基于RS和GIS的小流域综合治理效益评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究采用遥感(RS)与地理信息系统(GIS)技术、野外调查、社会调查与室内实验相结合的方法,通过主成分分析,筛选出小流域综合治理评价指标,运用层次分析法对小流域综合治理7年来的生态、经济、社会以及综合效益进行了科学、系统地分析与评价。研究工作所取得的主要结果如下:
     (1)2010年的生态效益指数为0.51,比2004年的0.30增加了70%。林草覆盖率由治理前的11%提高到2010年的50%,比治理前提高了4倍多;土壤侵蚀模数比治理前降低了950t/(hm2.a),消除了可能发生的潜在水土流失量;水土保持总治理度得到了大幅度提升,由治理前的不足60%达到了现有的98%,说明小流域内的水土保持工程措施与植物措施发挥效益显著;牲畜圈养率在2010年达到99%,基本上全部实现圈养,有效地保护了生态环境,减少水土流失;土壤有机质含量随着综合治理措施的实施,不断提高,比治理前提高了6倍,达0.06%;土壤含水量比治理前下降了44%。
     (2)小流域综合治理后,经济效益指数为0.74,比治理前提高了25.4%。农民人均纯收入达到了2500元,是治理前的一倍;农业总产值增长迅速,2005年为流域经济增长的转折点,增幅达30%,之后,以平均每年3%的速度递增,截止到2010年,小流域农业总产值译达到169万元,比治理前提高了69%;投入产出比由最初的持平状态,降低到了2010年的0.70,降低了26%;流域劳动生产率比治理前提高了30%,由于随着小流域综合治理措施的不断开展,彻底解放了劳动生产力,导致劳动生产率的直线上升;土地生产率比治理前提高了75%;水土保持经济效益主要为水土保持措施所带来的经济效益,净产值折现合计322.09万元。
     (3)小流域综合治理推动了当地社会效益的发展,治理后,小流域社会效益指数为0.43,比治理前提高了16.2%。小流域内的恩格尔系数治理前后降低了44.1%,由治理前的温饱水平达到了现在的相对富裕水平;教育水平比治理前提高了1倍;农产品商品率比治理前提高了6%,这是由于流域内的劳动生产率与土地生产率共同提高导致的;基础设施增长率提高了2%;小流域治理7年来,不仅改善了生态环境,而且提高了人民的环保意识,治理后比治理前提高了1倍。
     (4)小流域综合治理后,综合效益指数为0.6,比治理前提高了39.5%,表明小流域综合治理7年来的综合效益显著,由生态效益、经济效益与社会效益的成效共同导致了综合效益的提升。
In this study, by using remote sensing (RS) and geographic information system (GIS) technology, combined with the small watershed field survey, social survey data and laboratory experiments, through principal component analysis, filtering out the evaluation indexes of small watershed comprehensive management, and then, taking use of the analytic hierarchy process (AHP) to systematic analyse and scientific evaluate the ecological benefits, economic benefits, social benefits and comprehensive benefits of small watershed in recent 7 years. The main research results obtained are as follows:
     (1) In the year of 2010, ecological efficiency index is 0.51 higher than the year of 2003,which is 0.30, increased by 70%. Percentage of the forestry and grass coverage increased from 11% to 50%, the percentage of 2010 is 4 times more than the percentage of without treatment. Soil erosion modulus decrease by 950 t/(hm2·a) than that before treatment, eliminating the possible amount of potential soil erosion. Total management degree of soil and water conservation has been improved significantly, from less than 60% before treatment increase to the 98%, indicating that the engineering measures and plant measures of soil and water conservation play a significant benefit in the small watershed. Rate of animals stable breeding reach to 99% in 2010, substantially achieve all stable breeding, effectively protect the environment, and reduce the soil erosion. With the implementation of comprehensive treatment measures, soil organic matter content continuously increased by 6 times more than before, up to 0.06%. Soil water content decreased by 44% compared with that before treatment.
     (2) The economic efficiency index reach to 0.74, compared with before that increase by 25.4% after comprehensive management of small watershed. Per capita net income of farmers reached 2,500 yuan, double than before treatment. Total agricultural output value grows rapidly, in the year of 2005, which is a turning point for the valley's economic growth, increase by 30%, then, keep an average annual increase rate of 3%, total agricultural output value of small watershed has been to 1.69 million in 2010, increased by 69% compared with before. Input-output ratio from the hold the line state, reduced to 0.70 in 2010, reduced by 26%. Labor productivity of watershed raise by 30% than before, with the small watershed management measures went on, complete liberation of the labor productivity, leading to sharp rise in labor productivity. Land productivity was increased by more than 75%. The economic benefits of soil and water conservation which is mainly from soil and water conservation measures reach to 3.2209 million yuan.
     (3) Comprehensive management of small watershed to promote the local social benefit development, after treatment, the social index of small watershed reach to 0.43 that increased by 16.2% than before. Engel's coefficient of the small watershed decreased by 44.1% after treatment, from subsistence level before treatment reached a level of relative well-off now. Education level was increased by 1 time than before. Commodity rate of agricultural products was increased by more than 6% which is due to labor productivity and land productivity increased together in the basin. Infrastructure growth ratio raised 2%. After 7 years management of small watershed, it is not only to improve the ecological environment, but also improve people's environmental awareness, which is increased 1 times than before.
     (4) The overall efficiency index reached 0.6 after comprehensive management of small watershed, which is increased by 39.5% compared with before treament, it is indicated that comprehensive benefits of small watershed management are significant in recent 7 years. Comprehensive benefits has improved that caused by the effectiveness combination of ecological, economic and social benefits.
引文
1. 《蓟县志》编修委员会.蓟县志(1949-1985)[M].天津:南开大学出版社,天津社会科学院出版社,1991.
    2. 《中国水利年鉴》编辑委员会[M].1990.北京:水利电力出版社,1991.
    3. J.R.Williams.EPIC模型的物理组成[J].水土保持科技情报.1992,4:48-52,8.
    4. John R.Jensen著,陈晓玲,龚威,李湘平等译.遥感数字影像处理导论.北京:机械工业出版社,2007.
    5. 白永飞,许志信,李德新.内蒙古高原针茅草原群落α多样性研究[J].生物多样性.2000,8(4):353-360.
    6. 百度百科http://baike.baidu.com/view/28093.htm.
    7. 卜兆宏等,水土流失定量遥感方法及其应用的研究[J].土壤学报.1997,34(3):235-245.
    8. 蔡崇法,丁树文,史志华等,应用USLE模型与地理信息系统IDRISI预测小流域土壤侵蚀量的研究[J].水土保持学报2000,14(2):19-24.
    9. 蔡国军,张仁陟,柴春山.安家沟小流域综合治理效益评价[J].草业学报.2009,18(6):23-30.
    10.查小春,唐克丽.黄土丘陵林区开垦地土壤侵蚀强度时间变化研究[J].水土保持通报.2000,20(2):5-7,40.
    11.常庆瑞,冯立孝,李岗.小流域综合治理评价方法初探-以乾县枣子沟试区为例[J].干旱地区农业研究.1995,13(1):94-99.
    12.陈国芝.大窝铺小流域综合治理的技术要点和效益评价[J].水土保持科技情报.1992,1:25-27.
    13.陈维杰,李重新,刘金星.浑椿河小流域综合治理经济评价[J].水利经济,2003,21(6):48-50.
    14.陈文贵.俄脚河小流域综合治理与评价[J].人民珠江.1997,4:35-36.
    15.陈应发,陈方鸣.国外森林资源环境效益经济价值及其评估[J].林业经济[J].1996,6(4):65-73.
    16.陈峪,高歌,任国玉等.中国十大流域近40多年降雨量时空变化特征[J].自然资源学报,2005,5(9):637-643.
    17.程国栋.承载力概念的演变及西北水资源承载力的应用框架[J],冰川冻土,2002,8(4):361-367.
    18.崔伟中.流域管理若干问题的研究[J].湖泊科学,2004,16(增刊):77-82.
    19.党安荣,王晓栋,陈晓峰等.遥感图像处理方法[M].北京:清华大学出版社,2003.
    20.杜军,马玉才.西藏高原降水变化趋势的气候分析[J],地理学报,2004,5(3):375-382.
    21.段文标,陈立新,余新晓.北京山区蒲洼小流域综合治理可持续发展评价与分析[J].中国水土保持科学.2004,2(4):53-57,72.
    22.段文标,余新晓,侯旭峰.北京山区石匣小流域综合治理可持续发展评价与分析[J].水土保持学报.2002,16(4):86-90.
    23.冯宗炜,王效科,吴刚.中国森林生态系统的生物量和生产力[M].北京:科学出版社,1999.
    24.关文秀,韩子荣,越怀等.花亥图小流域综合治理经济效益分析[J].内蒙古水利.1999,2:31-32.
    25.侯元兆.中国森林资源核算研究[M].北京:中国林业出版社,1995.
    26.黄家声.户包治理小流域评价[J].中国农村经济,1986,9:18-21.
    27.贾宁凤,段建南,陈焕伟等.黄土高原小流域综合治理效益多维灰色动态评价[J].农业系统科学与综合研究.2005,21(2):156-160.
    28.焦峰,温仲明,李锐.黄土高原水土保持林建设(草)环境效应分析[J].水土保持研究,2005,12(1):26-29.
    29.赖亚飞,朱清科等.生态环境建设工程效益评价研究与进展[J].西北林学院学报,2007,22(1):168-172.
    30.李壁成,焦锋,马小云.固原黄试区土壤侵蚀环境与综合治理效益评价[J].水土保持研究,1996,30):122-128.
    31.李壁成主编.小流域水土流失与综合治理遥感监测[M].北京:科学出版社,1995.
    32.李宏伟.和峰河小流域综合治理效益分析[J].云南林业科技1999,3:18-23.
    33.李生保.宁南山区不同生态恢复措施对土壤环境效应影响的研究[J].水土保持学报,2006,20(4):20-22.
    34.李世锋.关于河岸缓冲带拦截泥沙和养分效果的研究[J].水土保持科技情报,2003(6):41-43.
    35.林积泉,王伯铎,马俊杰等.流域治理环境质量综合评价指标体系研究[J].水土保持研究,2005,12(1):68-71.
    36.刘行悌,谈谈山水田林路的综合治理[J].自然辩证法通讯.1979,1:28-29,96.
    37.刘纪元.中国资源环境遥感宏观调查与动态研究[M].北京:科学技术出版社,1996.
    38.刘建平等.高光谱遥感数据解译的最佳波段选择方法研究[J].中国科学院研究生院学报,1999,16(2):153-161.
    39.刘黎明,卿尚华.黄土高原小流域土地利用系统结构优化与生态设计[J].资源科学,1995,(6):51-61.
    40.刘利年.黄土高原小流域水土流失综合治理研究[D].西安:长安大学,2004.1-132.
    41.马克平,刘玉明.生物群落多样性的测度方法Iα多样性的测度方法(下)[J].生物多样性.1994,2(4):231-239.
    42.钱宁,王可钦,闫林德等.黄河中游粗泥沙来源区及其对黄河下游冲淤的影响[A].中国水利学会.河流泥沙国际学术讨论会论文集[C].北京:光华出版社,1980.53-62.
    43.尚宗波,高琼.流域生态学—生态学研究的一个新领域[J].生态学报.2001,21(3):468-473.
    44.孙立达,孙保平,齐实.小流域综合治理理论与实践[M].北京:中国科学技术出版社,1992.
    45.汤国安,杨昕.ArcGIS地理信息系统空间分析实验教程[M].北京:科学出版社.2006.
    46.唐克丽,张仲子,孔晓玲等.黄土高原水土流失与土壤退化研究初报[J].环境科学,1984,6(5):5-10.
    47.唐克丽等.黄河流域的侵蚀与径流泥沙变化[M].中国科学技术出版社,1993.
    48.天水市藉河示范区项目办.黄河水土保持生态工程甘肃省天水市藉河示范区项目竣工总结报告[R].2005.
    49.王炳忠.太阳辐射计算http://www.newenergy.org.cn/magazine/tyn/9902/990206.htm.
    50.王礼先.流域管理学[M].北京:中国林业出版社,1999.
    51.王礼先.面向21世纪的小流域综合治理[J].北京林业大学学报,1997,19(4):100-102.
    52.王礼先.水土保持学[M].北京:中国林业出版社,1997.
    53.王礼先.小流域综合治理的概念与原则[J].中国水土保持,2006,(2):16-17.
    54.王礼先.小流域综合治理效益的评价方法与指标[J].人民黄河,1987(4):50-52.
    55.王莲芬.层次分析法引论[M].北京:中国人民大学出版社,1990.
    56.王新华,尹凤龙.关于朝阳地区小流域综合治理效益评价的探讨[J].水土保持科技情报.1994,2:21-23,59.
    57.魏敏.黄土高原小流域生态恢复治理的综合效益评价研究-以高泉小流域为例[D].兰州:甘肃农业大学,2009.
    58.魏思兵,地理信息系统的技术与发展[J].现代计算机.1997,55:8-10.
    59.邬建国.景观生态学.北京:科学出版社,2000.
    60.吴波.毛乌素沙地景观动态与荒漠化成因研究.中国科学院博士学位论文,1997.
    61.吴伯志,段青松,刘红梅等.滇中地区小流域综合治理及效益评价[J].中国水土保持.2006,4:37-39.
    62.徐建华.黄河中游粗泥沙集中来源区界定研究[J].水土保持学报,2006,20(1):6-9.
    63.徐宗学,张玲,阮本清.北京地区降雨量时空分布规律分析[J].干旱区地理.2006,4(2):186-192.
    64.许静,王玉玺,樊华.东北黑土区小流域综合治理措施及效益评价——以振祥小流域为例[J].中国水土保持科学.2010,8(4):95-100.
    65.薛达元.生物多样性经济价值评估——长白山自然保护区案例研究[M].北京:中国环境科学出版社.1997.
    66.闫慧敏,李壁成等,4D技术在流域管理中的应用研究初报[J].水土保持通报.1999,19(3):40-43.
    67.杨爱民,孟丽,孙彦坤等.关于评价小流域生态经济系统的研究[J].水土保持科技情报.1998,4:17-20.
    68.杨海军,孙立达,余新晓.晋西黄土区水土保持林水量平衡的研究[J].北京林业人学,1993,15(8):42-50.
    69.杨联安,史舟,王人潮等.红壤资源信息系统的研制及其初步应用[J].土壤学报.1999,36(1):25-30.
    70.杨琼,陈章和.白云山森林生态系统间接经济价值评估[J].生态科学,2002,21(1):72-75.
    71.杨子生,滇东北山区坡耕地土壤可蚀性因子[J].山地学报.1999,17(增刊):10-15.
    72.游松财,李文卿.GIS支持下的土壤侵蚀量估算——以江西省泰和县灌溪乡为例[J].自然资源学报.1999,14(1):62-68.
    73.余新晓.水源保护林培育经营管理评价[M].北京:中国林业出版社,2001.
    74.于志民,王礼先,水源涵养林效益研究[J].中国林业出版社,1999.
    75.张富,余新晓,陈丽华.小流域水土保持植物措施对位配置研究[J].水土保持通报2008,28(2):195-210.
    76.张景哲,刘启明.北京城市气温与下垫面结构关系的时相变[J],地理学报,1988,43(2):159-168.
    77.张满良,张海强,黄桂香等.吕二沟流域水土流失特征及水土保持措施效益分析[A].黄河水利委员会天水水土保持科学试验站.黄土丘陵沟壑区第三副区水土流失原型观测及规律研究[C].郑州:黄河水利出版社,2004:120-124.
    78.张玉贵,三北防护林及荒漠化遥感监测—理论研究和技术应用[M].北京:中国林业出版社,1999.
    79.赵焕臣,许树柏,和金生.层次分析法[M].北京:科学出版社,1986.
    80.郑晓风.城郊型小流域综合治理模式及效益评价[J].甘肃科技,2009,25(21):76-78.
    81.中国生物多样性国情研究报告编写组,中国生物多样性国情研究报告[M].北京:中国环境科学出版社.1998.
    82.周冰冰,李忠魁等著.北京市森林资源价值[M].北京:中国林业出版社,2000.
    83.朱德海.土地管理信息系统[M].北京:中国农业大学出版社,2000.
    84. Anderson D. Carbon fixing from an economic perspective [R]. Forestry Commission's First Economics Research Conference, York University.1990,
    85. Arnoldus H M J.An approximation of the rainfall factor in the universal soil loss equation.In:de Boodt,Gabriels eds.1980.
    86. Bradley C. R. The influence of canopy green vegetation fraction on spectral measurements over natice tallgrass prairie. Remote Sensing of Environment.2002,81 (1):129-135.
    87. Chander G, Markham B. Revised Landsat-5 TM Radiometric Calibration Procedures and Post calibration Dynamic Ranges[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003,41(11):2674-2677.
    88. Chavez, P. S.,1989, Radiometric calibration of Landsat Thematic Mapper multispectral images, Photogramm. Eng. Remote Sens.,55:1285-1294.
    89. Chavez, P.S.,1988, An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data, Remote Sens. Environ.,24:459-479.
    90. Congalton, R.G. and K.. Green,1999, Assessing the Accuracy of Remotely Sensed Data:Principles and Practices, Boca Raton, FL:Lewis Publishers,137 p.
    91. Congalton, R.G. and R.A. Mead,1983, "A Quantitative Method to Test for Consistency and Correctness in Photo interpretation", Photogrammetric Engineering & Remote Sensing, 49(1):69-74.
    92. Congalton,R.G.,1981, The Use of Discrete Multivariate Analysis for the Assessment of Landsat Classification Accuracy, Blacksburg, VA:Virginia Polytechnic Institute and State University, Master' thesis.
    93. Dozier, J.,1989, Spectral signature of Alpine snow cover from the Landsat Thematic Mapper. Remote Sens. Environ.28:9-22.
    94. Feinstein, A.R.,1998, "Kappa Test of Concordance", in Encyclopedia of Statistical Science, New York:Willey-Interscience,2:351-352.
    95. Foody,G.M.,2002, "Status of Land Cover Classification Accuracy Assessment," Remote Sensing of Environment,80:185-201.
    96. Forster, B.C.,1984, Derivation of atmospheric correction procedures. Int. J. Remote Sens.,5(5): 799-817.
    97. Gilabert, M.A., Conese, C. and Maselli F.,1994, An atmospheric correction method for the automatic retrieval of surface reflectances form TM images. Int. J. Remote Sens.,15(10): 2065-2086.
    98. Gutman G., Ignatov A. The derivation of the green vegetation fraction from NOAA AVHRR data for use in numerical weather prediction models. International Journal of Remote Sensing.1998, 19(8):1533-1543.
    99. Hill, J. and Sturm, B.,1991, Radiometric correction of multi-temporal TM data. Int. J. Remote Sens.,12(7):1471-1491.
    100. Los S. O., Collatz G. J., Sellers P. J et al. A global 9-year biophysical land-surface data set from NOAA AVHRR data. Journal of Hydrometeorology.2000(1):183-199.
    101.Lunetta, R.S., Congalton, R.G., Fenstermarker,1991, "Remote Sensing and Geographic Information System Data Integration:Error Sources and Research Issues," Photogram metric Engineering & Remote Sensing,57(6):677-687.
    102. Markham, B.L. and Barker, J.L.,1987, Thematic Mapper bandpass solar exoatmospherical irradiances. Int. J. Remote Sens.,8:517-523.
    103. McGarigal K. Landscape pattern metric. www. umass. edu/landeco/pubs/Fragmetrics_short. pdf12003-06-09.
    104. Moran, M.S., Jackson, R.D., Slater, P.N. and Teillel, P.M.,1992, Evaluation of simplified procedures for retrieval of land surface reflectance factors from satellite sensor output. Remote Sens. Environ.,41:169-184.
    105. Myers Norman. The greenhouse effect:a tropical forestry response[J].Biomass,1990,18:73-78.
    106. Paine, D.P. and J.D.Kiser,2003, "Chapter 23:Mapping Accuracy Assessment", Aerial Photography and Image Interpretation,2nded., New York:John Wiley & Sons,465-480.
    107. Pearce D W. Assessing the returns of economy and to society from investments in forestry [A].Whiteman A(ed.). Forestry Expansion [C].Forestry Commission, Edinburgh,1990.
    108. Pens X. Sole-Sugranes, S.,1994, A simple radiometric correction model to improve automatic mapping of vegetation from multispectral satellite data, Remote Sens. Environ.,48:191-204.
    109. Richter, R.,1990, A fast atmospheric correction algorithm applied to Landsat Tm images. Int. J. Remote Sens.,11(1):159-166.
    110. S. A. EI-Swaify, E.W.Dangler, and C. L.Armstrong. Soil Erosion by Water in the Tropics. 1982.RESEARCH EXTENSION SERIES 024.
    111. Sellers P.J., Tucker C. J., Collatz G. J. et al. A global 1°by 1°NDVI data set for climate studies: 2.The generation of global fields of terrestrial biophysical parameters from the NDVI.International Journal of Remote Sensing.1994,15(17):3519-3545.
    112. Stehman, S.V. and R.L.Czaplewski,1998, "Design and Analysis for Thematic Map Accuracy Assessment:Fundamental Principles", Remote Sensing of Environment,64:331-344.
    113. T.A. Cocbrane D.C. Flanagan. Assessing water erosion in small watersheds using WEPP with GIS and digital elevation models. Journal of Soil and Water Conservation 1999 50(2) 678-685.
    114. T.L.Saaty,The Analytic Hierarchy Process [M].McGraw Hill Inc.,1980.
    115. Titus D B.Using tropical forestry to fix atmospheric carbon dioxide [J].Ambio.,1992,19(5):230-236.
    116. Wischmeier W H,D D Smith.Predicting rainfall erosion losses-a guide to conservation planning.U.S.Department of Agriculture, Agricultural Handbook nr.537.Science and Education Administration,United States Department of Agriculture,1978.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700