Rich, A., Studies on the formation of helical deoxycholate complexes. J. Am. Chem. Soc.1960,82 (14),3566-3571.
    [60]Nagarajan, R., On interpreting fluorescence measurements:what does thermodynamics have to say about change in micellar aggregation number versus change in size distribution induced by increasing concentration of the surfactant in solution? Langmuir 1994,10 (6),2028-2034.
    [61]Galantini, L.; Giglio, E.; Leonelli, A.; Pavel, N. V., An integrated study of small-angle X-ray scattering and dynamic light scattering on cylindrical micelles of sodium glycodeoxycholate. J. Phys. Chem. B 2004,108 (9),3078-3085.
    [62]Cozzolino, S.; Galantini, L.; Leggio, C.; Pavel, N. V, Correlation between small-angle X-ray scattering spectra and apparent diffusion coefficients in the study of structure and interaction of sodium taurodeoxycholate micelles. J. Phys. Chem. B 2005,109(13),6111-6120.
    [63]Leggio, C.; Galantini, L.; Zaccarelli, E.; Pavel, N. V., Small-angle X-ray scattering and light scattering on lysozyme and sodium glycocholate micelles. J. Phys. Chem. B 2005,109 (50), 23857-23869.
    [64]de Petris, G.; Festa, M. R.; Galantini, L.; Giglio, E.; Leggio, C.; Pavel, N. V.; Troiani, A., Sodium glycodeoxycholate and glycocholate mixed aggregates in gas and solution phases. J. Phys. Chem. B 2009,113 (20),7162-7169.
    [65]Esposito, G.; Giglio, E.; Pavel, N. V.; Zanobi, A., Size and shape of sodium deoxycholate micellar aggregates. J. Phys. Chem.1987,91 (2),356-362.
    [66]Funasaki, N.; Fukuba, M.; Kitagawa, T.; Nomura, M.; Ishikawa, S.; Hirota, S.; Neya, S., Two-dimensional NMR study on the structures of micelles of sodium taurocholate. J. Phys. Chem. B 2003,108(1),438-443.
    [67]Giglio, E.; Pavel, N. V, Comment on "two-dimensional NMR study on the structures of micelles of sodium taurocholate". J. Phys. Chem. B 2005,109 (19),9849-9850.
    [68]Fukuba, M.; Kitagawa, T.; Nomura, M.; Ishikawa, S.; Hirota, S.; Neya, S., Reply to the comment on "two-dimensional NMR study on the structures of micelles of sodium taurocholate". J. Phys. Chem. B 2005,109 (19),9851-9852.
    [69]Funasaki, N.; Hada, S.; Neya, S., Concentration dependence of the micelle size of hexaoxyethylene glycol decyl ether as revealed by gel filtration chromatography. J. Phys. Chem. 1990,94(21),8322-8325.
    [70]Small, D. M.; Penkett, S. A.; Chapman, D., Studies on simple and mixed bile salt micelles by nuclear magnetic resonance spectroscopy. Biochimica et Biophysica Acta (BBA)-Lipids andLipid Metabolism 1969,176 (1),178-189.
    [71]Oakenfull, D. G.; Fisher, L. R., The role of hydrogen bonding in the formation of bile salt micelles. J. Phys. Chem.1977,81 (19),1838-1841.
    [72]Zana, R., The role of hydrogen bonding in the formation of bile salt micelles. Comments. J. Phys. Chem.1978,82 (22),2440-2443.
    [73]Oakenfull, D. G.; Fisher, L. R., The role of hydrogen bonding in the formation of bile salt micelles. Reply to comments. J. Phys. Chem.1978,82 (22),2443-2445.
    [74]Fisher, L. R.; Oakenfull, D. G., The role of hydrogen bonding in the formation of bile salt micelles.2. A demonstration of geometric effects on the stabilizing role of hydrogen bonding. J. Phys. Chem.1980,84 (8),936-937.
    [75]Zana, R.; Guveli, D., Fluorescence probing study of the association of bile salts in aqueous solutions. J. Phys. Chem.1985,89 (9),1687-1690.
    [76]Warren, D. B.; Chalmers, D. K.; Hutchison, K.; Dang, W.; Pouton, C. W., Molecular dynamics simulations of spontaneous bile salt aggregation. Colloids Surf., A 2006,280 (1-3), 182-193.
    [77]Partay, L. B.; Jedlovszky, P.; Sega, M., Molecular aggregates in aqueous solutions of bile acid salts. molecular dynamics simulation study. J. Phys. Chem. B 2007,111 (33),9886-9896.
    [78]Partay, L. B.; Sega, M.; Jedlovszky, P., Morphology of bile salt micelles as studied by computer simulation methods. Langmuir 2007,23 (24),12322-12328.
    [79]Partay, L. B.; Sega, M.; Jedlovszky, P., Counterion binding in the aqueous solutions of bile acid salts, as studied by computer simulation methods. Langmuir 2008,24 (19),10729-10736.
    [80]Conte, G.; Di Blasi, R.; Giglio, E.; Parretta, A.; Pavel, N. V, Nuclear magnetic resonance and x-ray studies on micellar aggregates of sodium deoxycholate. J. Phys. Chem.1984,88 (23), 5720-5724.
    [81]Campanelli, A. R.; Candeloro de Sanctis, S.; Chiessi, E.; D'Alagni, M.; Giglio, E.; Scaramuzza, L., Sodium glyco-and taurodeoxycholate:possible helical models for conjugated bile salt micelles. J. Phys. Chem.1989,93 (4),1536-1542.
    [82]Campanelli, A. R.; Candeloro De Sanctis, S.; Giglio, E.; Viorel Pavel, N.; Quagliata, C., From crystal to micelle:a new approach to the micellar structure. J. Inclusion Phenom. Macrocyclic Chem.1989,7 (4),391-400.
    [83]Marques, E. F.; Edlund, H.; La Mesa, C.; Khan, A., Liquid crystals and phase equilibria binary bile salt-water systems. Langmuir 2000,16(11),5178-5186.
    [84]Amenitsch, H.; Edlund, H.; Khan, A.; Marques, E. F.; La Mesa, C., Bile salts form lyotropic liquid crystals. Colloids Surf., A 2003,213(1),79-92.
    [85]Edlund, H.; Khan, A.; La Mesa, C., Formation of a liquid crystalline phase in the water/sodium taurodeoxycholate system. Langmuir 1998,14 (13),3691-3697.
    [86]Li, Y.; Holzwarth, J. F.; Bohne, C., Aggregation dynamics of sodium taurodeoxycholate and sodium deoxycholate. Langmuir 1999,16 (4),2038-2041.
    [87]Terech, P.; Dourdain, S.; Bhat, S.; Maitra, U., Self-assembly of bile steroid analogues: molecules, fibers, and networks. J. Phys. Chem. B 2009,113 (24),8252-8267.
    [88]Babu, P.; Sangeetha, N. M.; Maitra, U., Supramolecular chemistry of bile acid derivatives: formation of gels. In Wiley-VCH Verlag:2006; Vol.241, pp 60-67.
    [89]Subuddhi, U.; Mishra, A. K., Micellization of bile salts in aqueous medium:A fluorescence study. Colloids Surf., B 2007,57(1),102-107.
    [90]Skorka, M.; Asztemborska, M., Micellization of bile salts in a formamide solution:A gas liquid chromatography study. Colloids Surf, A 2009,332 (1),1-8.
    [91]Jover, A.; Meijide, F.; Nunez, E. R.; Tato, J. V., Dynamic rheology of sodium deoxycholate gels. Langmuir 2002,18 (4),987-991.
    [92]Sun, Y.; Yang, Z. L.; Zhang, L.; Zhou, N. F.; Weng, S. F.; Wu, J. G., The interaction of Co2+ ions and sodium deoxycholate micelles. J. Mol. Struct.2003,655 (2),321-330.
    [93]Sun, Y.; Yang, Z. L.; Zhang, L.; Hu, T. D.; Soloway, R. D.; Weng, S. F.; Wu, J. G., The interaction of Cu2+ ions and NaDC micelles. Spectrochim. Acta, Part A 2002,58 (7),1489-1498.
    [94]Haque, M. E.; Das, A. R.; Moulik, S. P., Mixed micelles of sodium deoxycholate and polyoxyethylene sorbitan monooleate (Tween 80). J. Colloid Interface Sci.1999,217(1),1-7.
    [95]Fernandez-Leyes, M. D.; Messina, P. V; Schulz, P. C., Aqueous sodium dehydrocholate-sodium deoxycholate mixtures at low concentration. J. Colloid Interface Sci.2007, 314 (2),659-664.
    [96]Pernandez-Leyes, M. D.; Schulz, P. C.; Messina, P. V, pH and surface tension dependence of mixed sodium deoxycholate-sodium dehydrocholate pre-micellar aggregation in aqueous solution. Colloids Surf., A 2008,329 (1-2),24-30.
    [97]Liu, A. H.; Mao, S. Z.; Liu, M. L.; Du, Y. R., Aggregation behavior of sodium deoxycholate and its interaction with cetyltrimethylammonium bromide in aqueous solution studied by NMR spectroscopy. Colloid. Polym. Sci.2008,286 (14-15),1629-1636.
    [98]Jiang, L. X.; Wang, K.; Deng, M. L.; Wang, Y. L.; Huang, J. B., Bile salt-induced vesicle-to-micelle transition in catanionic surfactant systems:Steric and electrostatic interactions. Langmuir 2008,24 (9),4600-4606.
    [99]Liu, C.; Hao, J., Influence of cholic acid on phase transition, rheological behavior, and microstructures of salt-free catanionic surfactant mixtures. J. Phys. Chem. B 2010,114 (13), 4477.4484.
    [100]Liu, C.; Hao, J.; Wu, Z., Phase behavior and rheological properties of salt-free catanionic surfactant mixtures in the presence of bile acids. J. Phys. Chem. B 2010,114 (30), 9795-9804.
    [101]Liu, C.; Hao, J., Shear-induced structural transition and recovery in the salt-free catanionic surfactant systems containing deoxycholic acid. J. Phys. Chem. B 2011,115 (5), 980-989.
    [102]Tung, S.-H.; Huang, Y.-E.; Raghavan, S. R., Self-assembled organogels obtained by adding minute concentrations of a bile salt to AOT reverse micelles. Soft Matter 2008,4 (5), 1086-1093.
    [103]Yong, Z.; Yingjie, D.; Ming, L.; Craig, D. Q. M.; Zhengqiang, L., A spectroscopic investigation into the interaction between bile salts and insulin in alkaline aqueous solution. J. Colloid Interface Sci.2009,337 (2),322-331.
    [104]Selvam, S.; Andrews, M. E.; Mishra, A. K., A photophysical study on the role of bile salt hydrophobicity in solubilizing amphotericin B aggregates. JPharm Sci 2009,98 (11),4153-60.
    [105]Hjelm, R. P., Jnr; Thiyagarajan, P.; Alkan, H., A small-angle neutron scattering study of the effects of dilution on particle morphology in mixtures of glycocholate and lecithin. J. Appl. Crystallogr.1988,21 (6),858-863.
    [106]Zulauf, M.; Lindner, P.; Terech, P.; Hjelm, R.; Thiyagaragan, P.; Sivia, D.; Alkan, H.; Schwahn, D., Small-angle neutron scattering from aqueous mixed colloids of lecithin and bile salt. In Trends in Colloid and Interface Science IV, Springer Berlin/Heidelberg:1990; Vol.81, pp 225-231.
    [107]Hjelm, R. P.; Thiyagarajan, P.; Alkan-Onyuksel, H., Organization of phosphatidylcholine and bile salt in rodlike mixed micelles. J. Phys. Chem.1992,96 (21),8653-8661.
    [108]Long, M. A.; Kaler, E. W.; Lee, S. P., Structural characterization of the micelle-vesicle transition in lecithin-bile salt solutions. Biophys. J.1994,67 (4),1733-1742.
    [109]Long, M. A.; Kaler, E. W.; Lee, S. P.; Wignall, G. D., Characterization of lecithin-taurodeoxycholate mixed micelles using small-angle neutron scattering and static and dynamic light scattering. J. Phys. Chem.1994,98 (16),4402-4410.
    [110]Egelhaaf, S. U.; Schurtenberger, P., Shape transformations in the lecithin-bile salt system: from cylinders to vesicles. J. Phys. Chem.1994,98 (34),8560-8573.
    [111]Leng, J.; et al., Kinetic pathway of spontaneous vesicle formation. EPL (Europhysics Letters) 2002,59 (2),311-317.
    [112]Leng, J.; Egelhaaf, S. U.; Cates, M. E., Kinetics of the micelle-to-vesicle transition: aqueous lecithin-bile salt mixtures. Biophys. J.2003,85 (3),1624-1646.
    [113]Ollivon, M.; Lesieur, S.; Grabielle-Madelmont, C.; Paternostre, M., Vesicle reconstitution from lipid-detergent mixed micelles. BBA-Biomembranes 2000,1508 (1-2),34-50.
    [114]Tung, S. H.; Huang, Y. E.; Raghavan, S. R., A new reverse wormlike micellar system: Mixtures of bile salt and lecithin in organic liquids. J. Am. Chem. Soc.2006,128 (17),5751-5756.
    [115]Saitoh, T.; Fukuda, T.; Tani, H.; Kamidate, T.; Watanabe, H., Equilibrium Study on Interactions between Proteins and Bile-Salt Micelles by Micellar Electrokinetic Chromatography. Anal.Sci.1996,12 (4),569-573.
    [116]Smidkova, M.; Spundova, M.; Marecek, Z.; Entlicher, G., Effect of drugs on cholesterol crystallization in an artificial bile model and relation of this effect to drug binding to albumin. Fund. Clin. Pharmacol.2003,17 (3),331-339.
    [117]Orioni, B.; Roversi, M.; La Mesa, C.; Asaro, F.; Pellizer, G.; D'Errico, G., Polymorphic behavior in protein-surfactant mixtures:The water-bovine serum albumin-sodium taurodeoxycholate system. J. Phys. Chem. B 2006,110 (24),12129-12140.
    [118]De, S.; Das, S.; Girigoswami, A., Spectroscopic probing of bile salt-albumin interaction. Colloids Surf., B 2007,54 (1),74-81.
    [119]Palecz, B., The enthalpies of interactions of some L-a-amino acids with urea molecule in aqueous solutions at 298.15K. Amino Acids 2004,27 (3),299-303.
    [120]Rich, A.; Blow, D. M., Formation of a helical steroid complex. Nature 1958,182, 423-426.
    [121]Yu, L.; Lu, T.; Luan, Y. X.; Liu, J.; Xu, G. Y., Studies on the effects of amino acids on micellization of CTAB via surface tension measurements. Colloids Surf., A 2005,257-258, 375-379.
    [122]Miller, R.; Wustneck, R.; Kragel, J.; Kretzschmar, G, Dilational and shear rheology of adsorption layers at liquid interfaces. Colloids Surf., A 1996,111 (1-2),75-118.
    [1]Ortiz, D. F.; Moseley, J.; Calderon, G.; Swift, A. L.; Li, S. H.; Arias, I. M., Identification of HAX-1 as a protein that binds bile salt export protein and regulates its abundance in the apical membrane of Madin-Darby canine kidney cells. J. Biol. Chem.2004,279 (31),32761-32770.
    [2]Reschly, E. J.; Ai, N.; Ekins, S.; Welsh, W. J.; Hagey, L. R.; Hofmann, A. F.; Krasowski, M. D., Evolution of the bile salt nuclear receptor FXR in vertebrates. J. Lipid Res.2008,49 (7), 1577-1587.
    [3]Hofmann, A. F.; Hagey, L. R., Bile acids:Chemistry, pathochemistry, biology, pathobiology, and therapeutics. Cell. Mol. Life Sci.2008,65 (16),2461-2483.
    [4]Sugihara, G.; Yamakawa, K.; Murata, Y.; Tanaka, M., Effects of pH, pNa, and temperature on micelle formation and solubilization of cholesterol in aqueous solutions of bile salts. J. Phys. Chem.2002,86 (14),2784-2788.
    [5]Chen, Y. P.; Lu, Y.; Chen, J. M.; Lai, J.; Sun, J.; Hu, P. Q.; Wu, W., Enhanced bioavailability of the poorly water-soluble drug fenofibrate by using liposomes containing a bile salt. Int. J. Pharm.2009,376 (1-2),153-160.
    [6]Ranganathan, R.; Tcacenco, C. M.; Rosseto, R.; Hajdu, J., Characterization of the kinetics of phospholipase C activity toward mixed micelles of sodium deoxycholate and dimyristoylphosphatidylcholine. Biophys. Chem.2006,122 (2),79-89.
    [7]Matsuoka, K.; Nakazawa, T.; Nakamura, A.; Honda, C.; Endo, K.; Tsukada, M., Study of thermodynamic parameters for solubilization of plant sterol and stanol in bile salt micelles. Chem. Phys. Lipids 2008,154 (2),87-93.
    [8]Ninomiya, R.; Matsuoka, K.; Moroi, Y., Micelle formation of sodium chenodeoxycholate and solubilization into the micelles:comparison with other unconjugated bile salts. Biochim. Biophys. Acta, Mol. Cell. Biol. Lipids 2003,1634 (3),116-125.
    [9]Singh, J.; Unlu, Z.; Ranganathan, R.; Griffiths, P., Aggregate properties of sodium deoxycholate and dimyristoylphosphatidylcholine mixed micelles. J. Phys. Chem. B 2008,112 (13),3997-4008.
    [10]Messina, P. V.; Fernandez-Leyes, M. D.; Prieto, G.; Ruso, J. M.; Sarmiento, F.; Schulz, P. C., Spread mixed monolayers of deoxycholic and dehydrocholic acids at the air-water interface, effect of subphase pH. Characterization by axisymmetric drop shape analysis. Biophys. Chem.2008,132 (1),39-46.
    [11]Saitoh, T.; Fukuda, T.; Tani, H.; Kamidate, T.; Watanabe, H., Equilibrium study on interactions between proteins and bile-salt micelles by micellar electrokinetic chromatography. Anal. Sci.1996,12 (4),569-573.
    [12]Smidkova, M.; Spundova, M.; Marecek, Z.; Entlicher, G., Effect of drugs on cholesterol crystallization in an artificial bile model and relation of this effect to drug binding to albumin. Fund. Clin. Pharmacol.2003,17 (3),331-339.
    [13]Orioni, B.; Roversi, M.; La Mesa, C.; Asaro, F.; Pellizer, G.; D'Errico, G., Polymorphic behavior in protein-surfactant mixtures:The water-bovine serum albumin-sodium taurodeoxycholate system. J. Phys. Chem. B 2006,110 (24),12129-12140.
    [14]De, S.; Das, S.; Girigoswami, A., Spectroscopic probing of bile salt-albumin interaction. Colloids Surf., B 2007,54 (1),74-81.
    [15]Palecz, B., The enthalpies of interactions of some L-a-amino acids with urea molecule in aqueous solutions at 298.15K. Amino Acids 2004,27 (3),299-303.
    [16]Yu, L.; Lu, T.; Luan, Y. X.; Liu, J.; Xu, G. Y., Studies on the effects of amino acids on micellization of CTAB via surface tension measurements. Colloids Surf., A 2005,257-258, 375-379.
    [17]Miller, R.; Wiistneck, R.; Kragel, J.; Kretzschmar, G, Dilational and shear rheology of adsorption layers at liquid interfaces. Colloids Surf., A 1996,111 (1-2),75-118.
    [18]Coello, A.; Meijide, F.; Nunez, E. R.; Tato, J. V., Aggregation behavior of bile salts in aqueous solution. J. Pharm. Sci.1996,85 (1),9-15.
    [19]Gong, H. J.; Xu, G. Y.; Ding, H.; Shi, X. F.; Tan, Y. B., Aggregation behavior of block polyethers with branched structure at air/water surface. Eur. Polym. J.2009,45 (9),2540-2548.
    [20]Sun, H., COMPASS:an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J. Phys. Chem. B 1998,102,7338-7364.
    [21]Tarek, M.; Tobias, D. J.; Klein, M. L., Molecular dynamics simulation of tetradecyltrimethylammonium bromide monolayers at the air/water interface. J. Phys. Chem.1995, 99(5),1393-1402.
    [22]Zhao, T. T; Xu, G. Y.; Yuan, S. L.; Chen, Y. J.; Yan, H., Molecular dynamics study of alkyl benzene sulfonate at air/water interface:effect of inorganic Salts. J. Phys. Chem. B 2010,114 (15), 5025-5033.
    [23]Yuan, S. L.; Chen, Y. J.; Xu, G. Y., Molecular dynamics studies on octadecylammonium chloride at the air/liquid interface. Colloids Surf., A 2006,280 (1-3),108-115.
    [24]Bandyopadhyay, S.; Chanda, J., Monolayer of monododecyl diethylenc glycol surfactants adsorbed at the air/water interface:a molecular dynamics study. Langmuir 2003,19 (24), 10443-10448.
    [25]Dominguez, H.; Rivera, M., Mixtures of sodium dodecyl sulfate/dodecanol at the air/water interface by computer simulations. Langmuir 2005,21 (16),7257-7262.
    [26]Shi, L.; Tummala, N. R.; Striolo, A., C12E6 and SDS surfactants simulated at the vacuum/water interface. Langmuir 2010,26 (8),5462-5474.
    [27]Hoover, W. G., Canonical dynamics:equilibrium phase-space distributions. Phys. Rev. A 1985, 31,1695-1697.
    [28]Yuan, S. L.; Ma, L. X.; Zhang, X. Q.; Zheng, L. Q., Molecular dynamics studies on monolayer of cetyltrimethylammonium bromide surfactant formed at the air/water interface. Colloids Surf., A 2006,289,1-9.
    [29]Xin, X.; Xu, G. Y.; Wu, D.; Gong, H. J.; Zhang, H. X.; Wang, Y J., Effects of sodium halide on the interaction between polyvinylpyrrolidone and sodium oleate:Surface tension and oscillating barrier studies. Colloids Surf., A 2008,322 (1-3),54-60.
    [30]Fainerman, V. B.; Lylyk, S. V.; Aksenenko, E. V.; Petkov, J. T.; Yorke, J.; Miller, R., Surface tension isotherms, adsorption dynamics and dilational visco-elasticity of sodium dodecyl sulphate solutions. Colloids Surf., A 2010,354 (1-3),8-15.
    [31]Partay, L. B.; Jedlovszky, P.; Sega, M., Molecular aggregates in aqueous solutions of bile acid salts. Molecular dynamics simulation study. J. Phys. Chem. B 2007,111 (33),9886-9896.
    [32]Partay, L. B.; Sega, M.; Jedlovszky, P., Morphology of bile salt micelles as studied by computer simulation methods. Langmuir 2007,23 (24),12322-12328.
    [33]Chanda, J.; Chakraborty, S.; Bandyopadhyay, S., Monolayer of aerosol-OT surfactants adsorbed at the air/water interface:An atomistic computer simulation study. J. Phys. Chem. B 2005,109(1),471-479.
    [34]Swanson-Vethamuthu, M.; Almgren, M.; Hansson, P.; Zhao, J., Surface tension studies of cetyltrimethylammonium bromide-bile aalt association. Langmuir 1996,12 (9),2186-2189.
    [35]Tiss, A.; Ransac, S.; Lengsfeld, H.; Hadvary, P.; Cagna, A.; Verger, R., Surface behaviour of bile salts and tetrahydrolipstatin at air/water and oil/water interfaces. Chem. Phys. Lipids 2001, 111 (1),73-85.
    [36]Skorka, M.; Asztemborska, M., Micellization of bile salts in a formamide solution:A gas liquid chromatography study. Colloids Surf., A 2009,332 (1),1-8.
    [37]Chanda, J.; Bandyopadhyay, S., Molecular dynamics study of surfactant monolayers adsorbed at the oil/water and air/water interfaces. J. Phys. Chem. B 2006,110 (46),23482-23488.
    [38]Rosen, M. J., Surfactants and Interfacial Phenomena 3rd ed.; Wiley:New York,2004; p 83-85.
    [39]Garidel, P.; Hildebrand, A.; Neubert, R.; Blume, A., Thermodynamic characterization of bile salt aggregation as a function of temperature and ionic strength using isothermal titration calorimetry. Langmuir 2000,16 (12),5267-5275.
    [40]Myers, D., Surfactant Science and Technology.3rd ed.; Wiley:New York,2006; p 144-145.
    [41]Kyte, J.; Doolittle, R. F., A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 1982,157 (1),105-132.
    [42]Maeda, Y.; Kitano, H., Effect of hydrophobicity of amino scids on the structure of water. J. Phys. Chem. B 1997,101 (35),7022-7026.
    [43]Zhang, L.; Somasundaran, P.; Maltesh, C., Electrolyte effects on the surface tension and micellization of n-dodecyl β-'d-maltoside solutions. Langmuir 1996,12 (10),2371-2373.
    [44]Aksenenko, E. V.; Kovalchuk, V. I.; Fainerman, V. B.; Miller, R., Surface dilational rheology of mixed adsorption layers at liquid interfaces. Adv. Colloid Interface Sci.2006,122 (1-3),57-66.
    [45]Kovalchuk, V. I.; Miller, R.; Fainerman, V. B.; Loglio, G., Dilational rheology of adsorbed surfactant layers-role of the intrinsic two-dimensional compressibility. Adv. Colloid Interface Sci. 2005,114,303-312.
    [46]Zhu, Y. Y.; Xu, G. Y.; Xin, X.; Zhang, H. X.; Shi, X. F., Surface tension and dilational viscoelasticity of water in the presence of surfactants tyloxapol and triton X-100 with cetyl trimethylammonium bromide at 25 degrees C. J. Chem. Eng. Data 2009,54 (3),989-995.
    [47]Li, Y M.; Xu, G. Y.; Xin, X.; Cao, X. R.; Wu, D., Dilational surface viscoelasticity of hydroxypropyl methyl cellulose and C(n)TAB at air-water surface. Carbohydr. Polym.2008,72 (2),211-221.
    [48]Ivanov, I. B.; Danov, K. D.; Ananthapadmanabhan, K. P.; Lips, A., Interfacial rheology of adsorbed layers with surface reaction:On the origin of the dilatational surface viscosity. Adv. Colloid Interface Sci.2005,114,61-92.
    [49]Ravera, F.; Ferrari, M.; Santini, E.; Liggier, L., Influence of surface processes on the dilational visco-elasticity of surfactant solutions. Adv. Colloid Interface Sci.2005,117 (1-3), 75-100.
    [50]Stubenrauch, C.; Fainerman, V. B.; Aksenenko, E. V.; Miller, R., Adsorption behavior and dilational rheology of the cationic alkyl trimethylammonium bromides at the water/air interface. J. Phys. Chem. B 2005,109 (4),1505-1509.
    [51]Wu, D.; Xu, G. Y.; Feng, Y. J.; Li, Y. M., Aggregation behaviors of gelatin with cationic gemini surfactant at air/water interface. Int. J. Biol. Macromol.2007,40 (4),345-350.
    [52]Zhang, L.; Wang, X. C.; Gong, Q. T.; Luo, L.; Zhao, S.; Yu, J. Y., Interfacial dilational properties of tri-substituted alkyl benzene sulfonates at air/water and decane/water interfaces. J. Colloid Interface Sci.2008,327 (2),451-458.
    [53]Stubenrauch, C.; Miller, R., Stability of foam films and surface rheology:An oscillating bubble study at low frequencies. J. Phys. Chem. B 2004,108 (20),6412-6421.
    [1]Madenci, D.; Egelhaaf, S. U., Self-assembly in aqueous bile salt solutions. Curr. Opin. Colloid Interface Sci.2010,15 (1-2),109-115.
    [2]Carey, M. C.; Small, D. M., Micellar properties of dihydroxy and trihydroxy bile salts:effects of counterion and temperature. J. Colloid Interface Sci.1969,31 (3),382-396.
    [3]Small, D. M.; Penkett, S. A.; Chapman, D., Studies on simple and mixed bile salt micelles by nuclear magnetic resonance spectroscopy. Biochim. Biophys. Acta 1969,176 (1),178-189.
    [4]Kawamura, H.; Murata, Y.; Yamaguchi, T.; Igimi, H.; Tanaka, M.; Sugihara, G.; Kratohvil, J. P., Spin-label studies of bile salt micelles. J. Phys. Chem.2002,93 (8),3321-3326.
    [5]D'Alagni, M.; D'Archivio, A. A.; Galantini, L.; Giglio, E., Structural Study of the Micellar Aggregates of Sodium Chenodeoxycholate and Sodium Deoxycholate. Langmuir 1997,13 (22), 5811-5815.
    [6]Campanelli, A. R.; Candeloro De Sanctis, S.; Giglio, E.; Viorel Pavel, N.; Quagliata, C., From crystal to micelle:A new approach to the micellar structure. J. Inclusion Phenom. Macrocyclic Chem.1989,7 (4),391-400.
    [7]Funasaki, N.; Nomura, M.; Ishikawa, S.; Neya, S., Hydrophobic Self-Association of Sodium Taurochenodeoxycholate and Tauroursodeoxycholate. J. Phys. Chem. B 2000,104 (32), 7745-7751.
    [8]Subuddhi, U.; Mishra, A. K., Micellization of bile salts in aqueous medium:A fluorescence study. Colloids Surf, B 2007,57 (1),102-107.
    [9]Warren, D. B.; Chalmers, D. K.; Hutchison, K.; Dang, W. B.; Pouton, C. W., Molecular dynamics simulations of spontaneous bile salt aggregation. Colloids Surf., A 2006,280 (1-3), 182-193.
    [10]Moroi, Y., Micelles:theoretical and applied aspects. Plenum Press:New York,1992; Vol.12.
    [11]Zhao, L.; Yan, Y.; Huang, J. B., Application of Fluorescent Probe Technology in Self-Assembly Systems of Amphiphile Aqueous Solutions. Acta Phys. Chim. Sin.2010,26 (4), 840-849.
    [12]Coello, A.; Meijide, F.; Nunez, E. R.; Tato, J. V., Aggregation behavior of bile salts in aqueous solution. J. Pharm. Sci.1996,85 (1),9-15.
    [13]Hierrezuelo, J. M.; Aguiar, J.; Ruiz, C. C., Stability, Interaction, Size, and Microenvironmental Properties of Mixed Micelles of Decanoyl-N-methylglucamide and Sodium Dodecyl Sulfate. Langmuir 2004,20 (24),10419-10426.
    [14]Maeda, Y.; Kitano, H., Effect of Hydrophobicity of Amino Acids on the Structure of Water. J. Phys. Chem. B 1997,101 (35),7022-7026.
    [15]Tsukida, N.; Maeda, Y.; Kitano, H., Raman spectroscopic study on water in aqueous gelatin gels and sols. Macromol. Chem. Phys.1996,197 (5),1681-1690.
    [16]Maeda, Y.; Tsukida, N.; Kitano, H.; Terada, T.; Yamanaka, J., Raman spectroscopic study of water in aqueous polymer solutions. J. Phys. Chem.1993,97 (51),13903-13906.
    [17]Nie, J.; Wu, G.; Luo, J.; Zhang, L., A concise course on biochemistry. Press of higher Education:Beijing,2002; p 68.
    [18]Henderson, L. J., Concerning the relationship between the strength of acids and their capacity to preserve neutrality. Am JPhysiol 1908,21 (4),173-179.
    [19]Kyte, J.; Doolittle, R. F., A simple method for displaying the hydropathic character of a protein. J. Mol. Biol.1982,157 (1),105-132.
    [20]Matsuoka, K.; Moroi, Y., Micelle formation of sodium deoxycholate and sodium ursodeoxycholate. Biochim. Biophys. Acta 2002,1580 (2-3),189-199.
    [21]Garidel, P.; Hildebrand, A.; Neubert, R.; Blume, A., Thermodynamic Characterization of Bile Salt Aggregation as a Function of Temperature and Ionic Strength Using Isothermal Titration Calorimetry. Langmuir 2000,16 (12),5267-5275.
    [22]Myers, D., Surfactant Science and Technology.3rd ed.; Wiley:New York,2006; p 144-145.
    [23]Funasaki, N.; Nomura, M.; Ishikawa, S.; Neya, S., Hydrophobic Self-Association of Sodium Taurochenodeoxycholate and Tauroursodeoxycholate. J. Phys. Chem. B 2000,104 (32), 7745-7751.
    [24]Matsuoka, K.; Suzuki, M.; Honda, C.; Endo, K.; Moroi, Y., Micellization of conjugated chenodeoxy- and ursodeoxycholates and solubilization of cholesterol into their micelles: comparison with other four conjugated bile salts species. Chem. Phys. Lipids 2006,139 (1),1-10.
    [25]Ninomiya, R.; Matsuoka, K.; Moroi, Y., Micelle formation of sodium chenodeoxycholate and solubilization into the micelles:comparison with other unconjugated bile salts. BBA, Mol. Cell. Biol. Lipids 2003,1634 (3),116-125.
    [26]Ao, M. Q.; Huang, P. P.; Xu, G. Y.; Yang, X. D.; Wang, Y J., Aggregation and thermodynamic properties of ionic liquid-type gemini imidazolium surfactants with different spacer length. Colloid. Polym. Sci.2009,287 (4),395-402.
    [27]Yunomiya, Y.; Kunitake, T.; Tanaka, T.; Sugihara, G.; Nakashima, T., Micellization of mixed system of bile salt and nonionic surfactant:Sodium deoxycholate and decanoyl-N-methylglucamide. J. Colloid Interface Sci.1998,208 (1),1-5.
    [28]Turro, N. J.; Yekta, A., Luminescent probes for detergent solutions. A simple procedure for determination of the mean aggregation number of micelles. J. Am. Chem. Soc.1978,100 (18), 5951-5952.
    [29]Liu, A. H.; Mao, S. Z.; Liu, M. L.; Du, Y R., Aggregation behavior of sodium deoxycholate and its interaction with cetyltrimethylammonium bromide in aqueous solution studied by NMR spectroscopy. Colloid. Polym. Sci.2008,286 (14-15),1629-1636.
    [30]Kratohvil, J. P.; Hsu, W. P.; Kwok, D. I., How large are the micelles of dihydroxy bile salts at the critical micellization concentrations in aqueous electrolyte solutions? Results for sodium taurodeoxycholate and sodium deoxycholate. Langmuir 1986,2 (2),256-258.
    [1]Verreck, G.; Chun, I.; Peeters, J.; Rosenblatt, J.; Brewster, M. E., Preparation and characterization of nanofibers containing amorphous drug dispersions generated by electrostatic spinning. Pharm. Res.2003,20 (5),810-817.
    [2]Jansook, P.; Moya-Ortega, M.; Loftsson, T., Effect of self-aggregation of y-cyclodextrin on drug solubilization. J. Inclusion Phenom. Macrocyclic Chem.2010,68 (1),229-236.
    [3]Moneghini, M.; Kikic, I.; Voinovich, D.; Perissutti, B.; Filipovic-Grcic, J., Processing of carbamazepine-PEG 4000 solid dispersions with supercritical carbon dioxide:preparation, characterisation, and in vitro dissolution. Int. J. Pharm.2001,222 (1),129-138.
    [4]Sugimoto, M.; Okagaki, T.; Narisawa, S.; Koida, Y.; Nakajima, K., Improvement of dissolution characteristics and bioavailability of poorly water-soluble drugs by novel cogrinding method using water-soluble polymer. Int. J. Pharm.1998,160 (1),11-19.
    [5]Jung, J.-Y.; Yoo, S. D.; Lee, S.-H.; Kim, K.-H.; Yoon, D.-S.; Lee, K.-H., Enhanced solubility and dissolution rate of itraconazole by a solid dispersion technique. Int. J. Pharm.1999,187 (2), 209-218.
    [6]Shin, S.-C.; Oh, I.-J.; Lee, Y.-B.; Choi, H.-K.; Choi, J.-S., Enhanced dissolution of furosemide by coprecipitating or cogrinding with crospovidone. Int. J. Pharm.1998,175 (1), 17-24.
    [7]Hammad, M. A.; Muller, B. W., Increasing drug solubility by means of bile salt-phosphatidylcholine-based mixed micelles Eur. J. Pharm. Biopharm.1998,46 (3),361-367.
    [8]Dangi, J. S.; Vyas, S. P.; Dixit, V. K., The role of mixed micelles in drug delivery. I. Solubilization. Drug Dev. Ind. Pharm.1998,24 (7),681-684.
    [9]Wiedmann, T. S.; Kamel, L., Examination of the solubilization of drugs by bile salt micelles. In Wiley Subscription Services, Inc., A Wiley Company:2002;Vol.91, pp 1743-1764.
    [10]Chen, Y.; Lu, Y.; Chen, J.; Lai, J.; Sun, J.; Hu, F.; Wu, W., Enhanced bioavailability of the poorly water-soluble drug fenofibrate by using liposomes containing a bile salt. Int. J. Pharm. 2009,376(1-2),153-160.
    [11]Yu, J.-n.; Zhu, Y.; Wang, L.; Peng, M.; Tong, S.-s.; Cao, X.; Qiu, H.; Xu, X.-m., Enhancement of oral bioavailability of the poorly water-soluble drug silybin by sodium cholate/phospholipid-mixed micelles. Acta Pharmacol. Sin.2010,31 (6),759-764.
    [12]Partay, L. B.; Sega, M.; Jedlovszky, P., Morphology of bile salt micelles as studied by computer simulation methods. Langmuir 2007,23 (24),12322-12328.
    [13]Bhattacharjee, J.; Verma, G.; Aswal, V. K.; Date, A. A.; Nagarsenker, M. S.; Hassan, P. A., Tween 80-sodium deoxycholate mixed micelles:structural characterization and application in doxorubicin delivery. J. Phys. Chem. B 2010,114 (49),16414-16421.
    [14]Selvam, S.; Andrews, M. E.; Mishra, A. K., A photophysical study on the role of bile salt hydrophobicity in solubilizing amphotericin B aggregates. J Pharm Sci 2009,98 (11),4153-60.
    [15]Nakamura, S.; Kobayashi, L.; Tanaka, R.; Isoda-Yamashita, T.; Motomura, K.; Moroi, Y, Solubilization of n-alkylbenzenes into decanoyl-N-methylglucamide (Mega-10) solution. Langmuir 2008,24 (1),15-18.
    [16]Bai, T. C.; Yan, G. B.; Hu, J., Solubility of silybin in aqueous dextran solutions.J. Chem. Eng. Data 2005,50 (5),1596-1601.
    [17]Attwood, D.; Florence, A. T., Surfactant systems:Their chemistry, pharmacy and biology. Chapman & Hall:London,1983; Vol.74,1140-1141.
    [18]Thangamani, S.; Shreve, G. S., Effect of anionic biosurfactant on hexadecane partitioning in multiphase systems. Environ. Sci. Technol.1994,28 (12),1993-2000.
    [19]Kanga, S. A.; Bonner, J. S.; Page, C. A.; Mills, M. A.; Autenrieth, R. L., Solubilization of naphthalene and methyl-substituted naphthalenes from crude oil using biosurfactants. Environ. Sci. Technol.1997,31 (2),556-561.
    [20]Hierrezuelo, J. M.; Aguiar, J.; Ruiz, C. C., Stability, Interaction, Size, and Microenvironmental Properties of Mixed Micelles of Decanoyl-N-methylglucamide and Sodium Dodecyl Sulfate. Langmuir 2004,20 (24),10419-10426.
    [21]Coello, A.; Meijide, F.; Nunez, E. R.; Tato, J. V., Aggregation behavior of bile salts in aqueous solution. J. Pharm. Sci.1996,85 (1),9-15.
    [22]Morisue, T.; Moroi, Y.; Shibata, O., Solubilization of benzene, naphthalene, anthracene, and pyrene in dodecylammonium trifluoroacetate micelles. J. Phys. Chem.1994,98 (49), 12995-13000.
    [23]Take'uchi, M.; Moroi, Y., Solubilization of n-alkylbenzenes into 1-dodecanesulfonic acid micelles. Langmuir 1995,11 (12),4719-4723.
    [24]Moroi, Y, Micelles:theoretical and applied aspects. Plenum:New York,1992; Vol.9,35-40.
    [25]Acree, W. E., Thermodynamic properties of nonelectrolyte solutions. Academic Press Inc.: Oriando,1984; 308-310.
    [26]Reid, R. C.; Prausnitz, J. M.; Poling, B. E., The properties of gases and liquids.4th ed.; McGraw-Hill Book Company:New York,1987.
    [27]Bai, T.-C.; Yan, G.-B.; Hu, J.; Zhang, H.-L.; Huang, C.-G., Solubility of silybin in aqueous poly(ethylene glycol) solution. Int. J. Pharm.2006,308 (1-2),100-106.
    [28]Zhang, H. L.; Bai, T. C.; Yan, G. B.; Hu, J., Solubility of silybin in aqueous poly(vinylpyrrolidone) solution. Fluid Phase Equilib.2005,238 (2),186-192.
    [29]Moroi, Y.; Mitsunobu, K.; Morisue, T.; Kadobayashi, Y.;Sakai, M., Solubilization of benzene, naphthalene, anthracene, and pyrene in 1-dodecanesulfonic acid micelle. J. Phys. Chem.1995,99 (8),2372-2376.
    [1]Terech, P.; Weiss, R. G, Low molecular mass gelators of organic liquids and the properties of their gels. Chem. Rev.1997,97 (8),3133-3160.
    [2]Lee, K. Y.; Mooney, D. J., Hydrogels for tissue engineering. Chem. Rev.2001,101 (7), 1869-1880.
    [3]Xing, B.; Yu, C.-W.; Chow, K.-H.; Ho, P.-L.; Fu, D.; Xu, B., Hydrophobic interaction and hydrogen bonding cooperatively confer a vancomycin hydrogel:A potential candidate for biomaterials.J. Am. Chem. Soc.2002,124 (50),14846-14847.
    [4]de Loos, M.; Feringa, B. L.; van Esch, J. H., Design and application of self-assembled low molecular weight hydrogels. Eur. J. Org. Chem.2005,2005 (17),3615-3631.
    [5]Yang, Z.; Liang, G.; Xu, B., Enzymatic hydrogelation of small molecules. Acc. Chem. Res. 2008,41 (2),315-326.
    [6]Lu, T.; Huang, J.; Li, Z.; Jia, S.; Fu, H., Effect of hydrotropic salt on the assembly transitions and rheological responses of cationic gemini surfactant solutions. J. Phys. Chem. B 2008,112 (10), 2909-2914.
    [7]Liu, J.; He, P.; Yan, J.; Fang, X.; Peng, J.; Liu, K.; Fang, Y, An organometallic super-gelator with multiple-stimulus responsive properties. Adv. Mater.2008,20 (13),2508-2511.
    [8]Koumura, N.; Kudo, M.; Tamaoki, N., Photocontrolled gel-to-sol-to-gel phase transitioning of meta-substituted azobenzene bisurethanes through the breaking and reforming of hydrogen bonds. Langmuir 2004,20 (23),9897-9900.
    [9]Estroff, L. A.; Hamilton, A. D., Water Gelation by Small Organic Molecules. Chem. Rev. 2004,104(3),1201-1218.
    [10]Lin, Y.; Qiao, Y.; Yan, Y.; Huang, J., Thermo-responsive viscoelastic wormlike micelle to elastic hydrogel transition in dual-component systems. Soft Matter 2009,5 (16),3047-3053.
    [11]Matsumoto, S.; Yamaguchi, S.; Ueno, S.; Komatsu, H.; Ikeda, M.; Ishizuka, K.; Iko, Y.; Tabata, K. V.; Aoki, H.; Ito, S.; Noji, H.; Hamachi, I., Photo gel-sol/sol-gel transition and its patterning of a supramolecular hydrogel as stimuli-responsive biomaterials. Chemistry-A European Journal 2008,14 (13),3977-3986.
    [12]van Esch, J. H.; Feringa, B. L., New functional materials based on self-assembling organogels:from serendipity towards design. Angew. Chem. Int. Ed.2000,39 (13),2263-2266.
    [13]Jover, A.; Meijide, F.; Nunez, E. R.; Tato, J. V., Dynamic rheology of sodium deoxycholate gels. Langmuir 2002,18 (4),987-991.
    [14]Sangeetha, N. M.; Balasubramanian, R.; Maitra, U.; Ghosh, S.; Raju, A. R., Novel cationic and neutral analogues of bile acids:Synthesis and preliminary study of their aggregation properties. Langmuir 2002,18 (19),7154-7157.
    [15]Bhat, S.; Maitra, U., Low molecular mass cationic gelators derived from deoxycholic acid: remarkable gelation of aqueous solvents. Tetrahedron 2007,63 (31),7309-7320.
    [16]Sangeetha, N. M.; Bhat, S.; Choudhury, A. R.; Maitra, U.; Terech, P., Properties of hydrogels derived from cationic analogues of bile acid:remarkably distinct flowing characteristics. J. Phys. Chem. B 2004,108 (41),16056-16063.
    [17]Terech, P.; Dourdain, S.; Bhat, S.; Maitra, U., Self-assembly of bile steroid analogues: molecules, fibers, and networks. J. Phys. Chem. B 2009,113 (24),8252-8267.
    [18]Kobayashi, M.; Nakaoki, T.; Ishihara, N., Molecular conformation in glasses and gels of syndiotactic and isotactic polystyrenes. Macromolecules 1990,23 (1),78-83.
    [19]Cabane, B.; Duplessix, R.; Zemb, T., High resolution neutron scattering on ionic surfactant micelles:SDS in water. J. Phys. France 1985,46 (12),2161-2178.
    [20]Chandrasekaran, R.; Puigjaner, L. C.; Joyce, K. L.; Arnott, S., Cation interactions in gellan: An x-ray study of the potassium salt. Carbohydr. Res.1988,181,23-40.
    [21]Terao, T.; Maeda, S.; Saika, A., High-resolution solid-state carbon-13 NMR of poly(vinyl alcohol):enhancement of tacticity splitting by intramolecular hydrogen bonds. Macromolecules 1983,16(9),1535-1538.
    [22]Zhang, Z.-X.; Liu, K. L.; Li, J., Self-assembly and micellization of a dual thermoresponsive supramolecular pseudo-block copolymer. Macromolecules 2010,44 (5),1182-1193.
    [23]Hernandez, R.; Rusa, M.; Rusa, C. C.; Lopez, D.; Mijangos, C.; Tonelli, A. E., Controlling PVA hydrogels with beta-cyclodextrin. Macromolecules 2004,37 (25),9620-9625.
    [24]Kunitake, T.; Okahata, Y.; Shimomura, M.; Yasunami, S.; Takarabe, K., Formation of stable bilayer assemblies in water from single-chain amphiphiles. Relationship between the amphiphile structure and the aggregate morphology. J. Am. Chem. Soc.1981,103 (18),5401-5413.
    [25]Franceschi, S.; de Viguerie, N.; Riviere, M.; Lattes, A., Synthesis and aggregation of two-headed surfactants bearing amino acid moieties. New J. Chem.1999,23 (4),447-452.
    [26]Bhattacharya, S.; Acharya, S. N. G., Pronounced hydrogel formation by the self-assembled aggregates of N-alkyl disaccharide amphiphiles. Chem. Mater.1999,11 (12),3504-3511.
    [27]Menger, F. M.; Caran, K. L., Anatomy of a gel. Amino acid derivatives that rigidify water at submillimolar concentrations. J. Am. Chem. Soc.2000,122 (47),11679-11691.
    [28]Danilatos, G. D.; Peter, W. H., Foundations of environmental scanning electron microscopy. In Advances in Electronics and Electron Physics, Academic Press:1988; Vol. Volume 71, pp 109-250.
    [29]Carlsson, K.; Danielsson, P. E.; Lenz, R.; Liljeborg, A.; Majlof, L.; Aslund, N., Three-dimensional microscopy using a confocal laser scanning microscope. Opt. Lett.1985,10 (2), 53-55.
    [30]Kadla, J. F.; Korehei, R., Effect of hydrophilic and hydrophobic interactions on the rheological behavior and microstructure of a ternary cellulose acetate system. Biomacromolecules 2010,11 (4),1074-1081.
    [31]Hayashi, T.; Yamamura, H.; Nishi, T.; Kakimoto, M., Observation of polyimide monolayers by scanning tunnelling microscopy. Polymer 1992,33 (17),3751-3752.
    [32]Suzuki, A.; Yamazaki, M.; Kobiki, Y.; Suzuki, H., Surface domains and roughness of polymer gels observed by atomic force microscopy. Macromolecules 1997,30 (8),2350-2354.
    [33]Wiedemair, J.; Serpe, M. J.; Kim, J.; Masson, J.-F.; Lyon, L. A.; Mizaikoff, B.; Kranz, C., In-situ AFM studies of the phase-transition behavior of single thermoresponsive hydrogel particles. Langmuir 2006,23 (1),130-137.
    [34]Junk, M. J. N.; Berger, R.; Jonas, U., Atomic force spectroscopy of thermoresponsive photo-cross-linked hydrogel films. Langmuir 2010,26 (10),7262-7269.
    [35]Spontak, R. J.; Patel, N. P., Thermoplastic elastomers:fundamentals and applications. Curr. Opin. Colloid Interface Sci.2000,5 (5-6),333-340.
    [36]Yuan, Z.; Lu, W.; Liu, W.; Hao, J., Gel phase originating from molecular quasi-crystallization and nanofiber growth of sodium laurate-water system. Soft Matter 2008,4 (8),1639-1644.
    [37]Cao, X. L.; Lv, K.; Cui, X. H.; Shi, J.; Yuan, S. L., Interactions between Anionic Surfactants and Cations. Acta Phys.-Chim. Sin.2010,26 (7),1959-1964.
    [38]Kim, W.-J.; Yang, S.-M., Flow-induced silica structure during in situ gelation of wormy micellar solutions. Langmuir 2000,16(11),4761-4765.
    [39]Kim, W.-J.; Yang, S.-M., Microstructures and rheological responses of aqueous CTAB Solutions in the presence of benzyl additives. Langmuir 2000,16 (15),6084-6093.
    [40]Francois, J.; Dayantis, J.; Sabbadin, J., Hydrodynamical behaviour of the poly(ethylene oxide)-sodium dodecylsulphate complex. Eur. Polym. J.1985,21 (2),165-174.
    [41]Keller, M; Tharmann, R.; Dichtl, M. A.; Bausch, A. R.; Sackmann, E., Slow filament dynamics and viscoelasticity in entangled and active actin networks. Philos. Trans. R. Soc. Lond. A 2003,361(1805),699-712.
    [42]MacKintosh, F. C.; Kas, J.; Janmey, P. A., Elasticity of semiflexible biopolymer networks. Phys. Rev. Lett.1995,75 (24),4425.
    [43]Gardel, M. L.; Shin, J. H.; MacKintosh, F. C.; Mahadevan, L.; Matsudaira, P.; Weitz, D. A., Elastic behavior of cross-linked and bundled actin networks. Science 2004,304 (5675), 1301-1305.
    [44]Ozbas, B.; Rajagopal, K.; Schneider, J. P.; Pochan, D. J., Semiflexible chain networks formed via self-assembly of beta-hairpin molecules. Phys. Rev. Lett.2004,93 (26),4.
    [45]Morse, D. C., Viscoelasticity of concentrated isotropic solutions of semiflexible polymers.1. model and stress tensor. Macromolecules 1998,31 (20),7030-7043.
    [46]Morse, D. C., Viscoelasticity of concentrated isotropic solutions of semiflexible polymers.2. linear response. Macromolecules 1998,31 (20),7044-7067.
    [47]Adams, D. J.; Mullen, L. M.; Berta, M.; Chen, L.; Frith, W. J., Relationship between molecular structure, gelation behaviour and gel properties of Fmoc-dipeptides. Soft Matter 2010,6 (9),1971-1980.
    [48]Mellema, M.; Vliet, T. v., Categorization of rheological scaling models for particle gels applied to casein gels J. Rheol.2002,46 (1),11-30.
    [49]Yokoyama, K.; Koike, Y.; Masuda, A.; Kawaguchi, M., Rheological properties of fumed dilica duspensions in the presence of potassium chloride. Jpn. J. Appl. Phys.2007,46,328-332.
    [50]Shih, W.-H.; Shih, W. Y.; Kim, S.-I.; Liu, J.; Aksay, I. A., Scaling behavior of the elastic properties of colloidal gels. Phys. Rev. A 1990,42 (8),4772.
    [51]Stauffer, D., Gelation in concentrated critically branched polymer solutions. Percolation scaling theory of intramolecular bond cycles. J. Chem. Soc., Faraday Trans.1976,72,1354-1364.
    [52]Davis, S. S., Viscoelastic properties of pharmaceutical semisolids I:Ointment bases. J. Pharm.Sci.1969,58,412-418.
    [53]Barry, B. W., The self bodying action of the mixed emulsifier sodium dodecyl sulfate/cetyl alcohol. J. Colloid Interface Sci.1968,28(1),82-91.
    [54]Corrin, M. L.; Harkins, W. D., The effect of salts on the critical concentration for the formation of micelles in colloidal electrolytes. J. Am. Chem. Soc.1947,69 (3),683-688.
    [55]Zavitsas, A. A., Properties of water solutions of electrolytes and nonelectrolytes. J. Phys. Chem. B 2001,105 (32),7805-7817.
    [56]Xu, Y.; Wang, C.; Tam, K. C.; Li, L., Salt-assisted and salt-suppressed sol-gel transitions of methylcellulose in water. Langmuir 2004,20 (3),646-652.
    [57]Sato, H.; Hirata, F., Revisiting the acid-base equilibrium in aqueous solutions of hydrogen Halides:study by the ab initio electronic structure theory combined with the statistical mechanics of molecular liquids. J. Am. Chem. Soc.1999,121 (14),3460-3467.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700