轮轨热接触耦合问题的有限元分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
车轮踏面的擦伤和剥离是机车车辆运行过程中常常会遇到的问题。车轮和钢轨之间滑动所产生的摩擦热是引发轮轨擦伤的主要因素。踏面制动车轮温升会达到很高的温度,车轮与钢轨瞬态接触过程中由于存在较高的温差,就会对轮轨应力大小以及分布区域产生影响。探索轮轨接触温升和热应力规律对研究车轮和钢轨的热损伤和剥离具有很大的意义。
     本文建立了轮轨三维热接触耦合有限元模型,分别是锥型、磨耗型踏面机车车轮和LM型车辆车轮分别在60 kg/m钢轨上滑行,磨耗型踏面机车车轮滚动过程中的有限元模型。主要利用大型有限元软件MARC进行热接触耦合计算。考虑材料非线性、轴重、速度和摩擦系数的变化情况对车轮和钢轨的温度和应力分布的影响,比较了纯机械载荷作用下和热载荷作用下应力分布的差异。
     通过对轮轨擦伤问题的分析,得出锥型踏面机车车轮滑行时温度和应力都高于磨耗型踏面机车车轮,这说明锥型踏面机车车轮对车轮和钢轨的热损伤比磨耗型踏面机车车轮要大;机车车轮滑行时对车轮和钢轨的热损伤比车辆车轮要大。材料非线性对于在计算轮轨热接触耦合过程中的影响不可忽略;轮轨的应力和温度都随着轴重和速度的增大而升高。车轮最大应力区域与实际擦伤区域形状相似,范围略小。
     针对车轮滚动过程中轮轨剥离问题的瞬态分析,得出随着制动力矩的增大,车轮和钢轨的最大应力都升高;随着轴重的增大、踏面温度的升高和表面硬化层的出现都会使轮轨的最大应力逐渐增大;车轮的最大应力分布区域集中在车轮表面0~3mm左右,这与实际裂纹区域相吻合;接触力对轮轨应力大小的影响远大于热载荷对轮轨应力大小产生的影响。较大的接触应力导致车轮表面硬化层碎裂,产生裂纹,进而导致踏面剥离的发生。
     本文计算方法和结果将为探讨车轮踏面擦伤和剥离提供理论参考。
It is a common problem that the tread scratch damage and shelling when locomotive and vehicle are running. The friction heat between wheel and rail for sliding is the main factor of scratch damage. Tread brake will lead to a high temperature for wheel. There is a big difference in temperature during transient contact of wheel and rail, which will have impact on the contact stress of wheel and rail and their distribution areas. It is greatly significant for investigating the thermal damage and shelling of wheels and rails to explore the laws of contact temperature and thermal stress between wheel and rail.
     The models of three-dimensional finite element and thermal coupled contact are built which including cone type tread, wear type tread of locomotive wheel and LM type tread of vehicle wheel sliding on the 60 kg/m rail. The models also include wear type tread of locomotive wheel rolling in braking process. Thermal-contact coupled contact was simulated considering the factors of the material nonlinearity, axle load, speed and friction coefficient on the temperature and stress distribution of the wheel and rail by large-scale finite element software named MARC. The variations of stress distributions were compared between mechanical loads condition and thermal loads condition.
     The result show that the temperature and stress generated from cone type locomotive wheel tread when sliding are higher than that generated from wear type. So the thermal damage of wheel-rail with cone type tread is more serious than that with wear type. The thermal damage of the wheel and the rail under the locomotive’s sliding is more serious than that under the vehicle’s sliding. Material nonlinearity for the thermal coupled contact cannot be neglected .The stress and the temperature of wheel and rail are both increased as axle load and speed increasing. The shape is similar comparing the maximum stress area with actual scratch area, but the range is smaller with the former.
     As for the instantaneous analysis of shelling problem, it is found that the maximum stress of the wheel and rail increases with the braking torque, axle load and tread temperature increasing under the mechanical load condition. The maximum stress of the wheel and rail also increases with surface hardened layer producing. The Maximum-stress located under the surface 0-3 mm . This is consistent with the actual crack area. The effect of contact force to wheel-rail contact stress is much more obvious than that of thermal effect. The higher stress leads to fragile cracking for the surface hardness layer, therefore the crackle generated, which leads to the shelling.
     The research method and results of this paper provide a theoretical reference for reducing the wheel tread thermal damaged and shelling.
引文
[1]甘雄华,周全仂.DF4D、DF11型整体车轮剥离的原因分析及对策.内燃机车,2005,(3):35—38
    [2]张斌,付秀芹,张弘等.机车车辆车轮踏面剥离现状及其分析.铁道车辆,2005,43(5):1-5
    [3] Anders Ekberga,Elena Kaboa.Fatigue of railway wheels and rails under rolling contact and thermal loading—an overview .A. Ekberg,E. Kabo / Wear 2005 (258):1288–1300
    [4]汪五洲,马丁.“蓝箭’动车组拖车KDQ型轮对剥离问题探讨.铁道车辆,2004,42(3):32—34
    [5]王文健,刘启跃.车轮踏面剥离机理研究.机械,2004,31(6):12-15
    [6]苏杭,季怀中,张永权等.高速列车车轮钢摩擦热致相变的计算机模拟.金属学报,2004,40(9):899-1914
    [7]王文健,刘启跃.车轮剥离性能试验研究.西南交通大学学报,2005,40(2):228-231
    [8]崔银会.200km/h轻型客车车轮踏面剥离原因浅析.铁道车辆,2003,41(4):14—16
    [9]裴有福,金元生,温湿铸.用拉普拉斯变化法研究轮轨滑动引起的温升.中国铁道科学,1995,16(4):81-87
    [10]孙琼,陈泽深,藏其吉.轮轨接触温升及其数值分析研究.中国铁道科学,1997,18(4):14-25
    [11]裴有福,金元生,温湿铸.轮轨接触温升的有限元分析.中国铁道科学,1996,17(4):48-58
    [12]张洪武,顾元宪,钟万勰.传热与接触两类问题耦合作用的有限元分析.固体力学学报,2000,21(3):217-224
    [13]赵鑫,金学松,温泽峰.全滑动状态下轮轨接触热弹性应力.西南交通大学学报,2008,43(1):51-56
    [14]吴磊,温泽峰,金学松.车轮全滑动轮轨摩擦温升三维有限元分析.机械工程学报,2008,44(3) 57—64
    [15]吴磊,温泽峰,金学松.轮轨摩擦耦合热弹性有限元分析模型.交通运输工程学报,2007,7(6):21-27
    [16]吴磊,温泽峰,金学松.轮轨摩擦温升有限元分析.铁道学报,2008,30(3):19-26
    [17]李伟,温泽峰,吴磊,金学松.车轮滑动时钢轨热机耦合有限元分析.润滑与密封,2009,34(1) 24—29
    [18] Yung-Chuan Chen,Sing-You Lee.Elastic-Plastic Wheel-Rail Thermal Contact on Corrugated Rails During Wheel Braking.Journal of Tribology; Transactions of ASME,2009,131:1-8
    [19]赵鑫,温泽峰,金学松.表面不平顺对轮轨摩擦温度场的影响.交通运输工程学报,2005,5(2):19—22
    [20] M.Ertz,K.Knothe.Thermal stresses and shakedown in wheel/rail contact.Archive of Applied Mechanics,2003:715-729
    [21]陈德玲,张建武,周平.高速轮轨列车制动盘热应力有限元研究.铁道学报,2006,8(2):39-44
    [22]葛振亮,吴永根,袁春静.盘式制动器热弹性耦合分析.烟台大学学报,2007,20(3):215-222
    [23]黄健萌,高诚辉,林谢昭,唐旭晟.盘式制动器摩擦界面接触压力分布研究.固体力学学报,2007,28(3):297-303
    [24]黄健萌,高诚辉,唐旭晟,林谢昭.盘式制动器热-结构耦合的数值建模与分析.机械工程学报,2008,44(2):145-152
    [25]姚远,张红军,刘进华.高速机车制动温升对轴盘配合的影响.交通运输工程学报,2008,8(1):10-14
    [26]刘金朝,卜华娜,刘敬辉,钱立新,王成国.整体制动盘热应力有限元仿真分析.中国铁道科学,2007,28(2):80-85
    [27]王艺,陈辉,李明.高速列车制动盘制动过程数值模拟.设计与研究,2008,35(3):82-85
    [28]赵海燕,张海泉,汤晓华.快速列车制动热过程有限元分析.清华大学学报,2005,45(5):588-592
    [29]马思群,兆文忠,谢素明,万朝燕.列车制动盘热—机耦合过程的数值仿真.机械设计与制造,2003,4:71-72
    [30]余红英,樊永生.火车车轮非线性有限元热应力分析.华北工学院学报2001,22(11):25-28
    [31]梁雄,卢立丽,伍晓宇.车轮踏面制动的热-机耦合数值模拟.中国制造业信息化,2007,36(5):82-85
    [32]陈永强,吴庆鸣,张志强.基于约束函数法的热—力耦合分析.机械强度2001,30(1):83-87
    [33]季怀中,苏杭,杨才福等.车轮钢摩擦热影响区的相变及损伤机理.钢铁研究学报,2005,17(4):55-59
    [34]温泽峰,金学松.非稳态纯滚动接触弹塑性分析.固体力学学报,2007,4:355-362
    [35]郭俊,温泽峰,金学松,刘启跃.钢轨三维弹塑性滚动接触应力.西南交通大学学报,2007,42(3):262-269
    [36]陈明韬,王文健,彭亮,刘启跃.钢轨滚动接触磨损研究.润滑与密封,2008,33(3):40-43
    [37]赵鑫,温泽峰,金学松.轮轨滚动摩擦温升分析.摩擦学学报,2005,25(4):358-362
    [38]于开平,周传月,谭惠丰等.HyperMesh从入门到精通.北京.科学出版社.2005
    [39]张朝晖.ANSYS热分析教程与实例解析.北京.中国铁道出版社.2007
    [40]陈火红.Marc有限元实例分析教程.北京.机械工业出版社.2002
    [41]张斌,付秀琴.铁路车轮、轮箍踏面剥离的类型及形成机理.中国铁道科学,2001,22(2):73-79
    [42]于洋.列车车轮踏面剥离机理研究.中国测试技术,2003,25-28

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700