人工湿地系统对酸性重金属废水的去除效果及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环境污染制约经济发展,危害人类的健康,已经成为人们重点关注的环境难题。酸性重金属废水主要来源于矿山开采、金属制造加工等行业,由于其重金属的毒性而严重危害环境与人类的生存。人工湿地作为一种生态化污水处理技术,可以高效地去除废水中总磷总和重金属,并且出水水质稳定,成本低,运行维护简单,不会造成二次污染,在工业废水处理中的应用不断受到重视。水生植物在人工湿地系统脱除重金属的过程中发挥着重大作用,除了直接对重金属的吸收作用外,还分泌有机物络合重金属,为微生物提供栖息环境,改善湿地系统对重金属脱除能力。研究酸性条件下水葱、香蒲、芦苇、灯芯草、野茭白和芦竹六种模拟人工湿地系统在不同停留时间和不同污染负荷时,对重金属的去除效果,确定对各种重金属去除效果最佳的植物和每一种植物最适合去除的重金属污染物,并研究湿地植物体内重金属的含量及分布规律,获得以下结果:
     (1)重金属浓度越高对植物的毒害作用越大,且随着时间的延长植物的中毒现象越严重。
     (2)在整个实验期内,随着水力停留时间的增长,各模拟系统液相中pH值均逐渐上升,与对照系统相比,模拟湿地植物系统液相中pH值的上升速度更快。这一现象表明,除了基质砂石和土壤中某些碱性物质以及微生物代谢产物的中和作用外,植物具有一定的调节作用,但这种调节作用在不同种类的湿地植物间无较大的差异,同时系统液相pH值变化速度与各重金属初始投加浓度密切相关,重金属初始投加浓度较低时,系统液相中pH值变化更为显著。
     (3)六种人工湿地系统液相中铜锌铅镉的浓度都随时间的延长而降低,表明六种模拟人工湿地系统对铜锌铅镉四种污染物都有较好的去除效果。本研究得出水葱系统、灯芯草系统、芦竹系统最适合用于处理含铜和铅的废水;香蒲系统、芦苇系统最适合用于处理含铜、锌的废水;野茭白系统最适合于处理含锌的废水。
     (4)六种植物的根、茎叶组织对同一重金属的吸收和积累都有差异。除芦苇以外,铜、锌、铅、镉四种重金属都主要积累于其它植物的根部,茎叶部分含量相对较低。
     (5)镉和铅在灯芯草细胞内主要结合位点是细胞壁和细胞溶质部分,细胞核和叶绿体部分及线粒体部分中铅、镉的含量均较低。
     (6)在三种不同初始投加浓度下,铅镉在灯芯草体内以去离子水提取态、氯化钠提取态和醋酸提取态为主,即铅和镉在灯芯草体内主要与蛋白质、果胶酸盐结合,或者是形成难溶于水的磷酸盐,吸附在根系,使污水得以净化。
Hindering economic development and causing damage to human health, water pollution has developed into a worldwide environmental problem. Acid wastewater containing heavy metals is mainly resulted from mining, metal processing industries and has been seriously harmed the environment and human survival.Man-made wetlands as an ecological wastewater treatment technology can not only efficiently remove nitrogen and phosphorus in waste water with heavy metals, but also is of stable water quality, simple operation and maintenance, as well as low cost without secondary pollution. Therefore, it has attacted more and more attention in industrial wastewater treatment. In man-made wetland system, aquatic plants play an important role in the process of the removal of heavy metals. Not only can they directly absorb heavy metals, but also secret organic to complex heavy metals generated in the absorption process.Therefore it can provide habitat for microbes and enhance heavy metal removal capacity in wetland system. With different residence time and under different pollution load and acidic condition, through study on the heavy metals removal effect of shuicong, cattail, reeds, rushes, wild rice stem, and arundo donax in the six simulated wetland system, we find out the best plant most suitable for removal of heavy metals and the perfect match between each plant and heavy metals. Also, we study on the content and distribution of heavy metals in wetland plants. The results are as follows:
     (1) The higher the concentration of heavy metals on the plant, the greater the toxicity is. And with time passing by, plants toxicity becomes more serious.
     (2) With hydraulic retention time passing by, pH value of the simulation system gradually increased in liquid phase, as compared with the control system, the liquid pH value increases faster. The phenomenon indicates that except for the neutralization among gravel substrate, some basic material and microbial metabolites in soil, plants are endowed with regulation ability, which has little difference among different kinds of wetland plants.Accordingly the change rate of pH valuein liquid phase is closely related with the initial dosing concentration of each heavy metals.When the initial dosing concentration is comparatively low, the change rate of pH valuein liquid phase is more significant.
     (3)The concentration of copper,zinc,lead,cadmium, and have decreased with time in the six simulated wetland system, which indicates that the six simulated wetland system has a good effect on lead,copper, cadmium and zinc removal.The study finally indicates that with different concentrations of initial dosing, the best purification system for wastewater with copper and lead is Shuicong, rush and arundo donax system, for copper and zinc is typha and reed system and for zinc is wild rice stem system.
     (4)Six roots,stems,leaves the same effect of absorption and accumulation of heavy metals vary. Copper,zinc,lead,cadmium are accumulated in the roots of other plants except reeds,much less in the stems and leaves.
     (5) 0f cadmium and lead in the rushes, the major cell binding site is part of the cell wall and cytosolic, nuclear and chloroplast and mitochondrial part of some lead and cadmium were lower.
     (6) In the initial dosage of three different concentrations, lead and cadmium in the body in the rush to extract state of deionized water, sodium chloride and acetic acid extractable extractable mainly lead and cadmium in the rush that is the main protein in vivo , pectate binding, or insoluble in water, the formation of phosphate adsorption on the root system, the sewage will be purified.
引文
[1]冯颖,康勇,张忠国.含重金属离子酸性废水的厌氧生物处理.环境科学与技术,2004,27(6): 104-107.
    [2]吴烈,潘志平.含重金属离子废水的生物处理.中国给水排水,2001,17(10),31-34.
    [3] Wildeman T, Machemer S, et al. Metal removal efficiencies from acid mine drainage in the big five constructed wetland proceedings. the 1990 mining and reclamation conference,West Virginia university. Morgantown wv.1990,2:417-424.
    [4]陈剑红.重金属废水处理技术的研究[硕士学位论文].湖南:湖南大学环境工程,2003
    [5]戴晶平.凡口选矿回水中铅锌硫化矿浮选基础研究与工业实践[博士学位论文].湖南:中南大学资源加工与生物工程学院,2005.
    [6] Nriagu JO. Human on the global cycling of trace metal. In: Farmet JG ed.Heavy Metals in the Environment. Edinburgh: CEP CEP Consultants Ltd,1991:1~15
    [7]饶运章,徐水太,张见.含硫矿山酸性废水及其金属离子污染防治方法的探讨.中国钨业,2004,28(4);33-36.
    [8]尹国勋,王宇,许华,等.煤矿酸性矿井水的形成及主要处理技术.环境科学与管理,2008,33(9):100-102.
    [9]雷兆武,刘荣,郭静.某金铜矿山含铜酸性废水处理研究.中国环境管理干部学院学报,2006,16(1);65-67.
    [10]周平,黄汝常.去除废水中重金属离子的新工艺研究.中国给水排水,1998,14(4):17-20.
    [11]胡焕斌,周化民,王桂珍,等.人工湿地处理矿山炸药污水.环境科学与技术,1997,3:17-19.
    [12]唐皓.多级串联人工湿地系统对污水净化能力的研究[博士学位论文].辽宁:大连理工大学环境科学系,2005.
    [13]唐文浩,潜流式人工湿地处理天然橡胶加工废水的试验研究[硕士学位论文].海南:华南热带农业大学农学院生态学,2004.
    [14]杨正亮,冯贵颖,呼世斌,等.水体重金属污染研究现状及理技术.干旱地区农业研究,2005,23(1):119-122.
    [15]白晓慧等.人工湿地污水处理技术及其发展应用.哈尔滨建筑大学学报[J],1999(32),88-92.
    [16]胡荗永.湿地治污系统在洞庭湖区的应用研究[硕士学位论文].湖南:湖南师范大学自然地理学,2003.
    [17] Dunnivant FM,Jardine PM, Taylor DL,et al. Cotransport of cadmium and hexachlorobiphenyl by disslolved organic carben through columns containing aquifer materials. Envrion Sci Technol,1992,26:360~368
    [18] Brig G Natural and constructed wetlands foe wastewater treatment:potentials and problems [J].Water Science and Technology.1999,40(3):27-35
    [19] Mays P A, G. S Edwards. Comparison of heavy metal accumulation in natural wetland and constructed wetlands receiving acid mine drainage [J]. Ecological Engineering.2001,16(4):487-500
    [20]陈娟,潜流人工湿地种植美人蕉对污水重金属的去除效果及机理研究[硕士学位论文].江苏:扬州大学农业水土工程,2006.
    [21]邵文生,潜流人工湿地处理污染河水的应用研究[硕士学位论文].山东:山东大学环境工程,2006.
    [22] Anne L S and Cynthia A M. Desigh and hydeaulic performance of a constructed wetland treating oil refinery waster water[J].Wat Sci Tech,1999(40),301-307.
    [23]国家与环境保护局.环境背景值和环境容量研究.北京:中国科学出版社.1993:5~6.
    [24] Scholes L and Shutes R B E. The treatment of metals in urban runoff by constructed wetlands[J].The Science of the Total Enviroment,1998(214),211-219.
    [25]赵志强等.环境中有害金属植物修复的生理机制及进展[J].环境科学研究,2000(5),54-57.
    [26]夏汉平.人工湿地处理污水的机理与效率[J].生态学杂志,2002(21),52-59.
    [27] Bob Brocksen et al.Using constructed wetland for wastewater treatment[J].Water Quality Professional,1998(1),2.
    [28] Knight R L et al.Wetlands for wastewater treatment performance data base in Moshiri GA Constructed wetlands for water quality improvement[M].Bocaraton:Lewis Publishers,1993.
    [29]张晓红.亚热带人工湿地污水处理过程稳定性研究[硕士学位论文].浙江:浙江大学生命科学学,2007.
    [30]杨志焕.亚热带人工湿地植物多样性与人工湿地价值评价[硕士学位论文].浙江:浙江大学生命科学学院,2006.
    [31]刘雯,崔理华,黄细花,等.垂直流人工花卉湿地模拟系统净化污水的效果.环境污染治理技术与设备,2006,7(9):111-114.
    [32] Shuiping, Chen et al. Industrial Wastewater treatment. Water 82 Sewage Words. 1998,119(7):73-81.
    [33] Busnardo M J,et al.Nitrogen and phosphorus removal by metland mesocosms subjected different hydroperiods [J].Ecological Engineering.1992,1(4):287-307
    [34]唐述虞等.铁矿酸性排水的人工湿地处理[J].环境工程,1996(4),3-7.
    [35] Ji G D and Sun T H,Constructed subsurface flow wetland for treating heavy oil-produced water of the Liaohe Oilfield in China[J].Ecological Engineering,2002(18),459-465.
    [36]单丹.人工湿地水生植物对磷吸收及对重金属镉去除效果的研究[硕士学位论文].浙江:浙江大学环境与资源学院,2006.
    [37]崔妍.芦苇对湿地中重金属吸收的研究[硕士学位论文].辽宁:大连海事大学科学系,2005.
    [38]庞艳春,林丽,朱利东,等.重金属污染水的双壳处理法初探.地质科技情报,2006,25(1):43-49.
    [39] Coleman J et al.Treatment of domestic waster water by three plant species in constructed wetlands[J].Water Air and Siol Pollution,2001(128),283-295.
    [40] Borkert C M,Cox F R, Tucker M R. Zinc and copper toxicity in peanut, soybean,rice and corn in soil mixtures[J].Communications in Soil Science and Plant Analysis,1998,29:2991-3005.
    [41] David E. Salt Ingrid J Pickering, Roger C Prince, et al. Metal accumulation by aquacultured seedings of Indian mustard[J].Environmental Science and Technology,1997,(31):1636-1644.
    [42]张晟,黎莉莉,陈建,等.人工湿地在处理小城镇生活污水中的应用.环境科学与管理, 2006,31 (9):62-65.
    [43]姚运先,王艺娟,人工湿地在酸性矿山废水处理中的应用.湖南有色金属,2005,21(4):26-29.
    [44]秦志伟.人工湿地不同水流方式和基质对生活污水的净化效果的研究[硕士学位论文].北京:首都师范大学环境科学系,2006.
    [45] Weber.Momtoring of environmental heavy metals in fish Nasset Izke Environment International,2000,27(1):27-33.
    [46] Ixumi,et al. Super activation doses put to use. Bulletion of the Chemical Society of Japan,1996,49(7):1727-1736.
    [47] Otto R Stein, Joel A Biedenman etc. Plant species and temperature effects on the k-C* first-order model for COD removal in batch-loaded SSF wetlands[J].Eco Eng,2006,26:100-112.
    [48]赵建,人工湿地对污染河水的净化效果及机理研究[硕士学位论文].江苏:河海大学环境科学与工程学院,2006.
    [49]周海兰.人工湿地在重金属废水处理中的应用.环境科学与管理,2007 ,32(9):89-92.
    [50] J Rivera R and Warren A. The application of the root zone method for treatment and high-strength abattoir waste in Mexico[J]. Wait Sci Tech,1997(35),271-278.
    [51]唐述虞,宋正达,史建文,等.金属矿酸性废水的湿地生态工程处理研究.中国环境科学,1993,13(5):356-360.
    [52] Kern J and Idler C,Treatment of domestic and agricultural waster water by reed bed systems[J].Ecological Engineering,1999(12),13-25.
    [53] Stottmeister U.Wiono near. K uschk P.et al.2003.Efects of plants and microorganisms in constructed wetlands for wastewatertreatment Biotechmology Advances,1999,22:93-117.
    [54]阳承胜,蓝崇钰,束文圣.宽叶香蒲人工湿地对铅/锌矿废水净化效能的研究.深圳大学学报,理工版,2000,17(2-3):51-57.
    [55] Cheng S,Grosse W, Karrenbrock F,et al. Efficiency of constructed wetlands in decontamination of water polluted by heavy metals[J].Ecological Engineering.2001,18(3):317-325.
    [56] Walker and Bowmer.K.H. Potential use of constructed Wetlands for treatment of industrial wastewaters containingmetals. Sicence of the Tota Environment,1996,111:151-168.
    [57]黄时达.人工湿地植物处理污水的实验研究.四川环境,1995,14(3):5-7.
    [58]韩志萍,王越义.不同生态型芦竹对Cd、Hg、Pb、Cu的富集与分布.生态环境:2007,16(4):1092-1097.
    [59]成水平,夏宜琤.香蒲、灯心草人工湿地的研究——Ⅲ.净化污水的机理.湖泊科学,1998,10(2):66-71.
    [60]朱彤,许振成,胡康萍,等.人工湿地污水处理系统应用研究.环境科学研究,2007,4 (5):23-31.
    [61]王德科,李昙云,李国平,等.不同种类的湿地植物积累Zn能力的差异及规律研究.常州工学院学报,2007,20(1):39-42.
    [62]刘建国,李光辉,邵婉晨,等.不同种类湿地植物吸铜能力差异及规律性研究.江苏工业学院学报,2008,20(3):51-54.
    [63]马荛,胡宝群,孙占学.矿山酸性废水治理的研究综述.矿业工程,2006,4(3):55-57.
    [64] Kabata-Pendias A. Pendias H. Trace elements in soils and plants[M].Florida:CRC Press, Boca Raton,1992.
    [65] Beckett P H T,Davis R D. Upper critical levels of toxic elements in plants[J]. New Phytologist,1997, 79:95-106.
    [66]王忠全,湿琰,黄兆霆,等.几种植物处理含重金属废水的适应性研究.生态环境,2005,14(4):540-544.
    [67]赵建,朱伟,赵联芳,人工湿地对城市污染河水的净化效果及机理,湖泊科学,2007,19(1):32-38.
    [68]李光,杨霞,徐如宽,等.不同湿地植物的根系酸化作用与重金属吸收.生态环境学报,2009,18(1):97-100.
    [69]钱江华.水生植物对水体污染物的清除及其应用.河北农业科学,2008,12 (10):73-74,77.
    [70]王圣瑞,年跃刚,侯文华,等.人工湿地植物的选择.湖泊科学,2004,16(1):91-96.
    [71]李星,刘鹏,徐根娣,等.人工湿地植物对电镀废水的净化和修复效果研究.浙江林业科技,2008,28(4):16-21.
    [72]廖新,,骆世明,吴银宝,等.人工湿地植物筛选的研究.草业学报,2004,3(5):39-45.
    [73]秦怡,李勇,金龙,等.人工湿地中常用填料和植物对污染物去除效果的比较.江苏环境科技, 2006,19 (5):46-48.
    [74]尹士君,汤金如.人工湿地中植物净化作用及其影响因素.煤炭技术,2006,25(12) :115-118.
    [75]刘爱芬,吴晓辉,贺锋,等.人工湿地组合工艺对水体中浮游动物群落结构的影响.环境科学,2007,28(2):309-314.
    [76]史增奎,赵润潮.凤眼莲对Cd2+、Zn2+富集能力的研究. [53]张宗元,赵志怀,陈宇松.人工湿地处理酸性煤矿废水的机理研究及展望.科技情报开发与经济,2007,17(5):1005- 1033.
    [77]陈明利.人工湿地植物处理含重金属生活废水的实验研究.环境科学与技术,2008,31 (12):165-168.
    [78]孙约兵,周启星,任丽萍.镉超富集植物球果蔊菜对镉-砷复合污染的反应及其吸收积累特征.环境科学,2007,28(6):1355-1360.
    [79]毕春娟,陈振楼,许世远,等.长江口潮滩植物根际重金属的分布与累积[J].矿物岩石地球化学通报,2003,22(1):38-41.
    [80]魏树和,杨传杰,周启星.三叶鬼针草等7种常见菊科杂草植物对重金属的超富集特征.环境科学,2008,29(10):2912-2918.
    [81]董志成,鲍征宇,谢淑云,等.湿地芦苇对有毒重金属元素的抗性及吸收和累积.地质科技情报, 27(1):80-84.
    [82]栾晓丽,王晓,强艳艳,等.湿地植物对生活污水中磷吸收能力的研究.江苏农业科学,2008,4:296-298.
    [83]项学敏,宋春霞,李彦生,等.湿地植物芦苇和香蒲根际微生物特性研究.环境保护科学,2004,30(124):35-38.
    [84]林淦,吴传兵,罗天雄.水花生对水体中重金属Pb2+的富集作用研究.襄樊学院学报,2006, 27(2):45-47.
    [85]简敏菲,弓晓峰,游海,等.水生植物对铜、铅、锌等重金属元素富集作用的评价研究.南昌大学学报,工科版,2004,26(1):85-88
    [86]朱映川,刘雯,周遗品,等.水体重金属污染现状及其治理方法研究进展.广东农业科学,2008, 8:143-146.
    [87]秦建桥,夏北成,赵鹏,等.镉在五节芒(Miscinthus floridulus)不同种群细胞中的分布及化学形态.生态环境学报,2009,18(3):817-823.
    [88]黄长干,陈赟,邱业先,等.铜盐毒害对紫鸭跖草养分吸收和生长的影响.中国生态农业学报,2008,16 (1 ) :165-172.
    [89]司江英,赵海涛,汪晓丽,等.不同铜水平下玉米细胞内铜的分布和化学形态的研究.农业环境科学学报, 2008,27(2):452- 456.
    [90]周建民,党志,陈能场,等.NTA对玉米体内Cu Zn的积累及化学形态的影响.农业环境科学学报,2007,26(2):453- 457
    [91]吴箐,杜锁军,曾晓雯,等.锌在长柔毛委陵菜细胞内的分布和化学形态研究.生态环境,2006,15(1):40-44.
    [92]薛生国.超积累植物商陆的锰富集机理及其对污染水体的修复潜力[硕士学位论文].浙江:浙江大学环境工程,2005.
    [93]廖斌,邓冬梅,杨兵,等.铜在鸭跖草细胞内的分布和化学形态研究.中山大学学报:自然科学版,2004, 43 (2 ) : 72-80.
    [94]黄永杰,刘登义,王友保,等.八种水生植物对重金属富集能力的比较研究.生态学杂志,2006,25(5):541-545.
    [95]钟哲科,高智慧.植物对环境的修复机理及其应用前景.世界林业研究,2001,14 (3):23-28.
    [96]吴晓丽,罗玉明,徐迎春,等.狭叶香蒲吸收Cd2 +的动力学特征.广西植物,2008,28 (4): 511-514.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700