并联电液伺服六自由度平台系统低速运动研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
并联电液伺服六自由度平台广泛应用于对飞行、航海及车载驾驶运动的模拟。因其承载能力强、刚度大和精度高的优点,正在被不断地拓广于各种应用领域之中。随着应用的需要,对其低速平稳运行的性能和良好的动态轨迹跟踪精度的要求越来越高。不同于一般的伺服系统,由于并联电液伺服六自由度平台为多输入、多输出强耦合的非线性系统,因此平台整体低速平稳运行的影响因素更为多样化,其系统低速特性更为复杂。本文首次系统地对平台低速运动进行全面的研究,以揭示其特性规律,并提出相应有效的解决措施。研究思路为对含运动副低速摩擦的平台系统进行完整建模,利用基于数学模型的理论分析与仿真手段,按照由部分到整体的过程,分析系统的支链部分和平台整体的低速特性。根据其特性规律,得到改善平台低速性能的理论着眼点。针对各种特性,分别从平台的空间结构参数设计和控制策略两个方面出发,进行理论与实验研究,以求获取能够提高该类平台低速性能的普遍有效途径。
     论文分八章进行阐述,主要内容如下:
     第一章综述了本课题相关方面的研究背景。介绍了机械、电气、液压伺服系统的低速理论发展历程和摩擦补偿研究的现状,对并联电液伺服六自由度平台低速运动相关的各方面研究现状和发展趋势进行综述,结合课题来源与意义,给出本文的主要工作和研究内容。
     第二章对实验平台进行数学建模。在实验平台建模推导中,特别考虑了低速运动时各运动副之间的摩擦因素,以及系统支链惯量因素,以得出系统完整的非线性模型,为全文提供理论基础。
     第三章基于数学模型,对支链及平台进行低速特性分析与仿真研究。对各支链摩擦进行建模和辨识实验。在此基础上,利用AMESim对支链液压系统进行建模和仿真,研究各种因素对支链低速平稳运行的影响,得出支链的低速特性。通过分析平台输入输出之间的空间广义传动关系,得出平台各自由度运动的空间特性。利用AMESim与MATLAB/Simulink联合仿真的手段,对整体系统平台低速的各种特性进行仿真研究,同时通过实验验证了模型的正确性。
     第四章针对平台各自由度低速运动的空间分布特性,从平台空间结构参数设计角度出发,提出表达平台各自由度运动在设计空间内的全局性能指标,依据该指标,得出平台各自由度运动独立优化的目标函数,为满足各种不同自由度运动低速应用需求的平台,提供了平台各自由度低速运动性能独立优化的方法。同时,提出一种基于广义力平衡原理的结构参数标定方法,从力学角度对平台进行标定,丰富了平台参数标定的方法。
     第五章针对平台支链低速运动的摩擦特性和系统输入输出之间的空间广义传动特性,提出基于摩擦模型的支链摩擦补偿和平台整体空间闭环变增益调节,进行系统低速实验研究。
     第六章针对系统所存在的各种干扰(包括摩擦)特性,对各类干扰的作用进行分析和分类,依据干扰作用的类型设计由基于系统模型的自适应滑模补偿器和结构不变原理的干扰抑制器组成的综合补偿器,对系统低速运动进行综合干扰补偿的仿真及实验研究。
     第七章针对系统支链间的耦合,以及在跟踪过程中彼此之间性能差异所引起的不协同运动特性,提出描述各支链之间互相干扰作用所产生的广义同步偏差和平台各自由度运动之间的干扰偏差,依据自身偏差与相互间的扰动偏差所组成的综合跟踪偏差量,利用Backstepping方法推导鲁棒控制器,对系统惯性参数的不确定因素进行自适应补偿研究,以提高系统的低速运动性能。在此基础上,对实验室平台进行低速空间性能测试,验证了平台本身的低速空间特性。且对不同系统油压下的平台性能进行测试,结合第三章的理论分析,可以得出实验室平台的低速空间性能分布。
     第八章对全文作了总结,阐述了本课题的研究成果和结论,并对后续研究工作做出了展望。
For its high load carrying capacity, good dynamic performance and precise positioning, the electro-hydraulic 6dof parallel platform is used to all kinds of fields by generating general motion in space such as motion simulator, parallel machine, parallel manipulator, and so on. With the development of its application, how to improve the trajectory tracking precision of the platform in low velocity motion becomes more important in the field. The platform is a MIMO nonlinear system. There are all kinds of influencing factors that influence the smooth running and trajectory tracking precision of the platform in low velocity such as motion asynchrony, coupling disturbance force among the linear hydraulic actuators, the frictions of each pairing element and so on. So the low velocity characteristic of the platform is more complex. Through the general research on each aspect of the low velocity motion of the platform, the dissertation discloses the low velocity characteristic and regularity of the platform to improve the trajectory tracking precision of the platform in low velocity motion from control issue and design methods two sides.
     The dissertation consist of eight chapters, the main content of each chapter is as follow:
     The first chapter of the dissertation generally discusses the correlative background of the research. The low velocity crawl of mechanical servo system, electrical servo system and hydraulic servo system and the friction compensation research are introduced. At the same time, the each aspect research about the low velocity movement of the electro-hydraulic 6dof parallel platform is respectively summarized. At the end of this chapter, the support, significance of the research and main research content of the subject is illustrated.
     In the second chapter, the whole dynamics of the platform is deriving to found the theoretical basis of the research. In this processing, the frictions of each pairing element and the inertia of each cylinder take into account to build the system dynamic model.
     The third chapter has analyzed the each influencing factor about the low velocity characteristic of the joints and the platform based on the dynamics. The input/output transmission relationship of the platform in space is shown to disclosure low velocity characteristic of each degree of freedom of the platform. The simulation results of the low velocity characteristic of the system are shown to validate the analysis and the accuracy of the model by AMESim and MATLAB/Simulink tool.
     In the fourth chapter, a new design method is proposed to optimize each degree motion performance in the low velocity according to the low velocity characteristic of each degree of freedom of the platform in space. According to the characteristic, the global indices of each degree motion performance and the correlate cost function are present. At the same time, a new kinematic calibration method based on generalized force principle is proposed to improve the setting accuracy.
     In the fifth chapter, friction compensation research of cylinders based on LuGre model and closed loop gain scheduling of the whole platform in space are present to improve the trajectory tracking performance in the low velocity motion according to the friction characteristic of cylinders and the transmission relationship characteristic of the platform in space.
     In the sixth chapter, according to the disturbance force characteristic include the friction during the low velocity trajectory tracking process for the electro-hydraulic 6dof parallel platform, a mix compensator of the disturbance force is proposed in the chapter. Through analyzing the source and effect of the disturbance force, an adaptive robust compensator and the classical compensator based on structure invariance principle are designed to separately deal with the influence of different disturbance force.
     In the seventh chapter, according to the non-synchronization and coupling disturbance force among the hydraulic cylinder of the platform in low velocity motion, the position synchronization errors is investigated by considering motion synchronization between each actuator joint and the synchronization errors of cylinders. The position disturbance errors of each degree motion are investigated too. According to the compositive tracking errors which consist of the position errors and the synchronization errors, the robust controller is proposed to guarantee asymptotic convergence to zero of both the position errors and the synchronization errors in low velocity trajectory motion by backstepping design methodology. The adaptive law is deduced to deal with the unknown parameters of the platform. Finally, the low velocity performance of the platform is measured in space with the controller. The result validated the analysis of the third chapter. At the same time, the low velocity performance is measured in different pressure condition to express the influence of the system pressure of the oil. According the results and the analysis, the low velocity performance of the platform in whole design space can be known.
     In the eighth chapter, main research work, conclusion and innovation points of this dissertation are summarized. At the same time, future development of the platform about the low velocity motion research is predicted in order to provide references for the further research on this project.
引文
[1]陈娟,乔彦峰.伺服系统低速摩擦力矩特性及补偿研究概况.光机电信息2002,11:现代军事装备.
    [2]刘春芳.液压三轴仿真转台低速性能及其控制策略的研究.[博士学位论文]哈尔滨:哈尔滨工业大学,2003.
    [3]李尚义,赵克定,刘庆和.三轴飞行仿真转台总体设计及关键技术.宇航学报,1995,(2):63-66.
    [4]谷云彪等.马达摩擦转矩对电液伺服系统低速性能的影响.机械工程师,1995,(5)
    [5]赵克定,李尚义,吴盛林.超低速、高频响、高精度液压伺服马达的设计特点和试验研究[J].机床与液压,1990,(3):50-56
    [6]Bowden,F.P.et al.The nature of Sliding and the Analysis of Friction,Proceedings of Royal Society,1939.
    [7]Bowden,F.P.et al.The Friction and Lubrication of Solids,Oxford University Press,1950.
    [8]Stepanek,K.Stability of Sliding Motion.Czechoslovakia Heavy Industry.No.3,1957
    [9]#12
    [10]S.A.托贝斯著.天津大学机械系译.机床振动学.机械工业出版社.1977:36-42.
    [11]Pratt,T.K.et al,No-linear Analysis of Stick-Slip Motion,Journal of Sound and Vibration,Vol.74,No.4,1981,pp:531-542.
    [12]Kolston,P.J.Modeling Mechanical Stick-Slip Friction Using Electrical Circuit Analysis,J.of Dyn.Sys.Meas.And Control,Vol.110,No.4,1988,pp:440-443.
    [13]Klamecki,B.E.A Catastrophe Theory Description of Stick-slip Motion in Sliding.Wear.Vol.101,1985,pp:325-332.
    [14]胡嘉彬.滑动导轨的动态特性.机床。1981年第8期.
    [15]高中庸等.机床滑动部件运动稳定性研究.机床与液压.1982,1:22-27.
    [16]陈朴.数字转台伺服系统低速特性的分析与控制.[硕士学位论文]北京:北京航空航天大学,2001.
    [17]陈娟.伺服系统低速特性与抖动补偿研究.[博士学位论文]沈阳:中国科学院长春光学精密机械与物理研究所,2001。
    [18]#12
    [19]#12
    [20]Canudas de Wit C.Control Design for Ultrasonic Motors with Dynamic Friction Interface[C].In the 14th World Congress of IFAC,Beijing,1999:487-491.
    [21]姜玉宪.伺服系统低速跳动问题自动化学报.1982年第2期,pp.136-144.
    [22]段文泽.调速系统低速性能的分析研究.电气传动,1982,3:20-31.
    [23]冯国楠.现代伺服系统的分析与设计.机械工业出版社,1990.
    [24]刘春芳等.高精度液压仿真转台超低速性能的实现.机床与液压.2002.No.1:73-74.
    [25]王旭永.电液马达位置伺服系统低速特性的机理研究.哈尔滨工业大学学报,2002,(2):409-412.
    [26]曹健.仿真转台用连续回转电液伺服马达及其性能的研究.[博士学位论文]哈尔滨:哈尔滨工业大学,2002.
    [27]付永领,裴忠才.电液伺服马达超低速性能的试验研究.机械工程,2001,2:43-44.
    [28]于英华,徐平,刘大木.机床低速爬行研究现状及分析.辽宁工程技术大学学报.2004,23(2):243-246.
    [29]唐开勇.机床工作台运动模型的建立及其不产生爬行的临界速度计算.机床与液压.2002,2:134-135.
    [30]邓绍规.液压讲座.机械制造,1986,3:43-44.
    [31]黄栋源.液压伺服马达的低速阻尼及稳定刚度条件.机床与液压.1989(2):43-47.
    [32]Takano,E.et al,Oscillations Caused by Solid Friction in a Hydraulic Driving System.JSME International Journal,Vol.31,No.1,1988,pp48-57.
    [33]#12
    [34]刘洪玉.转台伺服系统低速性能分析与摩擦补偿研究.[硕士学位论文]哈尔滨:哈尔滨工业大学,2006.
    [35]王旭永.三轴转台外框电液位置伺服系统低速运动的研究.[博士学位论文]哈尔滨:哈尔滨工业大学,1993.
    [36]Hess and Soom.Friction at a Lubricated Line Contact Operating at Oscillating Sliding Velocities.Journal of Tribology,1990,1112(1):147-152.
    [37]Armstrong B.Dupont P.Canudas de Wit.C.A Survey of Models,Analysis Tools the Control Machines with Friction.Automatica,1994,30(7):1083-1138
    [38]Rabinowiez.The Intrinsic Variables Affecting the Stick-Slip Process.Proc.Physical Society of London.1958,71(4):668-675.
    [39]P.E.Dupont.et al.Friction Modeling and Control in Boundry Lubrication.Proc.ACC.San Francisco,1993:1910-1914.
    [40]Brian Armstrong.Control of Machines with Non-linear,Low-Velocity Friction:A Dimensional Analysis.Proc.1st International Symp.Experimental Robotics.Montreal.1989:180-195.
    [41]Amin J,Friedland B,Harnoy A.Implementation of a Friction Estimation and Compensation Technique.IEEE Control Systems,1997:71-76.
    [42]Huang P Y,Chen Y Y,Chen M S.Position-Dependent Friction Compensation for Ballscrew Tables.In Preceedings of the 1998 IEEE International Conference on Control Applications,1998:863-867.
    [43]Phillips S M,Ballou K R.Friction Modeling and Compensation for an Industrial Robot.Journal of Robotic Systems,1993,10(7):947-971.
    [44]Yang Y P,Chu J S.Adaptive Velocity Control of DC Motors with Coulomb Friction Identification. ASME Journal of Dynamic Systems, Measurement, and Control, 1993,115:95-102.
    [45]Canudas De Wit C. Robust Control for Servo-Mechanisms under Inexact Friction Compensation. Automatica,1993,29(30):757-761.
    [46]Lee S W, Kim J H. Friction Identification Using Evolution Strategies and Robust Control of Positioning Tables. ASME Journal of Dynamic Systems, Measurement, and Control, 1999,121:619-624.
    [47]Walrath C D. Adaptive Bearing Friction Compensation Based on Recent Knowledge of Dynamic Friction. Automatica, 1984,20(6):717-727.
    [48]Canudas De Wit C. A New Model for Control of Systems with Friction[J]. IEEE Tran. On Automatic Control, 1995,40(3):419-425.
    [49]Canudas De Wit C, Lischinsky P. Adaptive Friction Compensation with Partially Known Dynamic Friction Model. International Journal of Adaptive Control and Signal Processing, 1997,11:65-80.
    [50]Lischinsky P, Canudas de Wit C, morel G Friction Compensation for an Industrial Hydraulic Robot. IEEE Control Systems, 1999,2:25-32.
    [51]Vedagarbha P, Dawson D M, Feemster M. Tracking Control of Mechanical Systems in the Presence of Nonlinear Dynamic Friction Effects. IEEE Trans. On Control Systems Technology, 1999,7(4):446-456.
    [52]Misovec K M, Annaswamy A M. Friction Compensation Using Adaptive Non-linear Control with Persistent Excitation. International Journal of Control, 1999,72(5):457-479.
    [53] Canudas de Wit C, Horowitz R. Observers for Tire/road Contact Friction Using Only Wheel Angular Velocity Information. In Proceedings of the 38th Conference on Decision & Control, 1999:3932-3937.
    [54]White M T, Tomizuka M, Smith C. Improved Track Following in Magnetic Disk Drives Using a Disturbance Observer. IEEE/ASME Transactions on Mechatronics,2000,5(1):3-11.
    [55]Ro P I, Shim W, Jeong S. Robust Friction Compensation for Submicrometer Positioning and Tracking for a Ball-Screw-Driven Slide System. Precision Engineering,2000,24:160-173.
    [56]Taghirad H D,Belanger P R.Robust Friction Compensation For Harmonic Drive Transmission.In Proceedings of the 1998 IEEE International Conference on Control Applications,1998:547-551.
    [57]Tung E D,Anwar G,Tomizuka M.Low Velocity Friction Compensation and Feedforward Solution Based on Repetitive Control.ASME Journal of Dynamic Systems,Measurement,and Control,1993,115:279-284.
    [58]Teeter J T,Chow M Y,Jame J.A Novel Fuzzy Friction Compensation Approach to Improve the Performance of a DC Motor Control System.IEEE Trans.On Industrial Electronics,1996,43(1):113-120.
    [59]Tzes A,Peng P Y,Guthy J.Genetic-Based Fuzzy Clustering for DC-Motor Friction Identification and Compensation.IEEE Trans.On Control Systems Technology,1998,6(1):462-472.
    [60]Rastko R S,Lewis F L.Deadzone Compensation in Motion Control Systems Using Neural Networks.IEEE Trans.On Automatic Control,2000,45(4):602-613.
    [61]黄进,叶尚辉.基于CMAC网络的摩擦补偿研究.中国机械工程,1999,10(3):269-272.
    [62]Bhaskar Dasgupta,T.S.Mruthyunjaya.The Stewart Platform Manipulator:a review.Mechanism and Machine Theory,2000(35):15-40
    [63]黄真,孔令富,方跃法.并联机器人机构学理论及控制.北京:机械工业出版社,1997.
    [64]Jean-pierre Merlet.Parallel robots.Kluwer academic publishers,Boston,London,2000.
    [65]刘善增,余跃庆,杜兆才,等.并联机器人的研究进展与现状.组合机床与自动化加工技术,2007,7:4-10
    [66]刘善增,余跃庆,杜兆才,等.并联机器人的研究进展与现状.组合机床与自动化加工技术,2007,8:5-13
    [67]王旭永.六自由度并联驱动平台机构的位置姿态精度控制,仪器仪表学报,1997(6).
    [68]张曙,U.HeiSel.并联运动机床.北京:机械工业出版社,2003.
    [69]杨灏泉.飞行模拟器六自由度运动系统及其液压伺服系统的研究.[博士学位论文]哈尔滨:哈尔滨工业大学,2002.
    [70]曲义远,黄真.空间六自由度并联机构位置的三维搜索方法.机器人,1989,3(5):25-29.
    [71]Innocenti C,Castelli V P.Direct position analysis of the Stewart platform mechanism.Mechanism and Machine Theory,1990,25(6):611-621.
    [72]陈学生.并联机器人位置正解工作空间及尺度综合问题的研究.[博士学位论文]哈尔滨:哈尔滨工业大学,2002.
    [73]徐勇.六自由度转台控制策略及三维动画仿真研究.[硕士学位论文]哈尔滨:哈尔滨工业大学,2001.
    [74]Charles C.Nguyen,Zhen-Lei Zhou,Sami S.Antrazi.Efficient computation of forward kinematics and Jacobian matrix of a Stewart platform-based manipulator.NASA IEEE Proc of the Southeast Conf,1991,2:869-874.
    [75]DASGUPTA B,MRUTHYUNJAYA T S.A Newton-Euler formulation for the inverse dynamics of the Stewart platform manipulator.Mechanism and Machine Theory,1998,33(8):1135-1152.
    [76]Pang H,Shaingpoor M.Inverse dynamics of a parallel manipulator.Journal of Robotic System,1994,11(8):693-702.
    [77]Tsai L W.Solving the inverse dynamics of a Stewart-Grough manipulator by the principle of virtual work.ASME Journal of Mechanical Design,2000(122):3-9.
    [78]吴江宁.并联式六自由度平台及其控制研究.[博士学位论文]杭州:浙江大学,1997.
    [79]郭祖华,陈五一.6-UPS型并联机构的刚体动力学模型.机械工程学报,2002,38(11):53-57.
    [80]Yiu Y K,Cheng H,Xiong Z H,et al.On the dynamics of parallel manipulators.IEEE International Conference on Robotics and Automation,Seoul,Korea,2001.
    [81]熊有伦.机器人技术基础.武汉:华中科技大学出版社,1996.
    [82]MERLET J P.Designing a parallel manipulator for a specific workspace.The International Journal of Robotics Research,1997,16(4):545-556.
    [83]GUILLOT M,GOSSELIN C M.The synthesis of manipulators with prescribed workspace.Transactions of the ASME,Journal of Mechanical Design,1991,113(3):451-455.
    [84]MERLET J P.An improved design algorithm based on interval analysis for spatial parallel manipulator with specified workspace.In proceedings of IEEE International Conference of Robotics and Automation,Seoul,Korea,2001,2:1289-1294.
    [85]STAMPER R E,TSAI L W,WALSH G C.Optimization of a three DOF translational platform for well-conditioned workspace.In Proceedings of IEEE International Conference on Robotics and Automation,Albuquerque,1997:3250-3255.
    [86]GOSSELIN C,ANGELES J.A global performance index for the kinematic optimization of robotic manipulators.ASME Journal of mechanical Design,1991,113(3):220-226.
    [87]M.Thomas,H.C.Yuan-Chou,and D.Tesar.Optimal actuator sizing for robotic manipulators based on local dynamic criteria.Journal of Mecha,Trans,and Autom.In Design,1985,107:163-169.
    [88]D.R.Kerr.Analysis,Properties,and Design of a Stewart Platform Transducer.ASME J.Mech.Transm.Autom.1989,111(10):25-28.
    [89]BHATTACHARAVA S.On the optimum design of Stewart platform type parallel manipulators[J].Robotica,1995,13(2):133-140.
    [90]Oussama Khatib,Alan Bowling.Optimization of the inertial and acceleration characteristics of manipulators.Proceedings of the IEEE International Conference on Robotics and Automation.Minneapolis,Minnesota,1996,4:2883-2889.
    [91]陈光伟,王君英.新型并联机床静刚度特性的有限元分析及优化设计.机械设计与制造,2006,12:4-6.
    [92]黄田,汪劲松.Stewart并联机器人局部灵活度与各向同性条件解析.机械工程 学报,1999,35(5):41-46.
    [93]高峰,刘辛军,金振林.机器人机构CAD的研究.机械工程学报,2000,36(4):9-13.
    [94]刘辛军.并联机器人机构尺寸与性能关系分析及其设计理论研究.[博士学位论文]燕山大学,1999.
    [95]Y.L.Lou,G.F.Liu,J.J.Xu,and Z.X.Li.A general approach for optimal kinematic design of parallel manipulators.In Proceedings of IEEE International Conference on Robotics and Automation,2004:3659-3644.
    [96]LIPKIN H,DUFFY J.Hybrid twist and wrench control for robotic manipulator.Transactions of ASME,Journal of Mechanisms,Transmissions,and Automation in Design,1988,110(2):138-144.
    [97]Hanqi Zhuang,Oren Masory,Jiahua Yan.Kinematic calibration of a Stewart platform using pose measurements obstained by a single theodolite.IEEE/RSJ Intelligent Robots and Systems,1995:329-334.
    [98]S.Besnard.Calibration of parallel robots using two inclinometers.IEEE International Conference of Robotics and Automation.,1999,5:1758-1763.
    [99]www.apisensor.com
    [100]魏世民,廖启征,黄靖远.6-PPS型并联机床的仿真研究.机械设计与研究,2001,17(4):51-53.
    [101]D.J.Bennett.Autonomous calibration of single-loop closed kinematic chains formed by manipulators with passive endpoint constrains.IEEE Transactions on Robotics and Automation,1991(17):597-06.
    [102]Nahvi A.Calibration of a parallel robot using multiple kinematic closed loops.IEEE ICRA,San Diego,1994,5:407-412.
    [103]Wampler C W,Hollerbach J M,Arai T.An implicit loop method for kinematic calibration and its application to closed-chain mechanisms.IEEE Transactions on Robotics and Automation,1995,11(5):710-724.
    [104]Patel A J,Ehmann K F.Calibration of a hexapod machine tool using a redundant leg.International Journal of Machine Tools & Manufacture,2000,40(4):489-512.
    [105]苏东海,韩国惠.伺服阀控制非对称液压缸同步控制性能分析.沈阳工业大学学报,2006,26(6):605-608.
    [106]徐东光,吴盛林,赵克定,等.阀控非对称缸位置伺服系统正反向速度特性的理论分析及试验研究.液压与气动,2005,6:35-39.
    [107]张业建,李洪人.非对称缸系统液压缸两腔压力特性的研究.机床与液压,2000,5:63-64.
    [108]Chin-I Huang,Chih-Fu Chang,Ming-Yi Yu,etc.Sliding-mode tracking control of the Stewart platform.In:the 5th Asian Control Conference,2004,1:562-569
    [109]Park M K,Lee M C,Go S J.The design of sliding mode controller with perturbation observer for a 6-DOF parallel manipulator.In:Proceedings of International Symposium on Industrial Engineering,Pusan,Korea,2001,3:1502-1507
    [110]焦晓红,方一鸣.并联机器人离散滑模变结构控制.自动化与仪器仪表,2001(1):25-27.
    [111]焦晓红,方一鸣,王洪瑞.并联机器人轨迹跟踪离散滑模变结构鲁棒控制器设计.工业仪表与自动化装置,2001(5):3-5.
    [112]Sirouspour M R,Salcudean S E.Nonlinear control of hydraulic robots.IEEE Transaction on Robotics and Automation,2001,17(2):173-182
    [113]Seunghoon Chae,Chanwoo Chung,et al.Adaptive control of a 6-DOF Stewart platform based machine tool.The 4~(th) International Conference on Motion and Vibration Control,Zuerich,Switzerland,1998,8:25-28.
    [114]M.Honegger,A.Codourey,E.Burdet.Application of a nonlinear adaptive controller to a 6-dof parallel manipulator.Proceedings of the 2000 IEEE International Conference on Robotics & Automation.SanFrancisco,2000,4:1930-1935.
    [115]Se-Han Lee,Jae-Bok Song,et al.Conroller design for a Stewart platform using small workspace characteristics.Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems,2001:2184-2189.
    [116]Canudas deWit C,Bruno S,Geoges B.Theory of Robot Control[M].Springer,1996
    [117]M.D.Bryfogle.Kinematics and control of a full parallel force-reflecting hand controller for manipulator teleoperation.Journal of Robotic Systems,1993,10(5):745-766.
    [118]孔令富,寇志远,黄真.基于动力学的6-DOF液压并联机器人力补偿控制.机械工业自动化,1995,17(2):31-33.
    [119]吴博,吴盛林,赵克定.并联机器人控制策略的现状和发展趋势.机床与液压,2005(10):5-8.
    [120]YAO B,TOMIZUKA M.Adaptive robust motion and force tracking control of robot manipulators in contact with compliant surfaces with compliant surfaces with unknown stiffness.Transactions of the ASME,1998,120:232-239
    [121]B.Yao and L.Xu.Observer based adaptive robust control of a class of nonlinear systems with dynamic uncertainties.International Journal of Robust and Nonlinear Control,2001,11(4):335-356.
    [122]Takeo Kanade.Robot force control.Kluwer Academic Publishers,Boston,London,1999.
    [123]Ganwen Zeng,Ahmad Hemami.An overview of robot force control.Robotica,1997,15(5):473-482.
    [124]K.A.Edge,F.G.de Almeida.Decentralized adaptive control of a directly driven hydraulic manipulator Part Ⅰ:theory.Inst.Mech.Eng.1995,209:191-196.
    [125]K.A.Edge,F.G.de Almeida.Decentralized adaptive control of a directly driven hydraulic manipulator Part Ⅱ:experiments.Inst.Mech.Eng.1995,209:197-202.
    [126]Pernechele C,Bortoletto F,Giro E.Neural network algorithm controlling a hexapod platform.In:Proceedings of IEEE-INNS-ENNS International Joint Conference on Neural Networks,2000,:349-352
    [127]Nefti S,Djouani K,Amirat Y.Neuro-fuzzy based approach for hybrid force/position robot control.In:/Proceedings of IEEE International Conference on Industrial Technology,Bangkok,Thailand,2002:376-381
    [128]H.D.Patino,Ricardo Carelli,B.R.Kuchen.Neural networks for advanced control of robot manipulators.IEEE TRANSACTIONS ON NEURAL NETWORKS,2002,13(2):343-354.
    [129]Koivo H.Fuzzy gain scheduling of mimo pid controllers for nonlinear multivariable systems.IEEE International Conference on Systems,Man and Cybernetics,2002,10:320-325.
    [130]Morgan B S.The synthesis of linear multivariable systems by state feedback.JACC,1964,(3):468-472.
    [131]Chu Delin.Martix pencil characterizations of disturbance decoupling for systems with direct feed through.Int J Control,2000,73(11):1042-1050.
    [132]PooGyeon Park,Doo Jin Choi,Seong G.Kong.Output feedback variable structure control for linear systems with uncertainties and disturbances[J].Automacia,2007,43(1):72-79.
    [133]Alessandro De Luca.Decoupling and feedback linearization of robot with mixed rigid/elastic joints.Proceedings of the IEEE International Conference on Robotics and Automation,Minneapolis,Minnesota,1996,4:816-821.
    [134]刘豹.现代控制理论.北京:机械工业出版社,2002.
    [135]王占林.近代电气液压伺服控制.北京:北京航空航天大学出版社,2005.
    [136]Koren Y.Cross-coupled biaxial computer controls for manufacturing systems.ASME Journal of Dynamic Systems,Measurement,and Control,1980,102:265-272.
    [137]Chiu T C,Tomizuka M.Coordinated position control of mult-axis mechanical systems.ASME Journal of Dynamic Systems,Measurement,and Control,1998,120(3):389-393
    [138]Sun D.Adaptive synchronized control for coordination of multirobot assembly tasks.IEEE Transacions on Robotics and Automation.2002,18(4):498-510
    [139]Chin-Min Lin,Yi-Jen Mon.Decoupling control by hieratchical fuzzy sliding-mode controller.IEEE Transactions on Control Systems Technology, 2005,13:593-598.
    [140]Chai Tianyou,Wang Xin,Yue Heng.Multivariable intelligent decoupling control and its applications.Proceeding of the 3rd World Congress on Intelligent Control and Automation,Hefei,China,2002,6:23-29.
    [141]Bing Chen,Shaocheng Tong,Xiaoping Liu.Fuzzy approximate disturbance decoupling of MIMO nonlinear systems by backstepping approach.Fuzzy Sets and Systems,2007,158(10):1097-1125.
    [142]史书林,侯友夫,赵海峰.电液伺服液压缸低速性能的研究.机床与液压,2006,10:97-99.
    [143]何景峰,叶正茂,姜洪州,等.基于关节空间模型的并联机器人耦合性分析.机械工程学报,2006,42(6):161-165.
    [144]何景峰,谢文建,韩俊伟.六自由度并联机器人输出解耦控制.哈尔滨工业大学学报,2006,38(3):395-398
    [145]王伟,谢海波,傅新,等.大型液压Stewart平台动态耦合特性.机械工程学报,2007,43(9):12-15.
    [146]陈晓江.六自由度舰船模拟摇摆平台运动系统的分析与研究.[硕士学位论文]南京:南京理工大学,2006.
    [147]雷英杰,张善文,李续武,等.MATLAB遗传算法工具箱及应用.西安:西安电子科技大学出版社,2005.
    [148]Masory O,Wang J,Zhuang H.On the accuracy of a Stewart Platform—Part Ⅱ:kinematic compensation and calibration.Proc of ICRA IEEE.Atlanta,GA,USA,1993:725-731.
    [149]黄真.空间机构学.北京:机械工业出版社,1991.
    [150]尹瑞多.Stewart广义六维力传感器的研究.[硕士学位论文]杭州:浙江大学,2006.
    [151]陈雄标,袁哲梭.机器人用六维腕力传感器标定研究.机器人,1997,19(1):7-11.
    [152]李洪人.液压控制系统.北京:国防工业出版社,1990.
    [153]YUN J S,CHO H S.Application of an adaptive model following control technique to a hydraulic servo system subjected to unknown disturbances.J.of Dynamic Systems,Measurement and Control,1991,113(3):479-486.
    [154]PARKER N R,SALCUDEAN S E,LAWRENCE P D.Application of force feedback to heavy duty hydraulic machines.IEEE International Conference on Roboties and Automation,Piscataway,NJ,USA,1993,1:375-381.
    [155]Vossoughi G,Donath M.Dynamic feedback linearization for electrohydraulically actuated control systems.J.of Dynamic Systems,Measurement and Control,1995,113(10):468-477.
    [156]Beji L,Abichou A,Pascal M.Tracking control of a parallel robot in the task space.Proceedings of the 1998 IEEE International Conference on Robotics &Automation,Leuven,Belgium,1998,3:2309-2314.
    [157]刘长年.液压伺服系统优化设计理论.北京:冶金工业出版社,1989:119-127.
    [158]JIAO Zong-xia,GAO Jun-xia,HUA Qing,etc.The velocity synchronizing control on the electro-hydraulic load simulator.CHINESE JOURNAL OF AERONAUTICS,2004,2:39-46.
    [159]H.D.Patino,Ricardo Carelli,B.R.Kuchen.Neural networks for advanced control of robot manipulators.IEEE TRANSACTIONS ON NEURAL NETWORKS,2002,13(2):343-354.
    [160]LEBRET G,LIU K,LEWIS F L.Dynamic analysis and control of a Stewart platform manipulator[J].J.of Robotic System,1993,10(5):629-655.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700