用户名: 密码: 验证码:
电、磁复合效应对金属凝固组织的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
凝固组织细化是提高金属材料力学性能及使用性能的有效手段之一。大量研究表明:在金属凝固过程中施加电磁振荡能控制柱状晶,细化等轴晶,甚至形成近球状组织。但是关于电磁振荡对金属凝固组织的影响机制,缺乏系统性、规律性的研究。此外,以往的研究多采用交变/脉冲磁场,仅限于应用电磁场的振荡效应。近年来随着超导磁体的发展,强静磁场下的凝固受到人们重视,发现强磁场对金属凝固有多重效应,在强磁场背景下复合电流对金属凝固无疑将产生除振荡外更多样的作用,利用这些作用将为细化各层次组织和改善性能开辟新的途径,但至今这方面的研究十分欠缺。
     本文将稳恒强磁场和交流电相复合(文中称复合场),考察由此所产生的电磁振荡、金属流动等磁流体力学效应和磁化极化效应对纯铝及其合金凝固组织的影响机制,进而开展实际应用的研究。结果表明:
     (1)稳恒强磁场和交流电复合产生的电磁振荡对纯Al的凝固组织具有明显的细化作用。同一磁场强度下,随着电流强度的增大,晶粒变细。在同一电流强度下,晶粒的细化程度随磁场强度的增加先增加后减小,当电流为10A时,在磁场强度为6T处存在细化的最佳值。
     (2)在Al-6wt%Si合金凝固的过程中同时施加磁场和交流电,晶粒尺寸急剧减小,微观形貌由树枝形转变为蔷薇形。磁场一定时,当磁场强度较小时(小于4T),晶粒尺寸随着电流密度的增加而增大;磁场强度大于4T时,晶粒尺寸基本不随电流密度而变化;电流密度一定时,晶粒尺寸随着磁场强度的增加而减小。电磁振荡不仅能够细化α-Al,而且可以细化共晶硅,使共晶组织由粗大的板片状转变成细小的针片状。
     (3)在Al-12.6wt%Si共晶合金的凝固过程中施加单一的强磁场,共晶组织细化。而同时施加稳恒强磁场和交流电产生电磁振荡。当振荡强度较小时,共晶组织粗化;当振荡达到一定强度后,发生离异共晶,形成α-Al、共晶硅以及初生硅三种晶粒共存的特殊组织。
     (4)在Al-18wt%Si过共晶合金的凝固过程中施加单一的强磁场,随着磁场强度的增大,初生硅细化。而同时施加稳恒强磁场和交流电产生电磁振荡,随着振荡的增大,初生硅经历碰撞、团聚、分散及迁移等过程,最终形成均匀细化的组织。通过对合金凝固曲线的分析,发现电磁复合作用提高了初生硅的形核温度,降低了形核过冷度,延长了初生硅的生长时间。振荡促使初生硅的生长方式由连续生长转变成层状生长,形态也由粗大五星片状转变为细小块状。
     基于以上电磁振荡对合金凝固组织影响研究的基础上,开展采用局部施加电磁振荡,考察复合场对细晶范围影响的研究。结果表明:同一磁场强度下,电流强度越大,细化效应的传递范围也越大。同一电流强度下,晶粒的细化范围随磁场的增大先增大后略有减小,存在极值。分析认为复合场下晶粒细化的原因是由于振荡促使晶核脱离形核位置,形成游离晶,游离晶在外力的作用下下沉,形成“结晶雨”,从而引起细晶范围的变化。
     利用初生晶核在磁场中受磁力作用原理,提出利用梯度强磁场控制“结晶雨”方法。并建立了梯度强磁场下金属熔体中球形颗粒迁移的一般动力学模型,对模型进行了求解,得到了梯度磁场下颗粒运动速度的解析解:
     为了进一步研究电磁复合作用对金属凝固过程的影响,利用EBSD考察了电磁振荡对纯铝晶界结构的影响。研究发现振荡可以改变纯铝的晶界结构,使小角度晶界增多,从而提高材料的耐腐蚀性能。利用Al-4.5%Cu合金考察了电磁振荡对合金取向的影响。X射线衍射结果表明:施加复合场后,晶粒的<111>晶向沿磁场方向取向;晶粒取向度随晶粒的细化有增大趋势。从球形颗粒旋转取向和颗粒迁移角度推导了晶体粒径和取向的关系。
     最后,在对电磁复合场进行了大量实验研究的基础上,提出了复合交流电的EMC电磁连铸新工艺,并将这种工艺成功的应用于工业实验。通过对黄铜的实验表明:复合交流电的EMC工艺能够改善铸坯的表面和内部质量,提高铸坯的力学性能。进而把电磁复合场技术应用于焊接工艺中。利用磁镜原理,设计了电磁复合场下的TIG振荡焊接工艺。实验表明:该装置产生的磁场可以有效的控制电弧旋转频率和电弧形态,从而对TIG焊接过程产生明显影响,细化晶粒,提高焊缝性能。
It is well known that the mechanical properties of a metal or metallic alloy, such as strength and toughness, are highly dependent on its grain size. Electromagnetic vibration has proven to be effective in controlling columnar dendritic structure, reducing the size of equiaxed grains, and under some conditions, producing globular non-dendritic grains. However, most of the studies are generally quantitative, limited to a small range of vibration conditions on the solidification, in addition, most of the magnetic fields used in vibration are AC magnetic fields or pulsed magnetic fields. With the development of superconductor technology, the application of strong static magnetic fields becomes more and more wide. It is found that the strong magnetic field has multiple effects on the solidification of metal, and it is became more complicated by simultaneously imposing an AC current and strong static magnetic field. However, the reports about the effects of complex fields, besides vibration on the material processing were seldom available. Therefore, it has great significance to research the influence of superposing electricity and magnetic field on the solidification structure of metals.
     In this paper, effects of complex field, including electromagnetic vibration, MHD and magnetization effects on the solidification structures of pure Al and alloys have been investigated experimentally. The results show that their macrostructures of pure aluminum are remarkably refined by simultaneously imposing an AC current and a high static magnetic field. At certain a magnetic field, the extent of grain refinement increased with the increasement of alternating currents. At the AC current of 10A, the refinement firstly increased with the increasement of magnetic fields and reached the optimum at a 6T magnetic field, however, as magnetic fields further increased, the refining effect diminished.
     With simultaneously imposing a high magnetic field and AC current during solidification of Al-6wt%Si alloy, the size of the grains was remarkably decreased and the microstructure evolved from dendrites to rosette-shaped grains. The size of grains was increased with the increase of current density when the intensity of magnetic fields was below 4T. Nevertheless, the size of grains was unchanged when the intensity of high magnetic field was above 4T. At certain a current density, the size of grains was decreased with the increase of the intensity of magnetic fields. Moreover, with the increase of electromagnetic vibration intensity, not only the morphology of primaryα-Al phase transformed from dendrite to equiaxed crystal, but also the eutectic Si phase was modified from a mainly lamellar morphology to a mainly fully divorced needle.
     For Al-12.6wt%Si eutectic alloy, it was found that the eutectic structure had been refined by only imposing a magnetic field while it coarsened under the electromagnetic vibration. Furthermore, divorced eutectic structure formed when the electromagnetic vibration was strong enough.
     For Al-18wt%Si alloy, the primary silicon particles were refined by solely imposing a magnetic field. However, when simultaneously imposing a magnetic field and AC current, many primary single silicon particles were congregated under lower vibration intensity. However, at higher vibration intensity, the primary silicon particles dispersed, and migrated at a critical size. Finally homogenous refining primary silicon particles formed at high vibration intensity. Furthermore, thermal analysis experiments were performed. The results show that the nucleation temperature have been elevated which indicated a smaller undercooling, and the steady growth time of primary silicon increases under electromagnetic vibration. Experimental results also show that the primary silicon refinement may be attributed to the change of growth pattern from continue growth to laminar growth under electromagnetic vibration.
     Based on the above experiments, a new process was proposed by simultaeous imposition of AC current and high magnetic field at the top of specimen. Effects of complex field on the distribution of refinement grains have been investigated. At certain a magnetic field, the size of Al grains decreased and the depth of refinement region increased with the increase of alternating currents. At certain an AC current, the refinement region firstly increased, reached an optimum and then decreased with the increase of magnetic fields. The analysis indicates that the nuclei dissociate from the top surface and migrate under gravity is the dominant factor for grains refinement.
     Owing to the difference in susceptibility between the liquid and the solid of pure aluminum ( 0 <χl <χs), an upward effective magnetic force is applied on the solid aluminum, when the specimen are laid in a positive gradient magnetic field, the magnetic force may restrain crystal shower and improve the distribution of the refining grains on the specimen. Dynamics of grains migrating in molten metal under high gradient magnetic field has been studied theoretically. The equation of above model was solved, and the theoretical migrating velocity is expressed as
     In order to further study the effects of electromagnetic complex field on the characteristic of the structure, the EBSD analysis technology is adopted. The results show that the fraction of low-angle grain boundaries (LAGB) is increasing with the increase of vibration intensity, this modification is benefical to the corrosion resistance. Moreover, the Al-4.5%Cu alloy was chosen to investigate the influence of electromagnetic complex field on the crystal orientation. X-ray diffraction indicated that the refining grains were oriented with <111> towards the magnetic field direction. The orientation degree was increased with the decreasing of grain size. The relation between orientation and grain size was analyzed from crystal orientation and migration theory.
     Finally, A new method (AC+EMCC) was supposed by applying alternating current (50Hz) directly to the melt during electromagnetic continuous casting (EMCC) process. Results show that the application of AC current during EMCC is capable of improving the the surface quality and physical properties of copper billets significantly. Moreover, the application of electromagnetic complex field has also been explored and attempted to welding. A new Tig welding process with tailoring magnetic field was supposed according to magnetism len technique. The result indicates that the introducing of proper magnetic field not only can control the shape and rotational frequency of arc shape, but also can refine grains and improve mechanical properties of welding joint remarkably.
引文
[1] Liu R P, Herlach D M. Undercooling and solidification of Si by electromagnetic levitation [J].Acta Mater, 2001, 49 (3): 439-444.
    [2] Bassler B T, Hofmeister W H, Bayuzick R J. The solidification velocity pure nickel [J]. Mater.Sc. Eng. A, 2003, 342 (1-2): 80-92.
    [3] Verhoeven V W, Hansen T. Periodic structure fluctuations during the solidification of aluminum alloys studied by neutron diffraction [J]. Mater. Sci. Eng. A, 1963, 367 (1-2): 82-88.
    [4] Verhoeven V W, Hansen T. Experimental study of ordering kinetics in aluminum alloys during solidification [J]. Acta Mate. 1965, 51 (15): 4497-4504.
    [5] Charles V. Crystallization of aluminum alloys in the presence of vertical electromagnetic fields [J]. J. Cryst. Growth, 1997, 173 (3-4): 541-549.
    [6] Vashchenko K I., Herlach D M. Undercooling and solidification of Si by electric [J]. Acta Mater., 1974, 49 (4): 439-444.
    [7] Misra A K. A novel solidification technique of metals and alloys: under the influence of applied potential[J].Metallurgical Transaction A,1985,16(7):1354-1355
    [8] Misra A K.Effect of electric potentials on solidification of near eutectic Pb-Sb-Sn alloy[J].Materials Letters,1986,4(3):176-177
    [9]顾大根.电场作用下金属定向凝固行为的研究[D].哈尔滨工业大学,哈尔滨,1989,
    [10]李辉,边秀房,刘相法.电流处理对铝合金组织及性能的影响[J].特种铸造及有色合金,1996,3:810-815
    [11] Misra A K.Misra technique applied to solidification of cast iron[J].Metallurgical Transaction A,1986,17:358-359
    [12] Nakada M,Fleming M C.Modification of solidification structure by pulse electric discharging[J].ISIJ International,1990,30(1):27-33
    [13] Barnak J P,Sprecher A F,Conrad H. Colony(grain) size reduction in eutectic Pb-Sn casting by electroplating[J]. Script Metallurgica et Materialia,1995,32(6):879-884
    [14]訾炳涛,巴启先,崔建中.高密度脉冲电流作用下LY12铝合金的凝固组织[J].特种铸造及有色合金,2000,4:4-6
    [15]班春燕,崔建忠,巴启先,路贵民,訾炳涛.在脉冲电流或脉冲磁场作用下LY12合金的凝固组织[J].材料研究学报,2002,16(3):322-326
    [16]王建中.电脉冲孕育处理技术研究及液态金属团簇结构假说[D].北京科技大学,北京,1998
    [17]唐勇.电脉冲作用下液态金属结构及其对碳钢凝固组织改善的研究[D].北京科技大学,北京,2000
    [18] Tang Yong,Wang Jian-zhong,Cang Da-qiang. Electropulse on improving steel ingot solidification structure[J].Journal of University of Science and Technology Beijing(Eng.Edition),1999,6(2):94-96
    [19]王艳,边秀房,徐昌业.直流磁场作用下Al-18Si合金的凝固行为[J].金属学报,2000, 36(2):159-161
    [20]冉新天,任忠鸣,邓康.Al-18%Si合金在梯度强度场中凝固时初生硅的行为[J].中国有色金属学报,2005,15(1):72-78
    [21] Asai S.Birth and recent activities of electromagnetic processing of materials[J].ISIJ International,1989,29(12):981-992
    [22] Bassyouni T A.Effect of electromagnetic forces on aluminum cast structure[J].Light Metal,1983,33(12):733-742
    [23]葛丰德,何洪亮,霍树海.脉冲磁场铸造[J].机械工程学报,1989,25(1):1-6
    [24]訾炳涛,巴启先,崔建中.强脉冲磁场对金属凝固组织影响的研究[J].物理学报, 2000,5:1010-1013
    [25]班春燕,崔建中,巴启先.脉冲电流及脉冲磁场对铝合金中合金元素分布的影响[J].中国有色金属学报,2002(铝合金专辑):121-123
    [26] Asai S. Birth and recent activities of electromagnetic processing of materials[J]. ISIJ Int, 1989, 29(12):981-992
    [27] Lmeyer J, Szekely J, El-Kadda N h, Vives C, Ricou R. Electromagnetic and fluid flowphenoment in a mercupy model syetem of the Electromagnetic casting of aluminum. Metallurgical Transactions B, 1987, 18B(3): 539-548
    [28] Johnston W C, Kotler G R, Tiller W A. The influence of electromagnetic stirring on the nucleation of Tin and Tin-tead alloy[J], Trans Metall Soc AIME,1963,227(4):890-896.
    [29] Johnston W C, Kotler G R, Tiller W A. Grain refinement via electromagnetic stirring during solidification[J], Trans Metall Soc AIME, 1965,233(9):1856-1960
    [30]毛大恒,严宏志.电磁搅拌对铝及其合金凝固和铸态组织的影响[J],轻合金加工技术, 1991,19(4):10-16
    [31]李树索,赵爱民,毛为民等.半固态过共晶Al-Si合金显微组织中近球形α相形成机理的研究[J].金属学报,2000,36(5):545-549
    [32]朱明原,史文,杨森龙等.电磁搅拌作用对铝合金显微组织的影响[J],中国有色金属学报,1999,S1:29-34.
    [33] Flemings M C. Principles of control of soundness and homogeneity of large ingots[J], Metall Trans A,1991, 22A: 957-962
    [34] Vogel A, Dohkety R D, Cantor B. Proceeding of international conference on solidification [C].London: University of Sheffield, 1979: 518-525
    [35] Hellawell A. In: Kirkwood D H, Kapranos P eds., Proceeding the 4th international conference on semi-solid processing of alloys and compositions[C]. Sheffield, 1996: 60.
    [36]张奎,刘国钧,徐骏,石力开.铝合金半固态加工技术应用[J],有色金属学报, 2000, 10(1):135-140.
    [37]邢书明,马静,陈维视,李亚敏.半固态亚共晶铝硅合金非枝晶固相的形成与演变[J].有色金属学报, 1999, 9(7):270-274
    [38]毛卫民,赵爱民,钟雪友等.电磁搅拌对半固态AlSi7Mg合金初生α-Al的影响规律[J].金属学报,1999,35(9):971-974
    [39]毛卫民,李树索,赵爱民等.电磁搅拌对过共晶Al-Si合金初生Si长大过程核相貌的影响[J].材料科学与工艺,2001,9(6):117-121
    [40] Vives C. Effect of electromagnetic vibration on the microstructure of continuously cast aluminum alloys [J].Materials Science and Engineering,1993,A173(1):169-172
    [41] Vives C.Crystalization of aluminium alloys in the presence of cavitation phenomena induced by vibrating electromagnetic pressure[J].Journal of crystal growth,1996,158(1): 118-127
    [42] Alireza Radjai,Kenji Miwa. An investigation of the effects caused by electromagnetic vibration in a hypereutectic Al-Si alloy melt[J].Metallurgical and Materials Trsnsaction, 1998,29A(5):1477-1484
    [43] Radjai A and Miwa K. Effect of intensity and frequency of electromagnetic vibration on the microstructural refinement of hypoeutectic Al-Si alloys[J]. Metallurgical and Materials Transation A,2000,31A(3):755-762
    [44] Radjai A, Miwa K. Structural refinement of gray iron by electromagnetic vibration [J]. Metallurgical and Materials Transactions A,2002,33(9): 3025-3030
    [45] Yoshiki Mizutani,Yoshinori Ohura.Effect of electromagnetic vibration intensity on microstructural refinement of Al-7%Si alloy [J].Materials Transactions,2004,45(6):1944-1948
    [46] Yoshiki Mizutani,Jun Kawata. Effect of the frequency of electromagnetic vibrations on microstructural refinement of AZ91D magnesium alloy[J].Materials Research Society,2004,19(10):2997-3003
    [47] Yoshiki Mizutani,Satoshi Kawai,Kenji Miwa.Effect of the intensity and frequency of electromagnetic vibrations on refinement of primary silicon in Al-17%Si alloy[J].Materials Transaction,2004,45(6):1939-1943
    [48] Li, M J. Tamura, T. Miwa, K. Effects of processing variables on microstructure formation in AZ31 magnesium alloys solidified with an electromagnetic vibration technique [J] J Mater Res 2007;22(12) 3465-3474
    [49] Li, M J. Tamura, T. Miwa, K. Controlling microstructures of AZ31 magnesium alloys by an electromagnetic vibration technique during solidification: From experimental observation to theoretical understanding [J] Acta Mater 2007;55(14) 4635-4643
    [50] Lundquist S Studies in magneto-hydrodynamics. Arkiv for Fysik,1952,15(5):297
    [51] Alfven H. Existence of electromagentic-hydrodynamic waves, Nature, 1942, 150:405
    [52] Zhugzhda Y D. Linear and nonlinear magnetohydrodynamic waves in twisted magnetic flux tubes, Physics Letters A 1999, 252:222
    [53] Kojima S, et,al . Formation of Alfven waves by simultaneous imposition of a high magnetic field and an alternating electric current. CAMP-ISIJ, 2000,13:152.
    [54]王强,岩井一彦等.磁声波对金属凝固组织的影响[J].金属学报.2002,38(9):961-965
    [55] Wang Q, Kawai S, Iwai K. Generation of compression waves in a liquid metal by simultaneous imposition of static magnetic field and high frequency electric current[J]. CAMP-ISIJ. 2000,13(1):150-153
    [56] Wang Q, Moniyama T, Iwai K, Asai S. Non-contact generation of intense compression waves in a molten metal by using a high magnetic field [J]. Materials Transactions, JIM.2000,41(8):1034-1039
    [57] Kawai S, Wang Q, Iwai K, Asai S. Generation of compression waves by simultaneously imposing a static magnetic field and an alternating current and its use for refinement of solidified structure [J]. Materials Transactions. 2001,42:275-280
    [58] Kawai S, Wang Q, Iwai, K Asai S. Generation of compression waves by simultaneously imposing a static magnetic field and an alternating current and its use for refinement of solidified structure [J]. Materials Transactions. 2001,42:275-280
    [59] Amano S, Iwai K, Asai S. Non-contact Generation of Compression Waves in a Liquid Metal by Imposing a High Frequency Electromagnetic Field [J]. ISIJ International. 1997,10:962-966
    [60]王强,岩井一彦等.磁声波对金属凝固组织的影响[J].金属学报.2002,38(9):961-965
    [61] Wang Q, Moniyama T, Iwai K, Asa S i. Non-contact generation of intense compression waves in a molten metal by using a high magnetic field [J]. Materials Transactions, JIM.2000,41(8):1034-1039
    [62] Kento S and Iwai K. Effect of Operating Parameters of an Electromagnetic Refining Process on the Solidified Structure[J] ISIJ International,2004,44(8):1410-1415
    [63]Iwai K, Sugiura K. Control of solidified structure by using electromagnetic oscillation[J]. Materials Science Forum,2005,475:2695-2698
    [64] Kento Sugiura and Kazuhiko Iwai. Refining mechanism of solidified structure of alloy by electromagnetic refining process[J].ISIJ International,2005,45(7):962-966
    [65] Takagi T, Iwai,K, Asai S.Solidified structural of Al alloys by a local imposition of an electromagnetic oscillation force[J].ISIJ International,2003,43(6):842-848
    [66] Vivès C, Ricou R. Experimental study of continuous electromagnetic casting of aluminum alloy. Metal Trans B 1985; 16: 377-84.
    [67] Vives C. Electromagnetic refining of aluminum alloys by the CREM process. Part I.Working principle and metallurgical results, Metall.Trans. B 1989;20: 623–9.
    [68] Vives C. Electromagnetic refining of aluminum alloys by the CREM process. Part II. Specific practical problems and their solutions, Metall.Trans. B 1989;20: 631–43.
    [69] Vives C. Effects of electromagnetic vibrations on the microstructure of continuousy cast aluminum alloys. Mat Sci Eng A 1993;173:169-72.
    [70]张勤,崔建忠.电磁振荡对半连铸7075Al合金的宏观偏析的抑制作用[J].铸造, 2003,52(3):171-75
    [71]张勤,崔建忠.电磁振荡法半连铸7075合金的微观组织及溶质元素分布[J].中国有色金属学报,2003,13(3):1184-1191
    [72]张勤,崔建忠,路贵民.电磁振荡对铝合金半连铸微观组织及溶质元素晶内含量的影响[J].金属学报,2003,39(10):1115-1120
    [73]张勤,崔建忠.电磁振荡强度对半连铸7075铝合金微观组织的影响[J].中国有色金属学报, 2002, 12(5):222-226
    [74]张勤,崔建忠.电磁振荡频率对半连铸7075铝合金微观组织的影响[J].材料导报,2003,17(2):79-81
    [75]张勤,崔建忠.电磁振荡下半连铸Al合金凝固组织的细化机制[J].中国有色金属学报, 2003,13(6):1500-1504
    [76]梁百先,汤建国,张才国,等。电磁学教程[M]北京:高等教育出版社, 1984
    [77] A. Lodding, Z.Klemm. Die effektive in flussigen metallen bei der isotophenuberfuhrung [J] Z Naturforschung, 1962,17A:1085
    [78]刘觉平。电动力学[M]北京:高等教育出版社, 2004
    [79] Keshavarz Z, Barnett M R. EBSD analysis of deformation modes in Mg-3Al-1Zn [J] Scripta Materialia, 2006; 55: 915-918
    [80].Ferry C, Humphreys F J. Onset of abnormal subgrain growth in cold rolled{110} oriented copper single crystals [J]. Materials Science and Engineering A, 2006, 435-436: 447-452
    [81]张寿禄.电子背散射衍射技术及应用[J].电子显微学报, 2002; 5: 703-704
    [82]陈绍楷,李晴宇,苗壮.电子背散射衍射(EBSD)及其在材料研究中的应用[J].稀有金属材料与工程, 2004; 35: 500-504
    [83]姚启均.金属力学性能新旧标准对比手册[M].兵器工业出版, 1992.
    [84]工程材料实用手册编辑委员会.工程材料实用手册:铝合金,镁合金,钛合金[M].中国标准出版社,1989.
    [85] Watanabe T. An approach to grain boundary design of strong and ductile poly crystals [J] Res Mech,1984,11:47-84.
    [86] Asai S. Birth and recent activities of electromagnetic processing of Materials[J]. ISIJ International, 1989, 29(12):981-992
    [87] Shimada M, Kokama H, Wang Z J , Sato Y S. Optimization of grain boundary character distribution for inter-granular corrosion resistant 304 stainless steel by twin-induced grain boundary engineering [ J ] Acta.Materialia, 2002, 50 (9):2331-2341
    [88] Cao S Q, Zhang J X, Wu J S. Microtexture grain boundary character distribution and secondary working ambrittlement of high strength IF steels[J].Mater Sci Eng, 2005, A392:20-24
    [89] Lehokey E M,Limoges D,Palumbo G.On improving the corrosion and growth resistance of positive Pb-acid batterry grids by boundary engineering [J] . Power Sources,1999, 78:79-83
    [90] Lee D S, Ryoo H S, Hwang S K. A grain boundary engineering approach to promote special boundaries in Pb-base alloy Mater [J]. Sci. Eng. A, 2003, 354 (122):106~111.
    [91] Palumbo G, Erb U. Enhancing the operating life and performance of lead--acid batteries via grain-boundary engineering[J].MRS Bull. 1999, 27-32
    [92] Lin P, Palumbo G, Erb U , Aust K T. Influence of grain boundary character distribution on sensitization and inter-granular corrosion of alloy 600 [J]. Scripta Metallurgica and Materialia, 1995,3(9):1387-1392
    [93] Mukul K, Wayne E K, Adam J Schwartz. Modifications to the microstructural topology in f. c. c. materials through thermo mechanical processing [J]. Acta Mater,2000,48(9): 2081-2091
    [94]王志奋,关云,李平和,陈庆丰.超细晶贝氏体钢的晶界特征和晶粒尺寸[J]中国体视学与图像分析, 2007,12(2):84-89
    [95] Kim S H, Erb U , Aust K T. Grain boundary character distribution and intergranular corrosion behavior in high purity aluminum [ J ]. Scripta Metallurgica and Materialia,2001; 44(5):835-839
    [96] Molodov D.A., Konijnenberg P.J. Grain boundary and grain structure control through application of a high magnetic field [J].Scripta Materialia. 2006:54(6) 977-981
    [97] Jianhong Ma, Jie Li, Yulai Gao, Qijie Zhai Grain refinement of pure Al with different electric current pulse modes[J] .MaterialsLetters,2009, 63:142-144
    [98] YongYong Gong, Jun Luo, Jin-Xian Jing, Zan-Qi Xia, Qi-Jie Zhai Structure refinement of pure aluminum by pulse magneto-oscillation Materials Science and Engineering A, 2008; 497:147-152
    [99] Liao Xiliang, Zhai Qijie, Chen Wenjie, Gong Yongyong. Refining mechanism of the eleetric current Pulse on the solidifieation strueture of Pure aluminum,Acta Meterialia, 2007,55:3103-3109
    [100]李辉,边秀房,刘相法.马家骥.电流处理对铝合金组织及性能的影响[J].特种铸造及有色合金,1996,3:8-10.
    [101]何树先,王俊,周尧和,孙宝德.高密度脉冲电流对过共晶Al一Si合金凝固组织的影响[J].中国有色金属学报,2002,12(2):275.
    [102]班春燕,崔建忠,巴启先,路贵民,张北江.脉冲电流及脉冲磁场对铝合金中合金元素分布的影响[Jl.中国有色金属学报,2002,12(3):121-125
    [103]曹丽云,王建中,杨兴江,等.电脉冲变质处理对zL108合金性能的影响[J].特种铸造及有色合金,2001,4:10- 11.
    [104] Jing X, Xu H, Meek T T, Han Q.Effeet of Power ultrasound on solidification of aluminum A356 alloy [J].MaterialsLetters,2005,59:190-193
    [105] Jian X, Xu H, meek T T, Han Q. Refinement of eutectic silicon phase of aluminum A356 alloy using high-intensity ultrasonic vibration [J].Scripta Materialia,2006, 54:893-896
    [106] Eskin G I, Yu P, Makarov G Se. Effect of cavitation melt treatment on the structure refinement and property improvement in cast and deformed hypereutectic Al-Si alloys[J]. Materials Science Forum, 1997, 242: 65-70.
    [107] Shahrooz Nafisi, Reza Ghomashchi Effect of stirring on solidification pattern and alloy distribution during semi-solid-metal casting Materials Science and Engineering A, 2006; 43 7:388 -395
    [108] Nafisi S, Emadi D, Shehata M T , Ghomashchi R. Effects of electromagnetic stirring and superheat on the microstructural characteristics of Al–Si–Fe alloy Materials Science and Engineering A, 2006; 432:71 -83
    [109]晋芳伟,任忠鸣,任维丽,邓康,钟云波,余建波.强磁场下过共晶铝硅合金凝固过程中初晶硅的迁移行为.中国有色金属学报,2007,17(2): 313-319
    [110] Sun Z, Kodal T. Guo M, Effect of the strong magnetic field on the magnetic interaction between two non-magnetic particles migrating in a conductive fluid. Journal exploring the frontiers physics[J] 2009, 85(1):14002
    [111] Takagi T, Iwai K, Asai S. Solidified Structure of Al Alloys by a Local Imposition of an Electromagnetic Oscillationg Force[J]. ISIJ International, 2003; 43(6): 842
    [112]张邦文.冶金熔体中夹杂物一般动力学的研究和应用。博士学位论文,上海大学,2003,26
    [113]周尧和,胡壮麒,介万奇.凝固技术[M].北京:机械工业出版社1998,46
    [114] Kento S, Iwai K Effect of Operating Parameters of an Electromagnetic Refining Process on the Solidified Structure[J] ISIJ Int, (2004), 44:1410.
    [115]张蓉.熔体过热处理对Al-Si过共晶合金凝固组织及耐磨性的影响博士学位论文,西北工业大学2000
    [116] Chen W P, Maeda H, Kakimoto K, Zhang P X, Watanabe K, Motokawa M, Kumakura H, Itoh K Textured crystal growth of Bi(Pb)2212 bulk ceramics in high magnetic field[J] J. Cryst. Growth,1999,204:69
    [117] Ren Z M, Li X, Wang H, Deng K, Zhuang Y Q, The segregated structure of MnBi in Bi–Mn alloy solidified under a high magnetic field[J] Materials Letters 2004;58:3405
    [118] Sata H, Kimura T, Ogawa S, Yamato M, Ito E. Polym, Magnetic Orientation of Polymer Fibers in Suspension[J] Langmuir 1996;37:1879
    [119] Kimura T, Kawai T, Sakamoto Y.. Magnetic orientation of poly(ethylene terephthalate)[J] Polymer 2000; 41: 809
    [120] Uchikoshi T, Suzuki T S, Tang F, Okuyama H, Sakka Y. Crystaline-oriented TiO2 fabricated by electrophoretic deposition in a strong magnetic field[J]. Ceramics International 2004;30(7):1975
    [121] Kang k, Petford-long A K. Role of the underlying layer in crystalline structure and magnetic properties of Mn-Sb-Bi film[J] Thin Solid Film 2005;493(1-2):212
    [122] Sugiyama T, Tahashi M, Sassa K, Asai S. The Control of Crystal Orientation in Non-magnetic Metals by Imposition of a High Magnetic Field[J] ISIJ Int, 2003; 43(6): 855
    [123] Manabu Usui Kazuhiko Iwai and Shigeo Asai Crystal Alignment of Sn-Pb Alloy by Controlled Imposition of a Static Magnetic Field and an Alternating Electric Current during Solidification[J] ISIJ international 2006, 46(6):859-863
    [124] Matsushima H, Nohira T, Mogi L. Effects of magnetic fields on iron electrodeposition[J] Surface and Coatings Technology, 2004,179: 245-251
    [125]朱耀明.单晶铝中磁化现象的方向性及其对铝的磁化率值的影响[J]仪表材料, 1982;13(6):25
    [126]李喜,任忠鸣,孙延辉,王俊,余建波,任维丽.纵向强磁场对定向Al-4.5%Cu合金显微组织的影响[J]金属学报, 2006; 42(2): 147-152
    [127]胡文瑞宇宙磁流体力学。北京:科学出版社1987
    [128] Iwai K, Shinya K, Takashi K, Moreau R. Pressure change accompanying alfven waves in a liquid metal, Magnetohydrodynamics 2003,39(3),245
    [129]张远君流体力学大全。北京:北京航空航天大学出版社1991:
    [130]郑忠,李宁。分子与胶体的稳定和聚沉。北京:高等教育出版社1995
    [131] Johansen, S T, Taniguchi S. Predicting of agglomeration and break-up of inclusions duing metal refining. In:B.Welch ed. Light Metals 1998, TMS,1998; 885-861
    [132] O’Neill M E, A sphere in contact with a plane walt in a slow linear shear flow. Chem.Eng. Sci.,1968;23:1293-1298
    [133] Schlichting H,徐燕侯等译。边界层理论(下册)。北京:科学出版社,1991
    [134] Staffman P G. The lift on a small sphere in a slow shear flow[J], J Fluid Mech.,1965;22(2):385-400
    [135] Taniguchi et al. Model Experiment on the coagulation of inclusion particles in liquid steel[J] ISIJ,Inter., 1999;36:117-120
    [136] Getselev Z V.Casting in an electromagnetic field[J],Journal of Metals,1971,23(10):38.
    [137] Lavers J D,Bringer P P.Electromagnetic transport and confinement of liquid metals[J],IEEE Transactions on Magnetics,1989,25(3):495.
    [138] Zhu X R,Harding R A,Campbell J.Electromagnetic confinement including the dynamic effectdue to melt flow[J],ISIJ International,1999,39(1):1.
    [139] Vivès C.Effects of forced electromagnetic vibrations during the solidification of Aluminum Alloys:Part 1.Solidification in the presence of crossed alternating electric fields and stationary ,Metallurgical and Materials Transactions,1996,27B:445-455.
    [140] Vivès C.Effects of forced electromagnetic vibrations during the solidification of Aluminum Alloys:Part 2.Solidification in the presence of collinear variable and stationary magnetic fields [J],Metallurgical and Materials Transactions,1996,27B:457-464.
    [141] Shijie Guo, Qichi Le, Zhihao Zhao, Zhongjun Wang, Jianzhong Cui Microstructural refinement of DC cast AZ80 Mg billets by low frequency electromagnetic vibration Materials Science and Engineering A, 2005; 404 : 323-329
    [142] Dong Jie, Cui Jianzhong, Ding Wenjiang Theoretical discussion of the effect of a low-frequency electromagnetic vibrating field on the as-cast microstructures of DC Al–Zn–Mg–Cu–Zr ingots. Journal of Crystal Growth, 2006; 295: 179-187.
    [143] Ying-Hong Li, Guang-Ming Xu, Jia-Wei Zheng, Jian-Zhong Cui, Distribution of solute elements in AZ61 magnesium alloys under electromagnetic fields Materials Science and Engineering A, 2007; 457 : 58-62
    [144]肖恩奎,李耀群.铜及铜合金熔炼与铸造技术.北京:冶金工业出版社, 2007. 148.
    [145]马宏声.有色金属锭坯生产技术.北京:化学工业出版社, 2007. 314.
    [146] Brown D C et al. The effect of electromagnetic stirring and mechanical vibration on arc welding. Welding Journal, 1962,41(2):41-50.
    [147] Tseng C F, Savage W F. The effect of arc oscillation in either the transverse or longitudinal direction has a beneficial effect on the fusion zone microstructure and tends to reduce sensitivity to hot cracking. Welding Journal,1971,50(12):777-785.
    [148] [苏] M A阿勃拉洛夫,P Y阿勃杜拉赫曼洛夫。电磁作用焊接技术。北京:机械工业出版社,1988,20-53.
    [149] P.V. Chernysh. Electromagnetic stirring of weld pool in GTA welding. Weld and Meta Fabr, 1982, 49(4):93-96.
    [150]王晓东,赵恂,李廷举等.磁力搅拌法的研究与开发.材料科学与工艺, 2000,8(4):1-5.
    [151]李海刚,殷咸青,罗键等.用电磁搅拌提高LD10CS铝合金焊接接头的质量.焊接学报, 1998,19(12):100-104.
    [152]殷咸青,李海刚,罗键等.用电磁搅拌提高LD10CS铝合金焊缝热裂纹的研究.西安交通大学学报,1998, 32(5):91-95.
    [153]国旭明,钱百年,薛小怀等.电磁搅拌对管线钢埋弧焊熔敷金属低温韧性的影响.金属学报,2000 ,36(2):177-180.
    [154]唐非,鹿安理,方慧珍等.一种降低残余应力的新方法―脉冲磁处理法.焊接学报,2000,21(2):29 -31.
    [155]朱宜等.扫描电镜图像的形成处理和显微分析.北京大学出版社北京1991

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700