高温高压下金属锆结构变化及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锆以其较好的抗核辐射性、耐腐蚀性和较低的热膨胀系数等突出特点,成为一种重要的新型结构材料。
     本文从金属锆的结构出发,以改善金属锆的性能为目的,使用六面顶压机,设定保温时间,同时调整压力、温度两个参数,对金属锆进行处理,并对处理前后的结构变化及性能进行了研究。
     利用X射线衍射仪测试、分析了高温高压后金属锆的结构变化。结果显示,金属锆在理论相变开始温度之前的高温高压处理,发生了结构转变。平均晶粒尺寸的计算结果表明了温度和压力对晶粒尺寸都有一定的影响。
     利用高精度热膨胀仪研究了处理前后金属锆在连续加热条件下的热膨胀行为。结果表明高温高压处理后,金属锆的热膨胀系数下降。利用电化学实验站进行了耐蚀性能测定,极化曲线显示,处理后的金属锆的耐蚀性能有所改善,在800℃各压力条件下,耐蚀性能显著提高。
     利用端面摩擦磨损试验机对处理前后金属锆进行了摩擦磨损试验,并用扫描电子显微镜对试样的表面形貌进行分析。结果表明,摩擦磨损过程中,主要为粘着磨损,处理后的金属试样的失重量较小,耐磨性能提高。硬度测试结果显示,随着压力、温度的升高,自然时效时间的延长,硬度显著增加。
Metal zirconium becomes a very important novel structure material for its advantages such as anti-nuclear radioactive, corrosion resistance and low thermal expansion coefficient and so on.
     The purpose of this work was to improve the properties of metal zirconium from the perspective of the structure of metallic zirconium. The cubic anvil high pressure apparatus was used to produce high pressure. The metal zirconium was treated by changing the pressure and temperature simultaneously, when the holding time was set. The microstructures and properties of the metal zirconium were studied.
     The phases and microstructure of the metal zirconium before and after treated under high temperature and high pressure were analyzed by X-ray diffraction. It was shown that there was significant change in phases of the metal zirconium treated under before the theoretical phase transition temperature. The calculation results of the average grain size showed that the size of the particle was changed under the combined effect of the temperature and pressure.
     The thermal expansion behavior of the metal zirconium before and after treated under high temperature and high pressure was investigated under the conditions of continuous heating by the thermal expansion equipment. The result shows that the thermal expansion coefficient of the metal zirconium treated descreases. The corrosion properties of the metal zirconium were analyzed by CHI660A electrochemical workstation. The corrosion resistance significantly increased in a particular temperature and pressure.
     The friction and wear experiment of the metal zirconium before and after treated under high temperature and high pressure was handled by friction and wear testing machine. The surface morphology of the sample was analyzed by the scanning electron microscope. The result shows that friction and wear process is mainly adhesive wear. The weight loss of metal samples treated was less, the wear resistance was improved.
     The result of hardness test shows the higher the pressure and temperature and the longer the natural aging time, the greater microhardness.
引文
1魏尔霍兰尼耶夫.锆.上海:上海科学技术出版社, 1956, 6-19
    2 R. J. Comstock, G. Schoenberg, G. P. Sable. in: E.R. Bradley (Ed.), Zirconium in the Nuclear Industry, 11th International Symposium, ASTM STP 1295, ASTM, Philadelphia, 1996, 710
    3 S. Cai, M. R. Daymond, R. A. Holt. Modeling the Room Temperature Deformation of a Two-Phase Zirconium Alloy. Acta Materialia, 2009, 57:407-419
    4 I. M. Purdy, J. A. Todd. IEEE/NPSS Symposium on Fusion Engineering. 1995, 2:1178-1181.
    5熊炳昆,温旺光,杨新民.锆铪合金.北京:冶金工业出版社, 2002
    6凌永乐.化学元素的发现.北京:科学出版社, 1981
    7 K. S. Mohandas, D. J. Fray. FFC Cambridge Process and Removal of Oxygen from Metal-Oxygen Systems by Molten Salt Electrolysis: an Overview. Trans Indian Inst Met, 2005, 57:579-592
    8《稀有金属手册》编辑委员会.稀有金属手册(下).北京:冶金工业出版社, 1992, 274-352
    9 D. J. Fray, T. W. Farthing, G. Z. Chen. Removal of Oxygen from Metal Oxides and Solid Solution Electrolysis in a Fused Salt. U K Pat: PCT/GB99/01781, 1998-06-05.
    10 C. Zwikker. Transformation of Zirconium and Titanium. Physica, 1932, 6:361
    11 W. G. Burgers. Die Kristallstruktur Des Beta Zirkons. A. Anorg. Allgem. Chem, 1932, 205:81
    12 J. Zhang, Y. Zhao. Pressure-Forming of Zirconium Metallic Glass. Nature, 2004, 430:332-335
    13 X. Y. Zhang, M. H. Shi, C. Li, N. F. Liua, Y. M. Wei. The Influence of Grain Size on the Corrosion Resistance of Nanocrystalline Zirconium Metal. Materials Science and Engineering A, 2007, 448:259-263
    14袁改焕,白新德,刘振球.我国锆铪材加工技术的进步与发展.稀有金属快报, 2004,23(10)
    15 J. A. Xu, H. K. Mao, P. M. Bell. High-Pressure Ruby and Diamond Fluorescence Observations at 0.21 to 0.55 Terapascal. Science, 1986, 232(4756):1404
    16沈中毅,姚玉书,张云等.高温下活塞-圆筒容器内叶蜡石介质的对称与不对称摩擦损耗.高压物理学报, 1989, 3(3):203-210
    17张婷.静高压加载下几种面心立方金属的超声测量与等温物态方程研究.成都:四川师范大学, 2004, 12-15
    18 M. Hashimoto, F. Tomioka, I. Umehara et al. Heat Capacity Measurement of CePd2Si2 under High Pressure. Physica B: Physics of Condensed Matter, 2006, 378-380:815-816
    19 J. Maumus, N. Bagdassarov, H. Schmeling. Electrical Conductivity and Partial Melting of Mafic Rocks under Pressure. Geochimica et Cosmochimica Acta, 2005, 69(19):4703-4718
    20 F. M. Richter, E. B. Watson, R. A. Mendybaev et al. Magnesium Isotope Fractionation in Silicate Melts by Chemical and Thermal Diffusion. Geochimica et Cosmochimica Acta, 2008, 72(1):206-220
    21 J. Tesar, D. Prazak. The Limitations for Using the Vacuum Standards Based on Piston- Cylinder Technique. Vacuum, 2002, 67(3-4):311-316
    22方华为.高温高压处理对ZnO纳米晶微观结构和压敏特性的影响.武汉:武汉理工大学, 2007, 8-9
    23 H. Takamura, H. Kakuta, Y. Goto et al. High-Pressure Synthesis and Energetics of MgCu with a CsCl-Type Structure. Journal of Alloys and Compounds, 2005, 404-406:372-376
    24 A. Kamegawa, Y. Goto, R. Kataoka et al. High-Pressure Synthesis of Novel Compounds in an Mg-Ni System. Renewable Energy, 2008, 33(2):221-225
    25 R. Kataoka, Y. Goto, A. Kamegawa et al. High-Pressure Synthesis of Novel Hydride in Mg-Ni-H and Mg-Ni-Cu-H Systems. Journal of Alloys and Compounds, 2007, 446-447:142-146
    26 M. Okada, Y. Goto, R. Kataoka et al. Novel Hydrides in Mg-TM Systems Synthesized by High Pressure (TM=Zr, Nb, Hf and Ta). Journal of Alloys and Compounds, 2007,446-447:6-10
    27 A. Kamegawa, Y. Goto, H. Kakuta et al. High-Pressure Synthesis of Novel Hydrides in Mg-RE-H Systems (RE=Y, La, Ce, Pr, Sm, Gd, Tb, Dy). Journal of Alloys and Compounds, 2006, 408-412:284-287
    28 Y. Goto, H. Kakuta, A. Kamegawa et al. High-Pressure Synthesis of Novel Hydride in Mg-M Systems (M=Li,Pd). Journal of Alloys and Compounds, 2005, 404-406:448-452
    29肖长江,靳常青,王晓慧.高压烧结纳米钛酸钡陶瓷的结构和铁电性.硅酸盐学报, 2008, 36(6):748-750
    30李小雷,马红安,郑友进等.高压烧结AlN陶瓷的微观结构和残余应力.材料研究学报, 2008, 22(4):394-398
    31齐建起,卢铁城,常相辉等. MgAl2O4纳米透明陶瓷的制备及其透明机理.材料研究学报, 2006, 20(4):367-371
    32秦秀娟,邵光杰,刘日平等.氧化锌纳米晶高温高压下的晶粒演化.中国科学(G辑), 2007, 37(2):223-229
    33姚怀,唐敬友,唐翠霞等.立方氮化硅粉体的超高压烧结特性.硅酸盐学报, 2008, 36(2):224-227
    34 M. Matsushita, M. Ohta, A. Fujita et al. Disappearance of Ferromagnetism in Amorphous La(Fe0.85Al0.15)13 under High Pressure. Journal of Alloys and Compounds, 2008, 455(1-2):21-24
    35陈晋阳,郑海飞,曾贻善.高压—现代科学的一门新技术.科技导报, 2000, (6):13-15
    36李克强,赵忠贤,靳常青.高压在高温超导研究中的应用.物理, 1998, (5):267
    37 I. O. Bashkin, V. G. Tissen, M. V. Nefedova, E. G. Ponyatovsky. Superconducting Temperature of theω-Phase in Ti, Zr and Hf Metals at High Pressures. Physica C, 2007, 453:12-14
    38王积方.高压下物质性质的研究.大学物理, 2001, 20(8):1-6
    39 J. Z. Zhang, Y. S. Zhao, C. Pantea, J. Qian, L. L. Daemen, P. A. Rigg, R. S. Hixson, C. W. Greeff, G. T. Gray III, Y. P. Yang, L. P. Wang, Y. B. Wang, T. Uchida. Experimental Constraints on the Phase Diagram of Elemental Zirconium. Journal ofPhysics and Chemistry of Solids, 2005, 66:1213-1219
    40 R. Risti, E. Babi. Thermodynamic Properties and Atomic Structure of Amorphous Zirconium. Materials Science and Engineering A, 2007, 449-451:569-572
    41 M. T. Perez-Prado, A. A. Gimazov, O. A. Ruano, M. E. Kassnerc, A. P. Zhilyaeva. Bulk Nanocrystallineω-Zr by High-Pressure Torsion. Scripta Materialia, 2008, 58:219-222
    42 K. Lu. Nanocrystalline Metals Crystallized from Amorphous Solids: Nanocrystallization, Structure, and Properties. Materials Science and Engineering Report, 1996, 16:161-221
    43陈小温,白新德,薛祥义,周庆刚,陈宝山,伍志明,刘芳言.钇离子注入锆的动电位极化曲线研究.稀有金属材料与工程, 2004, 33(2):153-156
    44 P. Scherrer. Nachr. Ges. Wiss. Gottingen, 1918, 2:98
    45 A. V. Dobromyslov, N. V. Kazantseva. Formation of Metastableω-Phase in Zr-Fe, Zr-Co, Zr-Ni, and Zr-Cu Alloys. Scripta Materialia, 1997, 37:615-620
    46 R. J. McCabe, G. Proust, E. K. Cerreta, A. Misra. Quantitative Analysis of Deformation Twinning in Zirconium. International Journal of Plasticity, 2009, 25:454-472
    47 R. Y. Zhang, M. R. Daymond, R. A. Holt. A Finite Element Model of Deformation Twinning in Zirconium. Materials Science and Engineering A, 2008, 473:139-146
    48 K. Lu, M. L. Sui. Thermal Expansion Behaviors in Nanocrystalline Materials with a Wide Grain Size Range. ActaMetallurpica et Materiallia, 1995, 43:3325-3332
    49奚同庚.无机材料热物性学.上海:上海科学技术出版社, 1981
    50中国金属学会,中国有色金属学会.金属材料物理性能手册第一册,金属物理性能及测试方法.北京:冶金工业出版社, 1987, 186-207
    51温元凯,李济民.金属热膨胀的规律性.金属材料研究, 1976, 14(12):956
    52 H G F温克勒.晶体构造和晶体性质(中译本).北京:科学出版社, 1960, 274:956
    53 Z. Trojanová, P. Luká?, A. Dlouhy. Hardening and Softening in Zr--Sn Polycrystals. Materials Science and Engineering A, 1993, 164:246-251
    54 J. Xu, X. D. Bai, Y. D. Fan. Studies on the Corrosion Behavior of Yttrium Implanted Zircaloy-4. J. Mater. Sci., 2000, 35:6225-6229
    55 G. C. Kaschner, C. N. Tome, I. J. Beyerlein, S. C. Vogel, D. W. Brown, R. J. McCabe. Role of Twinning in the Hardening Response of Zirconium during Temperature Reloads.Acta Materialia, 2006, 54:2887-2896
    56 G. Proust, C. N. Tome, G. C. Kaschner. Modeling Texture, Twinning and Hardening Evolution during Deformation of Hexagonal Materials. Acta Materialia, 2007, 55:2137-2148

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700